1
|
Hashimoto T, Yoshida K, Yokoyama Y, Hashimoto N, Kaneshiro K, Yoshikawa T, Tateishi K, Terashima Y, Matsui K, Hashiramoto A. Tocilizumab suppresses NF-kappa B activation via toll-like receptor 9 signaling by reducing cell-free DNA in rheumatoid arthritis. Clin Exp Immunol 2023; 213:209-220. [PMID: 37279559 PMCID: PMC10361738 DOI: 10.1093/cei/uxad064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Endogenous DNA is released into the bloodstream as cell-free DNA (cfDNA) following cell death and is associated with various pathological conditions. However, their association with therapeutic drugs against rheumatoid arthritis (RA) remains unknown. Therefore, we investigated the significance of cfDNA in RA treated with tocilizumab and tumour necrosis factor inhibitor (TNF-I). Biological DMARDs (bDMARDs), including tocilizumab and TNF-I, were administered to 77 and 59 RA patients, respectively. Plasma cfDNA levels were measured at weeks 0, 4, and 12 by quantitative polymerase chain reaction. Disease activity was evaluated at the same time point using DAS28ESR. cfDNA levels from RA synovial cells treated with tocilizumab or etanercept for 24 h were measured. Human toll-like receptor 9 (hTLR9)-expressing HEK293 cells, which release secreted embryonic alkaline phosphatase (SEAP) upon NF-κB activation, were stimulated by cfDNA from RA patients, and subsequently, SEAP levels were determined. NF-κB translocation was evaluated by immunofluorescence staining with or without tocilizumab. The DAS28ESR significantly improved in both bDMARD groups at week 12. However, plasma cfDNA levels significantly decreased in the tocilizumab group at week 12 compared to that in week 0. cfDNA levels correlated with DAS28ESR in biological treatment-naïve patients administered tocilizumab. cfDNA levels in synovial cells were significantly suppressed by tocilizumab treatment and unaltered with etanercept. HEK293 cells released SEAP upon cfDNA stimulation, and the observed NF-κB nuclear translocation was suppressed by tocilizumab. Tocilizumab suppressed inflammation via the TLR9 pathway by decreasing cfDNA levels. Regulation of cfDNA may be a therapeutic target for RA.
Collapse
Affiliation(s)
- Teppei Hashimoto
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Kohsuke Yoshida
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuichi Yokoyama
- Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naonori Hashimoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takahiro Yoshikawa
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Koji Tateishi
- Department of Orthopedics, Konan Kakogawa Hospital, Kakogawa, Japan
| | | | - Kiyoshi Matsui
- Department of Diabetes, Endocrinology and Clinical Immunology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
2
|
Zhao J, Xu L, Chang C, Jiang P, Wei K, Shi Y, Xu L, Zheng Y, Shan Y, Bian Y, Li L, Guo S, Schrodi SJ, Wang R, He D. Circulating methylation level of HTR2A is associated with inflammation and disease activity in rheumatoid arthritis. Front Immunol 2022; 13:1054451. [PMID: 36561742 PMCID: PMC9763304 DOI: 10.3389/fimmu.2022.1054451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives HTR2A is previously identified as a susceptibility gene for rheumatoid arthritis (RA). In this study, we performed the association analysis between DNA methylation of HTR2A with RA within peripheral blood samples. Methods We enrolled peripheral blood samples from 235 patients with RA, 30 osteoarthritis (OA) patients, and 30 healthy controls. The DNA methylation levels of about 218 bp from chr13: 46898190 to chr13: 46897973 (GRCh38/hg38) around HTR2A cg15692052 from patients were analyzed by targeted methylation sequencing. Results We measured methylation status for 7 CpGs in the promoter region of HTR2A and obseved overall methylation status are signficantly increased in RA compared with normal inviduals (FDR= 9.05 x 10-5). The average cg15692052 methylation levels (methylation score) showed a positive correlation with CRP (r=0.15, P=0.023). Compared with the OA group or HC group, the proportion of haplotypes CCCCCCC (FDR=0.02 and 2.81 x 10-6) is signficantly increased while TTTTTCC (FDR =0.01) and TTTTTTT(FDR =6.92 x 10-3) are significantly decreased in RA. We find methylation haplotypes combining with RF and CCP could signficantly enhance the performance of the diagnosing RA and its comorbidities (hypertension, interstitial lung disease, and osteoporosis), especially in interstitial lung disease. Conclusions In our study, we found signficant hypermethylation of promoter region of HTR2A which indicates the potential clinical diagnostic role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Li Li
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rongsheng Wang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Rongsheng Wang, ; Dongyi He,
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China,*Correspondence: Rongsheng Wang, ; Dongyi He,
| |
Collapse
|
3
|
Kawabe A, Yamagata K, Kato S, Nakano K, Sakata K, Tsukada YI, Ohmura K, Nakayamada S, Tanaka Y. Role of DNA dioxygenase Ten-Eleven translocation 3 (TET3) in rheumatoid arthritis progression. Arthritis Res Ther 2022; 24:222. [PMID: 36114544 PMCID: PMC9479255 DOI: 10.1186/s13075-022-02908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/03/2022] [Indexed: 11/14/2022] Open
Abstract
Background Rheumatoid arthritis (RA) patients present with abnormal methylation patterns in their fibroblast-like synoviocytes (FLS). Given that DNA demethylation is critical for producing DNA methylation patterns, we hypothesized that DNA demethylation may facilitate RA progression. Therefore, we designed this study to examine the role of DNA dioxygenase family, Ten-Eleven translocation (TET1/2/3), in the pathological process of RA. Methods Synovial tissues and FLS were obtained from patients with RA and Osteoarthritis. K/BxN serum-induced arthritis was induced in Wild-type (WT) and TET3 heterozygous-deficient (TET3+/−) C57BL/6 mice. Results We found that both TET3 and 5-hydroxymethylcytosine (5hmC) were upregulated in synovitis tissues from RA patients and confirmed this upregulation in the cultured FLS derived from synovitis tissues. Tumor necrosis factor α (TNFα) upregulated TET3 and 5hmC levels in cultured FLS, and the stimulated FLS exhibited high cell mobility with increased transcription of cellular migration-related factors such as C-X-C motif chemokine ligand 8 (CXCL8) and C-C motif chemokine ligand 2 (CCL2) in a TET3-dependent manner. In addition, TET3 haploinsufficiency lowered RA progression in a mouse model of serum-induced arthritis. Conclusions Based on these findings, we can assume that TET3-mediated DNA demethylation acts as an epigenetic regulator of RA progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02908-5.
