1
|
Kim HY, Shin CH, Shin CH, Ko JM. Uncovering the phenotypic consequences of multi-locus imprinting disturbances using genome-wide methylation analysis in genomic imprinting disorders. PLoS One 2023; 18:e0290450. [PMID: 37594968 PMCID: PMC10437897 DOI: 10.1371/journal.pone.0290450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Imprinted genes are regulated by DNA methylation of imprinted differentially methylated regions (iDMRs). An increasing number of patients with congenital imprinting disorders (IDs) exhibit aberrant methylation at multiple imprinted loci, multi-locus imprinting disturbance (MLID). We examined MLID and its possible impact on clinical features in patients with IDs. Genome-wide DNA methylation analysis (GWMA) using blood leukocyte DNA was performed on 13 patients with Beckwith-Wiedemann syndrome (BWS), two patients with Silver-Russell syndrome (SRS), and four controls. HumanMethylation850 BeadChip analysis for 77 iDMRs (809 CpG sites) identified three patients with BWS and one patient with SRS showing additional hypomethylation, other than the disease-related iDMRs, suggestive of MLID. Two regions were aberrantly methylated in at least two patients with BWS showing MLID: PPIEL locus (chromosome 1: 39559298 to 39559744), and FAM50B locus (chromosome 6: 3849096 to 3849469). All patients with BWS- and SRS-MLID did not show any other clinical characteristics associated with additional involved iDMRs. Exome analysis in three patients with BWS who exhibited multiple hypomethylation did not identify any causative variant related to MLID. This study indicates that a genome-wide approach can unravel MLID in patients with an apparently isolated ID. Patients with MLID showed only clinical features related to the original IDs. Long-term follow-up studies in larger cohorts are warranted to evaluate any possible phenotypic consequences of other disturbed imprinted loci.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedics, Division of Pediatric Orthopedics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
2
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Rumpf R, Lemos Júnior PES, Alves CS, Carneiro WDS, Dias AJB, Rios ÁFL. Multi-locus DNA methylation analysis of imprinted genes in cattle from somatic cell nuclear transfer. Theriogenology 2022; 186:95-107. [DOI: 10.1016/j.theriogenology.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
3
|
Tayeh MK, DeVaul J, LeSueur K, Yang C, Bedoyan JK, Thomas P, Hannibal MC, Innis JW. Novel multilocus imprinting disturbances in a child with expressive language delay and intellectual disability. Am J Med Genet A 2022; 188:2209-2216. [PMID: 35365979 PMCID: PMC9321834 DOI: 10.1002/ajmg.a.62752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022]
Abstract
Multilocus imprinting disturbances (MLID) have been associated with up to 12% of patients with Beckwith‐Wiedemann syndrome, Silver‐Russell syndrome, and pseudohypoparathyroidism type 1B (PHP1B). Single‐gene defects affecting components of the subcortical maternal complex (SCMC) have been reported in cases with multilocus hypomethylation defects. We present a patient with speech and language impairment with mild Angelman syndrome (AS) features who demonstrates maternal hypomethylation at 15q11.2 (SNRPN) as well as 11p15.5 (KCNQ1OT1) imprinted loci, but normal methylation at 6q24.2 (PLAGL1), 7p12.1 (GRB10), 7q32.2 (MEST), 11p15.5 (H19), 14q32.2 (MEG3), 19q13.43 (PEG3), and 20q13.32 (GNAS and GNAS‐AS1). The proband also has no copy number nor sequence variants within the AS imprinting center or in UBE3A. Maternal targeted next generation sequencing did not identify any pathogenic variants in ZPF57, NLRP2, NLRP5, NLRP7, KHDC3L, PADI6, TLE6, OOEP, UHRF1 or ZAR1. The presence of very delayed, yet functional speech, behavioral difficulties, EEG abnormalities but without clinical seizures, and normocephaly are consistent with the 15q11.2 hypomethylation defect observed in this patient. To our knowledge, this is the first report of MLID in a patient with mild, likely mosaic, Angelman syndrome.
