1
|
Zabeti Touchaei A, Vahidi S. Unraveling the interplay of CD8 + T cells and microRNA signaling in cancer: implications for immune dysfunction and therapeutic approaches. J Transl Med 2024; 22:1131. [PMID: 39707465 DOI: 10.1186/s12967-024-05963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
MicroRNAs (miRNAs) emerge as critical regulators of CD8 + T cell function within the complex tumor microenvironment (TME). This review explores the multifaceted interplay between miRNAs and CD8 + T cells across various cancers. We discuss how specific miRNAs influence CD8 + T cell activation, recruitment, infiltration, and effector function. Dysregulation of these miRNAs can contribute to CD8 + T cell exhaustion and immune evasion, hindering anti-tumor immunity. Conversely, manipulating miRNA expression holds promise for enhancing CD8 + T cell activity and improving cancer immunotherapy outcomes. We delve into the role of miRNAs in CD8 + T-cell function across different cancer types, including gliomas, gastric and colon cancer, oral squamous cell carcinoma, thyroid carcinoma, lymphomas, melanoma, breast cancer, renal cell carcinoma, ovarian cancer, uterine corpus endometrial cancer, bladder cancer, acute myeloid leukemia, chronic myelogenous leukemia, and osteosarcoma. Additionally, we explore how extracellular vesicles and cytokines modulate CD8 + T-cell function through complex interactions with miRNAs. Finally, we discuss the potential impact of radiotherapy and specific drugs on miRNA expression and CD8 + T-cell activity within the TME. This review highlights the immense potential of targeting miRNAs to manipulate CD8 + T-cell activity for the development of novel and improved cancer immunotherapies.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Alkharsan AMHMS, Safaralizadeh R, Khalaj-Kondori M, HosseinpourFeizi M. Examination of the effects of capecitabine treatment on the HT-29 colorectal cancer cell line and HCG 11, HCG 15, and HCG 18 lncRNAs in CRC patients before and after chemotherapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03674-8. [PMID: 39702604 DOI: 10.1007/s00210-024-03674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/24/2024] [Indexed: 12/21/2024]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. Long noncoding RNAs (lncRNAs) are involved in several pathogenic pathways related to CRC. This study aimed to compare the expression profiles of HCG11, HCG15, and HCG18 genes in CRC patients before and after chemotherapy. Moreover, capecitabine's effects, which is a chemotherapeutic agent, were investigated on apoptosis, cell cycle, and the lncRNA expression in CRC using HT-29 cells. qRT-PCR was used to measure lncRNAs expression in patient and healthy tissues, and the HT-29 CRC cell line. Additionally, the diagnostic and prognostic utility of these lncRNAs were assessed using the ROC curve analysis. The MTT assay was used to evaluate the cytotoxicity of capecitabine, and by using flow cytometry, apoptosis induction and cell cycle progression were investigated. CRC patients expressed higher levels of HCG11 and HCG15 and lower levels of HCG18. Furthermore, those receiving capecitabine demonstrated a decrease in HCG11 and an increase in HCG18 expression. In the HT-29 cell line, capecitabine can also increase the expression of HCG18 and decrease the expression of HCG11 and HCG15. However, no statistically significant variations were determined in the expression of these lncRNAs in clinical variables. Additionally, the data show that HCG18 is a poor prognostic biomarker, and HCG11 and HCG18 are poor diagnostic biomarkers. Treatment with capecitabine caused an accumulation of sub-G1 cells, indicating a potent apoptotic effect on HT-29 cells. These findings confirmed capecitabine's anticancer effects and showed that it can increase HCG18 and reduce HCG11 and HCG15 expression.
