1
|
Thornton JM, Shah NM, Lillycrop KA, Cui W, Johnson MR, Singh N. Multigenerational diabetes mellitus. Front Endocrinol (Lausanne) 2024; 14:1245899. [PMID: 38288471 PMCID: PMC10822950 DOI: 10.3389/fendo.2023.1245899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth. Multiple factors, including genetic, epigenetic and metabolic, which interact with lifestyle factors and the environment, are likely to contribute to the development of GDM. Genetic factors are particularly important, with 30% of women with GDM having at least one parent with T2D. Fetal epigenetic modifications occur in response to maternal GDM, and may mediate both multi- and transgenerational risk. Changes to the maternal metabolome in GDM are primarily related to fatty acid oxidation, inflammation and insulin resistance. These might be effective early biomarkers allowing the identification of women at risk of GDM prior to the development of hyperglycaemia. The impact of the intra-uterine environment on the developing fetus, "developmental programming", has a multisystem effect, but its influence on adipogenesis is particularly important as it will determine baseline insulin sensitivity, and the response to future metabolic challenges. Identifying the critical window of metabolic development and developing effective interventions are key to our ability to improve population metabolic health.
Collapse
Affiliation(s)
- Jennifer M. Thornton
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nishel M. Shah
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Karen A. Lillycrop
- Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Wei Cui
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Natasha Singh
- Department of Academic Obstetrics & Gynaecology, Chelsea & Westminster NHS Foundation Trust, London, United Kingdom
- Department of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Fragoso-Bargas N, Elliott HR, Lee-Ødegård S, Opsahl JO, Sletner L, Jenum AK, Drevon CA, Qvigstad E, Moen GH, Birkeland KI, Prasad RB, Sommer C. Cross-Ancestry DNA Methylation Marks of Insulin Resistance in Pregnancy: An Integrative Epigenome-Wide Association Study. Diabetes 2023; 72:415-426. [PMID: 36534481 PMCID: PMC9935495 DOI: 10.2337/db22-0504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Although there are some epigenome-wide association studies (EWAS) of insulin resistance, for most of them authors did not replicate their findings, and most are focused on populations of European ancestry, limiting the generalizability. In the Epigenetics in Pregnancy (EPIPREG; n = 294 Europeans and 162 South Asians) study, we conducted an EWAS of insulin resistance in maternal peripheral blood leukocytes, with replication in the Born in Bradford (n = 879; n = 430 Europeans and 449 South Asians), Methyl Epigenome Network Association (MENA) (n = 320), and Botnia (n = 56) cohorts. In EPIPREG, we identified six CpG sites inversely associated with insulin resistance across ancestry, of which five were replicated in independent cohorts (cg02988288, cg19693031, and cg26974062 in TXNIP; cg06690548 in SLC7A11; and cg04861640 in ZSCAN26). From methylation quantitative trait loci analysis in EPIPREG, we identified gene variants related to all five replicated cross-ancestry CpG sites, which were associated with several cardiometabolic phenotypes. Mediation analyses suggested that the gene variants regulate insulin resistance through DNA methylation. To conclude, our cross-ancestry EWAS identified five CpG sites related to lower insulin resistance.
Collapse
Affiliation(s)
- Nicolas Fragoso-Bargas
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hannah R. Elliott
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Julia O. Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Anne Karen Jenum
- General Practice Research Unit (AFE), Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd. Analytical Services, Oslo Science Park, Oslo, Norway
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kåre I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rashmi B. Prasad
- Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|