Collapse
Affiliation(s)
- Marwan K Tayeh
- Department of Medical and Molecular Genetics, Division of Indiana, University Genetics Testing Laboratories, Indiana University, Indianapolis, Indiana, USA
| | - Janean DeVaul
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristin LeSueur
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chen Yang
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jirair K Bedoyan
- Department of Pediatrics, Division of Genetic and Genomic Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peedikayil Thomas
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark C Hannibal
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey W Innis
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Soellner L, Kopp KM, Mütze S, Meyer R, Begemann M, Rudnik S, Rath W, Eggermann T, Zerres K. NLRP genes and their role in preeclampsia and multi-locus imprinting disorders. J Perinat Med 2018; 46:169-173. [PMID: 28753543 DOI: 10.1515/jpm-2016-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/19/2017] [Indexed: 12/25/2022]
Abstract
Preeclampsia (PE) affects 2-5% of all pregnancies. It is a multifactorial disease, but it has been estimated that 35% of the variance in liability of PE are attributable to maternal genetic effects and 20% to fetal genetic effects. PE has also been reported in women delivering children with Beckwith-Wiedemann syndrome (BWS, OMIM 130650), a disorder associated with aberrant methylation at genomically imprinted loci. Among others, members of the NLRP gene family are involved in the etiology of imprinting defects. Thus, a functional link between PE, NLRP gene mutations and aberrant imprinting can be assumed. Therefore we analyzed a cohort of 47 PE patients for NLRP gene mutations by next generation sequencing. In 25 fetuses where DNA was available we determined the methylation status at the imprinted locus. With the exception of one woman heterozygous for a missense variant in the NLRP7 gene (NM_001127255.1(NLRP7):c.542G>C) we could not identify further carriers, in the fetal DNA normal methylation patterns were observed. Thus, our negative screening results in a well-defined cohort indicate that NLRP mutations are not a relevant cause of PE, though strong evidence for a functional link between NLRP mutations, PE and aberrant methylation exist.
Collapse
Affiliation(s)
- Lukas Soellner
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Kathrin Maria Kopp
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | | | - Robert Meyer
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Sabine Rudnik
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Werner Rath
- Department of Gynecology, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| | - Klaus Zerres
- Institute of Human Genetics, University Hospital, Technical University (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
5
|
Riess A, Binder G, Ziegler J, Begemann M, Soellner L, Eggermann T. First report on concordant monozygotic twins with Silver-Russell syndrome and ICR1 hypomethylation. Eur J Med Genet 2015; 59:1-4. [PMID: 26691664 DOI: 10.1016/j.ejmg.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Twin pairs with the imprinting disorder Silver-Russell syndrome (SRS) have rarely been reported. All six monozygotic (MZ) twin pairs described so far were clinically discordant. In two of the four SRS twin pairs with molecularly proven 11p15.5 epimutation, the healthy twin also showed the molecular alteration in blood cells, but not in the other tested tissues. The clinical discordance is a well-known but poorly understood observation because MZ twins derive from the same zygote. For the second 11p15.5-associated imprinting disorder, Beckwith-Wiedemann syndrome, a larger number of twins has been described, here the majority of pairs are MZ but clinically discordant as well. Interestingly, there is a considerable preponderance of females among the MZ twins with BWS, and a functional link between altered imprinting and X chromosome inactivation has been suggested. We now describe two further MZ SRS twins with H19/IGF2:IG-DMR hypomethylation, including the first clinically concordant pair. By summarizing the existing data, an excess of females in MZ twins with SRS is observed, thus confirming the hypothesis that X-chromosome inactivation might trigger the inaccurate methylation of imprinted loci at least in female twin conceptions. The occurrence of a MZ concordant SRS twin pair is exceptional. The detailed molecular characterization of both siblings of a twin pair enables a reliable diagnosis, furthermore it allows insights in the etiology of twinning in association with (aberrant) imprinting marking.