Collapse
Affiliation(s)
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
3
|
Yang Z, Cui Y, Xu S, Li L. LncRNA HCG18 affects aortic dissection through the miR-103a-3p/HMGA2 axis by modulating proliferation and apoptosis of vascular smoothing muscle cells. Clinics (Sao Paulo) 2024; 79:100400. [PMID: 39089097 PMCID: PMC11342200 DOI: 10.1016/j.clinsp.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Aortic Dissection (AD) is a vascular disease with a high mortality rate and limited treatment strategies. The current research analyzed the function and regulatory mechanism of lncRNA HCG18 in AD. METHODS HCG18, miR-103a-3p, and HMGA2 levels in the aortic tissue of AD patients were examined by RT-qPCR. After transfection with relevant plasmids, the proliferation of rat aortic Vascular Smoothing Muscle Cells (VSMCs) was detected by CCK-8 and colony formation assay, Bcl-2 and Bax was measured by Western blot, and apoptosis was checked by flow cytometry. Then, the targeting relationship between miR-103a-3p and HCG18 or HMGA2 was verified by bioinformation website analysis and dual luciferase reporter assay. Finally, the effect of HCG18 was verified in an AD rat model induced by β-aminopropionitrile. RESULTS HCG18 and HMGA2 were upregulated and miR-103a-3p was downregulated in the aortic tissues of AD patients. Downregulating HCG18 or upregulating miR-103a-3p enhanced the proliferation of VSMCs and limited cell apoptosis. HCG18 promoted HMGA2 expression by competing with miR-103a-3p and restoring HMGA2 could impair the effect of HCG18 downregulation or miR-103a-3p upregulation in mediating the proliferation and apoptosis of VSMCs. In addition, down-regulation of HCG18 could improve the pathological injury of the aorta in AD rats. CONCLUSION HCG18 reduces proliferation and induces apoptosis of VSMCs through the miR-103a-3p/HMGA2 axis, thus aggravating AD.
Collapse
Affiliation(s)
- ZhiHong Yang
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - YuanSheng Cui
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - ShuGuo Xu
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - LongBiao Li
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China.
| |
Collapse
|
4
|
Zabeti Touchaei A, Vahidi S. MicroRNAs as regulators of immune checkpoints in cancer immunotherapy: targeting PD-1/PD-L1 and CTLA-4 pathways. Cancer Cell Int 2024; 24:102. [PMID: 38462628 PMCID: PMC10926683 DOI: 10.1186/s12935-024-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024] Open
Abstract
Immunotherapy has revolutionized cancer treatment by harnessing the power of the immune system to eliminate tumors. Immune checkpoint inhibitors (ICIs) block negative regulatory signals that prevent T cells from attacking cancer cells. Two key ICIs target the PD-1/PD-L1 pathway, which includes programmed death-ligand 1 (PD-L1) and its receptor programmed death 1 (PD-1). Another ICI targets cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). While ICIs have demonstrated remarkable efficacy in various malignancies, only a subset of patients respond favorably. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, play a crucial role in modulating immune checkpoints, including PD-1/PD-L1 and CTLA-4. This review summarizes the latest advancements in immunotherapy, highlighting the therapeutic potential of targeting PD-1/PD-L1 and CTLA-4 immune checkpoints and the regulatory role of miRNAs in modulating these pathways. Consequently, understanding the complex interplay between miRNAs and immune checkpoints is essential for developing more effective and personalized immunotherapy strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Erber J, Herndler-Brandstetter D. Regulation of T cell differentiation and function by long noncoding RNAs in homeostasis and cancer. Front Immunol 2023; 14:1181499. [PMID: 37346034 PMCID: PMC10281531 DOI: 10.3389/fimmu.2023.1181499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) increase in genomes of complex organisms and represent the largest group of RNA genes transcribed in mammalian cells. Previously considered only transcriptional noise, lncRNAs comprise a heterogeneous class of transcripts that are emerging as critical regulators of T cell-mediated immunity. Here we summarize the lncRNA expression landscape of different T cell subsets and highlight recent advances in the role of lncRNAs in regulating T cell differentiation, function and exhaustion during homeostasis and cancer. We discuss the different molecular mechanisms of lncRNAs and highlight lncRNAs that can serve as novel targets to modulate T cell function or to improve the response to cancer immunotherapies by modulating the immunosuppressive tumor microenvironment.