Collapse
Affiliation(s)
- Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Gerhard Binder
- University-Children's Hospital, Pediatric Endocrinology, Hoppe-Seyler-Str. 1, 72072 Tübingen, Germany
| | - Julian Ziegler
- University-Children's Hospital, Pediatric Endocrinology, Hoppe-Seyler-Str. 1, 72072 Tübingen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany
| | - Lukas Soellner
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
6
|
Hoffmann A, Daniel G, Schmidt-Edelkraut U, Spengler D. Roles of imprinted genes in neural stem cells. Epigenomics 2015; 6:515-32. [PMID: 25431944 DOI: 10.2217/epi.14.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Imprinted genes and neural stem cells (NSC) play an important role in the developing and mature brain. A central theme of imprinted gene function in NSCs is cell survival and G1 arrest to control cell division, cell-cycle exit, migration and differentiation. Moreover, genomic imprinting can be epigenetically switched off at some genes to ensure stem cell quiescence and differentiation. At the genome scale, imprinted genes are organized in dynamic networks formed by interchromosomal interactions and transcriptional coregulation of imprinted and nonimprinted genes. Such multilayered networks may synchronize NSC activity with the demand from the niche resembling their roles in adjusting fetal size.
Collapse
Affiliation(s)
- Anke Hoffmann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | | | |
Collapse
|
7
|
Daniel G, Schmidt-Edelkraut U, Spengler D, Hoffmann A. Imprinted Zac1 in neural stem cells. World J Stem Cells 2015; 7:300-314. [PMID: 25815116 PMCID: PMC4369488 DOI: 10.4252/wjsc.v7.i2.300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/24/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neural stem cells (NSCs) and imprinted genes play an important role in brain development. On historical grounds, these two determinants have been largely studied independently of each other. Recent evidence suggests, however, that NSCs can reset select genomic imprints to prevent precocious depletion of the stem cell reservoir. Moreover, imprinted genes like the transcriptional regulator Zac1 can fine tune neuronal vs astroglial differentiation of NSCs. Zac1 binds in a sequence-specific manner to pro-neuronal and imprinted genes to confer transcriptional regulation and furthermore coregulates members of the p53-family in NSCs. At the genome scale, Zac1 is a central hub of an imprinted gene network comprising genes with an important role for NSC quiescence, proliferation and differentiation. Overall, transcriptional, epigenomic, and genomic mechanisms seem to coordinate the functional relationships of NSCs and imprinted genes from development to maturation, and possibly aging.
Collapse
|
8
|
Heckmann D, Urban C, Weber K, Kannenberg K, Binder G. Decreased expression of cell proliferation-related genes in clonally derived skin fibroblasts from children with Silver-Russell syndrome is independent of the degree of 11p15 ICR1 hypomethylation. Clin Epigenetics 2015; 7:5. [PMID: 25657826 PMCID: PMC4318184 DOI: 10.1186/s13148-014-0038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022] Open
Abstract
Background The in vitro analysis of the hypomethylation of imprinting control region 1 (ICR1) within the IGF2/H19 locus is challenged by the mosaic distribution of the epimutation in tissues from children with Silver-Russell syndrome (SRS). To exclude mosaicism, clonal cultures of skin fibroblasts from four children with SRS and three controls were analyzed. Cell proliferation, IGF-II secretion, and IGF2 and H19 expression were measured, and a microarray expression analysis was performed. Results Single-cell expansion established severely ICR1 hypomethylated clones (SRShypo) and normomethylated clones (SRSnormo) from the patients and controls (Cnormo). IGF2 expression was below the detection limit of the quantitative real-time PCR (qRT-PCR) assay, whereas H19 expression was detectable, without differences between fibroblast clones. Cell count-related IGF-II release was comparable in SRShypo and Cnormo supernatants. Cell proliferation was diminished in SRShypo compared to Cnormo (p = 0.035). The microarray analysis revealed gene expression changes in SRS clones, predicting a decrease in cell proliferation and a delay in mitosis. Conclusions The analysis of severely ICR1 hypomethylated clonal fibroblasts did not reveal functional differences compared to normomethylated clones with respect to IGF2 and H19 expression. A difference compared to the clones from healthy individuals was present in the form of a lower proliferation rate, presumably due to impaired cell cycle progression. Electronic supplementary material The online version of this article (doi:10.1186/s13148-014-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Doreen Heckmann
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Christina Urban
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Karin Weber
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Kai Kannenberg
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| |
Collapse
|
9
|
Eggermann T, Soellner L, Buiting K, Kotzot D. Mosaicism and uniparental disomy in prenatal diagnosis. Trends Mol Med 2015; 21:77-87. [DOI: 10.1016/j.molmed.2014.11.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 11/26/2014] [Indexed: 01/21/2023]
|
10
|
Genome-wide methylation analysis in Silver-Russell syndrome patients. Hum Genet 2015; 134:317-332. [PMID: 25563730 DOI: 10.1007/s00439-014-1526-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/29/2014] [Indexed: 01/09/2023]
Abstract
Silver-Russell syndrome (SRS) is a clinically heterogeneous disorder characterised by severe in utero growth restriction and poor postnatal growth, body asymmetry, irregular craniofacial features and several additional minor malformations. The aetiology of SRS is complex and current evidence strongly implicates imprinted genes. Approximately, half of all patients exhibit DNA hypomethylation at the H19/IGF2 imprinted domain, and around 10% have maternal uniparental disomy of chromosome 7. We measured DNA methylation in 18 SRS patients at >485,000 CpG sites using DNA methylation microarrays. Using a novel bioinformatics methodology specifically designed to identify subsets of patients with a shared epimutation, we analysed methylation changes genome-wide as well as at known imprinted regions to identify SRS-associated epimutations. Our analysis identifies epimutations at the previously characterised domains of H19/IGF2 and at imprinted regions on chromosome 7, providing proof of principle that our methodology can detect DNA methylation changes at imprinted loci. In addition, we discovered two novel epimutations associated with SRS and located at imprinted loci previously linked to relevant mouse and human phenotypes. We identify RB1 as an additional imprinted locus associated with SRS, with a region near the RB1 differentially methylated region hypermethylated in 13/18 (~70%) patients. We also report 6/18 (~33%) patients were hypermethylated at a CpG island near the ANKRD11 gene. We do not observe consistent co-occurrence of epimutations at multiple imprinted loci in single SRS individuals. SRS is clinically heterogeneous and the absence of multiple imprinted loci epimutations reflects the heterogeneity at the molecular level. Further stratification of SRS patients by molecular phenotypes might aid the identification of disease causes.
Collapse
|
11
|
Weissman J, Naidu S, Bjornsson HT. Abnormalities of the DNA methylation mark and its machinery: an emerging cause of neurologic dysfunction. Semin Neurol 2014; 34:249-57. [PMID: 25192503 PMCID: PMC4512289 DOI: 10.1055/s-0034-1386763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, Mendelian disorders of the DNA methylation machinery have been described which demonstrate the complex roles of epigenetics in neurodevelopment and disease. For example, defects of DNMT1, the maintenance methyltransferase, lead to adult-onset progressive neurologic disorders, whereas defects of the de novo methyltransferases DNMT3A and DNMT3B lead to nonprogressive neurodevelopmental conditions. Furthermore, patients with DNMT3A deficiency demonstrate overgrowth, a feature common to disorders of histone machinery and imprinting disorders, highlighting the interconnectedness of the many epigenetic layers. Disorders of the DNA methylation machinery include both the aforementioned "writers" and also the "readers" of the methyl mark, such as MeCP2, the cause of Rett syndrome. Any dosage disruption, either haploinsufficiency or overexpression of DNA methylation machinery leads to widespread gene expression changes in trans, disrupting expression of a subset of target genes that contribute to individual disease phenotypes. In contrast, classical imprinting disorders such as Angelman syndrome have been thought generally to cause epigenetic dysregulation in cis. However, the recent description of multilocus methylation disorders challenges this generalization. Here, in addition to summarizing recent developments in identifying the pathogenesis of these diseases, we highlight clinical considerations and some unexpected therapeutic opportunities, such as topoisomerase inhibitors for classical imprinting disorders.