Collapse
|
6
|
Li JS, Liu TM, Li L, Jiang C. LncRNA PROX1 antisense RNA 1 promotes PD-L1-mediated proliferation, metastasis, and immune escape in colorectal cancer by interacting with miR-520d. Anticancer Drugs 2023; 34:669-679. [PMID: 36730426 PMCID: PMC10072212 DOI: 10.1097/cad.0000000000001437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/09/2022] [Indexed: 02/04/2023]
Abstract
It was recently found that lncRNA PROX1 antisense RNA 1 (PROX1-AS1) manifested oncogenicity in a variety of malignancies. This work intended to investigate the molecular mechanisms of PROX1-AS1 in colorectal cancer (CRC) development and immune evasion. In this study, both PROX1-AS1 and PD-L1 expressions were lifted in CRC tissues and cells. PROX1-AS1 interference restrained CRC cell proliferation, migration, invasion, as well as CD8 + T-lymphocyte apoptosis, but increased the cytotoxicity and percentage of CD8 + T lymphocytes. The inhibitory effects of PROX1-AS1 inhibition on CRC progression and immune escape were positively related to PD-L1 suppression. PROX1-AS1 absorbed miR-520d to upregulate PD-L1 expression. PROX1-AS1 facilitated CRC progression and immune escape by targeting miR-520d. Furthermore, PROX1-AS1 deletion impaired CRC tumor growth in vivo . To sum up, this study affirmed that PROX1-AS1 could absorb miR-520d to upregulate PD-L1 in CRC, thereby promoting tumor progression and immune escape.
Collapse
Affiliation(s)
- Jian-sheng Li
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| | - Tong-ming Liu
- Department of Anorectal Surgery, Feicheng People’s Hospital, Feicheng
| | - Li Li
- Department of Anorectal Surgery, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser hospital), Qingdao, China
| | - Chuan Jiang
- Department of Anorectal Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan
| |
Collapse
|
7
|
The regulatory role of LncRNA HCG18 in various cancers. J Mol Med (Berl) 2023; 101:351-360. [PMID: 36872315 DOI: 10.1007/s00109-023-02297-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
As a member of long non-coding RNAs (lncRNAs), LncRNA HLA complex group 18 (HCG18) has recently become the focus of cancer research. As outlined in this review, LncRNA HCG18 has been reported to be dysregulated in various cancers development and appears to be activated in a variety of tumors, including clear cell renal cell carcinoma (ccRCC), colorectal cancer (CRC), gastric cancer (GC), hepatocellular carcinoma (HCC), laryngeal and hypopharyngeal squamous cell carcinoma (LHSCC), lung adenocarcinoma (LUAD), nasopharyngeal cancer (NPC), osteosarcoma (OS), and prostate cancer (PCa). Furthermore, the expression of lncRNA HCG18 decreased in bladder cancer (BC) and papillary thyroid cancer (PTC). Overall, the presence of these differential expressions suggests the clinical value of HCG18 in cancer therapy. Additionally, lncRNA HCG18 influences various biological processes of cancer cells. This review summarizes the molecular mechanisms of HCG18 in cancer development, highlights reported the abnormal expression of HCG18 found in various cancer types, and aims to discuss the potential of HCG18 as a target for cancer therapy.
Collapse
|
8
|
Decoding Roles of Exosomal lncRNAs in Tumor-Immune Regulation and Therapeutic Potential. Cancers (Basel) 2022; 15:cancers15010286. [PMID: 36612282 PMCID: PMC9818565 DOI: 10.3390/cancers15010286] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Exosomes are nanovesicles secreted into biofluids by various cell types and have been implicated in different physiological and pathological processes. Interestingly, a plethora of studies emphasized the mediating role of exosomes in the bidirectional communication between donor and recipient cells. Among the various cargoes of exosomes, long non-coding RNAs (lncRNAs) have been identified as crucial regulators between cancer cells and immune cells in the tumor microenvironment (TME) that can interfere with innate and adaptive immune responses to affect the therapeutic efficiency. Recently, a few major studies have focused on the exosomal lncRNA-mediated interaction between cancer cells and immune cells infiltrated into TME. Nevertheless, a dearth of studies pertains to the immune regulating role of exosomal lncRNAs in cancer and is still in the early stages. Comprehensive mechanisms of exosomal lncRNAs in tumor immunity are not well understood. Herein, we provide an overview of the immunomodulatory function of exosomal lncRNAs in cancer and treatment resistance. In addition, we also summarize the potential therapeutic strategies toward exosomal lncRNAs in TME.