Collapse
Affiliation(s)
- Jacqueline Weissman
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sakkubai Naidu
- Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hans T. Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Lepshin MV, Sazhenova EA, Lebedev IN. Multiple epimutations in imprinted genes in the human genome and congenital disorders. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, Arshad H, Wilson DI, Holloway JW, Temple IK, Mackay DJG. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet 2014; 51:229-38. [PMID: 24501229 PMCID: PMC3963529 DOI: 10.1136/jmedgenet-2013-102116] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genomic imprinting is allelic restriction of gene expression potential depending on parent of origin, maintained by epigenetic mechanisms including parent of origin-specific DNA methylation. Among approximately 70 known imprinted genes are some causing disorders affecting growth, metabolism and cancer predisposition. Some imprinting disorder patients have hypomethylation of several imprinted loci (HIL) throughout the genome and may have atypically severe clinical features. Here we used array analysis in HIL patients to define patterns of aberrant methylation throughout the genome. DESIGN We developed a novel informatic pipeline capable of small sample number analysis, and profiled 10 HIL patients with two clinical presentations (Beckwith-Wiedemann syndrome and neonatal diabetes) using the Illumina Infinium Human Methylation450 BeadChip array to identify candidate imprinted regions. We used robust statistical criteria to quantify DNA methylation. RESULTS We detected hypomethylation at known imprinted loci, and 25 further candidate imprinted regions (nine shared between patient groups) including one in the Down syndrome critical region (WRB) and another previously associated with bipolar disorder (PPIEL). Targeted analysis of three candidate regions (NHP2L1, WRB and PPIEL) showed allelic expression, methylation patterns consistent with allelic maternal methylation and frequent hypomethylation among an additional cohort of HIL patients, including six with Silver-Russell syndrome presentations and one with pseudohypoparathyroidism 1B. CONCLUSIONS This study identified novel candidate imprinted genes, revealed remarkable epigenetic convergence among clinically divergent patients, and highlights the potential of epigenomic profiling to expand our understanding of the normal methylome and its disruption in human disease.
Collapse
|
14
|
Collotta M, Bertazzi PA, Bollati V. Epigenetics and pesticides. Toxicology 2013; 307:35-41. [PMID: 23380243 DOI: 10.1016/j.tox.2013.01.017] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/08/2013] [Accepted: 01/16/2013] [Indexed: 01/23/2023]
Abstract
Pesticides, a wide class of environmental contaminants, may cause both acute and delayed health effects in exposed subjects. These effects can range from simple irritation of the skin and eyes to more severe effects such as affecting the nervous system, the reproductive system and cancer. The molecular mechanisms underlying such effects are still under investigation. Epigenetics is the study of heritable changes in gene expression that occur without a change in the DNA sequence. Several epigenetic mechanisms, including DNA methylation, histone modifications and microRNA expression, can be triggered by environmental factors. We review current evidences indicating that epigenetic modifications may mediate pesticide effects on human health. In vitro, animal, and human investigations have identified several classes of pesticides that modify epigenetic marks, including endocrine disruptors, persistent organic pollutants, arsenic, several herbicides and insecticides. Several investigations have examined the effects of environmental exposures and epigenetic markers, and identified toxicants that modify epigenetic states. These modifications are similar to the ones found in pathological tissue samples. In spite of the current limitations, available evidence supports the concept that epigenetics holds substantial potential for furthering our understanding of the molecular mechanisms of pesticides health effects, as well as for predicting health-related risks due to conditions of environmental exposure and individual susceptibility.
Collapse
Affiliation(s)
- M Collotta
- Center of Molecular and Genetic Epidemiology, Department of Clinical Sciences and Community Health, Università degli Studi di Milano and Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Via San Barnaba 8, Milan 20122, Italy
| | | | | |
Collapse
|
15
|
Genome-wide paternal uniparental disomy mosaicism in a woman with Beckwith-Wiedemann syndrome and ovarian steroid cell tumour. Eur J Hum Genet 2012. [PMID: 23188046 DOI: 10.1038/ejhg.2012.259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Uniparental disomy (UPD) of single chromosomes is a well-known molecular aberration in a group of congenital diseases commonly known as imprinting disorders (IDs). Whereas maternal and/or paternal UPD of chromosomes 6, 7, 11, 14 and 15 are associated with specific IDs (Transient neonatal diabetes mellitus, Silver-Russell syndrome, Beckwith-Wiedemann syndrome (BWS), upd(14)-syndromes, Prader-Willi syndrome, Angelman Syndrome), the other autosomes are not. UPD of the whole genome is not consistent with life, in case of non-mosaic genome-wide paternal UPD (patUPD) it leads to hydatidiform mole. In contrast, mosaic genome-wide patUPD might be compatible with life. Here we present a 19-year-old woman with BWS features and initially diagnosed to be carrier of a mosaic patUPD of chromosome 11p15. However, the patient presented further clinical findings not typically associated with BWS, including nesidioblastosis, fibroadenoma, hamartoma of the liver, hypoglycaemia and ovarian steroid cell tumour. Additional molecular investigations revealed a mosaic genome-wide patUPD. So far, only nine cases with mosaic genome-wide patUPD and similar clinical findings have been reported, but these patients were nearly almost diagnosed in early childhood. Summarising the data from the literature and those from our patient, it can be concluded that the mosaic genome-wide patUPD (also known as androgenic/biparental mosaicism) might explain unusual BWS phenotypes. Thus, these findings emphasise the need for multilocus testing in IDs to efficiently detect cases with disturbances affecting more than one chromosome.