Collapse
|
9
|
Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. Long Non-Coding RNA and microRNA Interplay in Colorectal Cancer and Their Effect on the Tumor Microenvironment. Cancers (Basel) 2022; 14:5450. [PMID: 36358867 PMCID: PMC9655812 DOI: 10.3390/cancers14215450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2023] Open
Abstract
As the current staging and grading systems are not sufficient to stratify patients for therapy and predict the outcome of the disease, there is an urgent need to understand cancer in its complexity. The mutual relationship between tumour and immune or stromal cells leads to rapid evolution and subsequent genetic and epigenetic changes. Immunoscore has been introduced as a diagnostic tool for colorectal cancer (CRC) only recently, emphasising the role of the specific tumor microenvironment in patient's prognosis and overall outcome. Despite the fact that non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), cannot be translated into proteins, they significantly affect cell's transcriptome and translatome. miRNA binding to mRNA efficiently blocks its translation and leads to mRNA destruction. On the other hand, miRNAs can be bound by lncRNAs or circular RNAs (circRNAs), which prevents them from interfering with translation. In this way, ncRNAs create a multi-step network that regulates the cell's translatome. ncRNAs are also shed by the cell as exogenous RNAs and they are also found in exosomes, suggesting their role in intercellular communication. Hence, these mechanisms affect the tumor microenvironment as much as protein signal molecules. In this review, we provide an insight into the current knowledge of the microenvironment, lncRNAs', and miRNAs' interplay. Understanding mechanisms that underlie the evolution of a tissue as complex as a tumour is crucial for the future success in therapy.
Collapse
Affiliation(s)
- Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
10
|
Gao C, Hu W, Zhao J, Ni X, Xu Y. LncRNA HCG18 promotes M2 macrophage polarization to accelerate cetuximab resistance in colorectal cancer through regulating miR-365a-3p/FOXO1/CSF-1 axis. Pathol Res Pract 2022; 240:154227. [DOI: 10.1016/j.prp.2022.154227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
|
11
|
He J, Wu W. Comprehensive landscape and future perspectives of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC): Based on a bibliometric analysis. Noncoding RNA Res 2022; 8:33-52. [PMID: 36311994 PMCID: PMC9582894 DOI: 10.1016/j.ncrna.2022.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
This review aimed to use bibliometric analysis to sort out, analyze and summarize the knowledge foundation and hot topics in the field of long noncoding RNAs (lncRNAs) in colorectal cancer (CRC), and point out future trends to inspire related research and innovation. We used CiteSpace to analyze publication outputs, countries, institutions, authors, journals, references, and keywords. Knowledge foundations, hotspots, and future trends were then depicted. The overall research showed the trend of biomedical-oriented multidisciplinary. Much evidence indicates that lncRNA plays the role of oncogene or tumor suppressor in the occurrence and development of CRC. Besides, many lncRNAs have multiple mechanisms. lncRNAs and metastasis of CRC, lncRNAs and drug resistance of CRC, and the clinical application of lncRNAs in CRC are current research hotspots. Through insight into the development trend of lncRNAs in CRC, this study will help researchers extract hidden valuable information for further research.
Collapse
Affiliation(s)
- Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| | - Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China,Corresponding author.
| |
Collapse
|
12
|
Entezari M, Taheriazam A, Orouei S, Fallah S, Sanaei A, Hejazi ES, Kakavand A, Rezaei S, Heidari H, Behroozaghdam M, Daneshi S, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. LncRNA-miRNA axis in tumor progression and therapy response: An emphasis on molecular interactions and therapeutic interventions. Biomed Pharmacother 2022; 154:113609. [PMID: 36037786 DOI: 10.1016/j.biopha.2022.113609] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are critical regulators of biological and pathological mechanisms and they could interact with different molecular pathways. Targeting epigenetic factors has been an idea approach in disease therapy, especially cancer. Accumulating evidence has highlighted function of long non-coding RNAs (lncRNAs) as epigenetic factors in cancer initiation and development and has focused on their association with downstream targets. microRNAs (miRNAs) are the most well-known targets of lncRNAs and present review focuses on lncRNA-miRNA axis in malignancy and therapy resistance of tumors. LncRNA-miRNA regulates cell death mechanisms such as apoptosis and autophagy in cancers. This axis affects tumor metastasis via regulating EMT and MMPs. Besides, lncRNA-miRNA axis determines sensitivity of tumor cells to chemotherapy, radiotherapy and immunotherapy. Based on the studies, lncRNAs can be affected by drugs and genetic tools in cancer therapy and this may affect expression level of miRNAs as their downstream targets, leading to cancer suppression/progression. LncRNAs have both tumor-promoting and tumor-suppressor functions in cancer and this unique function of lncRNAs has complicated their implication in tumor therapy. LncRNA-miRNA axis can also affect other signaling networks in cancer such as PI3K/Akt, STAT3, Wnt/β-catenin and EZH2 among others. Notably, lncRNA/miRNA axis can be considered as a signature for diagnosis and prognosis in cancers.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Shayan Fallah
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Arezoo Sanaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Hajar Heidari
- Department of Biomedical Sciences School of Public Health University at Albany State University of New York, Albany, NY 12208, USA
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Islamic Republic of Iran
| | - Sepideh Mirzaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Islamic Republic of Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Islamic Republic of Iran.
| |
Collapse
|
13
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Chu J, Fang X, Sun Z, Gai L, Dai W, Li H, Yan X, Du J, Zhang L, Zhao L, Xu D, Yan S. Non-Coding RNAs Regulate the Resistance to Anti-EGFR Therapy in Colorectal Cancer. Front Oncol 2022; 11:801319. [PMID: 35111681 PMCID: PMC8802825 DOI: 10.3389/fonc.2021.801319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third prevalent cancer worldwide, the morbidity and mortality of which have been increasing in recent years. As molecular targeting agents, anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (McAbs) have significantly increased the progression-free survival (PFS) and overall survival (OS) of metastatic CRC (mCRC) patients. Nevertheless, most patients are eventually resistant to anti-EGFR McAbs. With the intensive study of the mechanism of anti-EGFR drug resistance, a variety of biomarkers and pathways have been found to participate in CRC resistance to anti-EGFR therapy. More and more studies have implicated non-coding RNAs (ncRNAs) primarily including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely involved in tumorigenesis and tumor progression. They function as essential regulators controlling the expression and function of oncogenes. Increasing data have shown ncRNAs affect the resistance of molecular targeted drugs in CRC including anti-EGFR McAbs. In this paper, we have reviewed the advance in mechanisms of ncRNAs in regulating anti-EGFR McAbs therapy resistance in CRC. It provides insight into exploring ncRNAs as new molecular targets and prognostic markers for CRC.
Collapse
Affiliation(s)
- Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xianzhu Fang
- Department of Pathology and Pathophysiology, Weifang Medical University, Weifang, China
| | - Zhonghou Sun
- Department of Pediatrics of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Linlin Gai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Haibo Li
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Xinyi Yan
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinke Du
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
Xie L, Huang G, Gao M, Huang J, Li H, Xia H, Xiang X, Wu S, Ruan Y. Identification of Atrial Fibrillation-Related lncRNA Based on Bioinformatic Analysis. DISEASE MARKERS 2022; 2022:8307975. [PMID: 35154514 PMCID: PMC8837454 DOI: 10.1155/2022/8307975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia in the world. Long noncoding RNA (lncRNA) has been found to play an important role in cardiovascular diseases including heart failure, myocardial infarction, and atherosclerosis. However, the role of lncRNA in AF has rarely been studied. The purpose of this study is to identify the expression profile of lncRNA in AF patients, explore the function of lncRNA in AF, and provide a potential scientific basis for the treatment of AF in the future. METHODS The lncRNA and mRNA expression profiles were obtained from the atrial appendage samples of GSE31821, GSE411774, GSE79768, and GSE115574 in the Gene Expression Omnibus (GEO) database. Functional analysis was performed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA). The "CIBERSORT" R kit was used to analyze 22 immune cell infiltrates in AF and sinus rhythm (SR) patients. The "CORRPLOT" R package was used to analyze the immune correlation between lncRNA and immune cells. RESULTS A total of 6 differentially expressed lncRNAs and 45 differentially expressed mRNAs were identified in the AF and SR groups. GO, KEGG, and GSVA results showed that abnormally expressed lncRNAs were involved in signaling pathways related to the atrium, including the Toll-like receptor signaling pathway and calcium signaling pathway. Immune cell infiltration analysis revealed that native B cells, follicular helper T cells, and resting dendritic cells may be involved in the AF process. In addition, LINC00844 was negatively correlated with resting dendritic cells. CONCLUSION The expression profile of lncRNA in AF patients was different from that in normal controls. The physiological functions of these differentially expressed lncRNAs may be related to the pathogenesis of AF, which provide a scientific basis for the prognosis and treatment of patients with AF.
Collapse
Affiliation(s)
- Liangzhen Xie
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - GuanShen Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingjian Gao
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianming Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Li
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hao Xia
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuting Xiang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Saizhu Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Ruan
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|