Collapse
|
16
|
Begemann M, Spengler S, Gogiel M, Grasshoff U, Bonin M, Betz RC, Dufke A, Spier I, Eggermann T. Clinical significance of copy number variations in the 11p15.5 imprinting control regions: new cases and review of the literature. J Med Genet 2012; 49:547-53. [PMID: 22844132 PMCID: PMC3439641 DOI: 10.1136/jmedgenet-2012-100967] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among the clusters of imprinted genes in humans, one of the most relevant regions involved in human growth is localised in 11p15. Opposite epigenetic and genomic disturbances in this chromosomal region contribute to two distinct imprinting disorders associated with disturbed growth, Silver-Russell and Beckwith-Wiedemann syndromes. Due to the complexity of the 11p15 imprinting regions and their interactions, the interpretation of the copy number variations in that region is complicated. The clinical outcome in case of microduplications or microdeletions is therefore influenced by the size, the breakpoint positions and the parental inheritance of the imbalance as well as by the imprinting status of the affected genes. Based on their own new cases and those from the literature, the authors give an overview on the genotype-phenotype correlation in chromosomal rearrangements in 11p15 as the basis for a directed genetic counselling. The detailed characterisation of patients and families helps to further delineate risk figures for syndromes associated with 11p15 disturbances. Furthermore, these cases provide us with profound insights in the complex regulation of the (imprinted) factors localised in 11p15.
Collapse
|
17
|
Levenson VV, Melnikov AA. DNA methylation as clinically useful biomarkers-light at the end of the tunnel. Pharmaceuticals (Basel) 2012; 5:94-113. [PMID: 24288045 PMCID: PMC3763627 DOI: 10.3390/ph5010094] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/20/2022] Open
Abstract
A recent expansion of our knowledge about epigenetic changes strongly suggests that epigenetic rather than genetic features better reflect disease development, and consequently, can become more conclusive biomarkers for the detection and diagnosis of different diseases. In this paper we will concentrate on the current advances in DNA methylation studies that demonstrate a direct link between abnormal DNA methylation and a disease. This link can be used to develop diagnostic biomarkers that will precisely identify a particular disease. It also appears that disease-specific DNA methylation patterns undergo unique changes in response to treatment with a particular drug, thus raising the possibility of DNA methylation-based biomarkers for the monitoring of treatment efficacy, for prediction of response to treatment, and for the prognosis of outcome. While biomarkers for oncology are the most obvious applications, other fields of medicine are likely to benefit as well. This potential is demonstrated by DNA methylation-based biomarkers for neurological and psychiatric diseases. A special requirement for a biomarker is the possibility of longitudinal testing. In this regard cell-free circulating DNA from blood is especially interesting because it carries methylation markers specific for a particular disease. Although only a few DNA methylation-based biomarkers have attained clinical relevance, the ongoing efforts to decipher disease-specific methylation patterns are likely to produce additional biomarkers for detection, diagnosis, and monitoring of different diseases in the near future.
Collapse
Affiliation(s)
- Victor V Levenson
- Department of Radiation Oncology, Rush University Medical Center, 1750 West Harrison Street, Chicago, IL 60612, USA.
| | | |
Collapse
|