Collapse
|
4
|
Mahmoud DE, Kaabachi W, Sassi N, Tarhouni L, Rekik S, Jemmali S, Sehli H, Kallel-Sellami M, Cheour E, Laadhar L. The synovial fluid fibroblast-like synoviocyte: A long-neglected piece in the puzzle of rheumatoid arthritis pathogenesis. Front Immunol 2022; 13:942417. [PMID: 35990693 PMCID: PMC9388825 DOI: 10.3389/fimmu.2022.942417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease during which fibroblast-like synoviocytes (FLS) contribute to both joint inflammation and destruction. FLS represent the core component of the synovial membrane. Following inflammation of this membrane, an effusion of cell-rich synovial fluid (SF) fills the joint cavity. Unlikely, SF has been shown to contain fibroblasts with some shared phenotypic traits with the synovial membrane FLS. These cells are called SF-FLS and their origin is still unclear. They are either brought into the synovium via migration through blood vessels, or they could originate within the synovium and exist in projections of the synovial membrane. SF-FLS function and phenotype are poorly documented compared to recently well-characterized synovial membrane FLS subsets. Furthermore, no study has yet reported a SF-FLS single-cell profiling analysis. This review will discuss the origin and cellular characteristics of SF-FLS in patients with RA. In addition, recent advances on the involvement of SF-FLS in the pathogenesis of RA will be summarized. Current knowledge on possible relationships between SF-FLS and other types of fibroblasts, including synovial membrane FLS, circulating fibrocytes, and pre- inflammatory mesenchymal (PRIME) cells will also be addressed. Finally, recent therapeutic strategies employed to specifically target SF-FLS in RA will be discussed.
Collapse
Affiliation(s)
- Dorra Elhaj Mahmoud
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
- Unité de Recherche Infections Respiratoires Fongiques (IRF), Structure Fédérative de Recherche “Interactions Cellulaires et Applications Thérapeutiques” (SFR ICAT), Université d’Angers, Angers, France
| | - Wajih Kaabachi
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Nadia Sassi
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Lamjed Tarhouni
- Department of Hand and Reconstructive Surgery, Kassab Institute of Traumatic and Orthopedic Surgery, Tunis, Tunisia
| | - Sonia Rekik
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Samia Jemmali
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Hela Sehli
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Maryam Kallel-Sellami
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Elhem Cheour
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| | - Lilia Laadhar
- Immuno-Rheumatology Research Laboratory, Rheumatology Department, La Rabta Hospital, University of Tunis-El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Hashimoto T, Yoshida K, Hashiramoto A, Matsui K. Cell-Free DNA in Rheumatoid Arthritis. Int J Mol Sci 2021; 22:8941. [PMID: 34445645 PMCID: PMC8396202 DOI: 10.3390/ijms22168941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023] Open
Abstract
Endogenous DNA derived from the nuclei or mitochondria is released into the bloodstream following cell damage or death. Extracellular DNA, called cell-free DNA (cfDNA), is associated with various pathological conditions. Recently, multiple aspects of cfDNA have been assessed, including cfDNA levels, integrity, methylation, and mutations. Rheumatoid arthritis (RA) is the most common form of autoimmune arthritis, and treatment of RA has highly varied outcomes. cfDNA in patients with RA is elevated in peripheral blood and synovial fluid and is associated with disease activity. Profiling of cfDNA in patients with RA may then be utilized in various aspects of clinical practice, such as the prediction of prognosis and treatment responses; monitoring disease state; and as a diagnostic marker. In this review, we discuss cfDNA in patients with RA, particularly the sources of cfDNA and the correlation of cfDNA with RA pathogenesis. We also highlight the potential of analyzing cfDNA profiles to guide individualized treatment approaches for RA.
Collapse
Affiliation(s)
- Teppei Hashimoto
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| | - Kohsuke Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 6540142, Japan; (K.Y.); (A.H.)
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 6540142, Japan; (K.Y.); (A.H.)
| | - Kiyoshi Matsui
- Division of Diabetes, Endocrinology and Clinical Immunology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya 6638501, Japan;
| |
Collapse
|
6
|
Guo S, Xu L, Chang C, Zhang R, Jin Y, He D. Epigenetic Regulation Mediated by Methylation in the Pathogenesis and Precision Medicine of Rheumatoid Arthritis. Front Genet 2020; 11:811. [PMID: 32849810 PMCID: PMC7417338 DOI: 10.3389/fgene.2020.00811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex disease triggered by the interaction between genetics and the environment, especially through the shared epitope (SE) and cell surface calreticulin (CSC) theory. However, the available evidence shows that genetic diversity and environmental exposure cannot explain all the clinical characteristics and heterogeneity of RA. In contrast, recent studies demonstrate that epigenetics play important roles in the pathogenesis of RA, especially DNA methylation and histone modification. DNA methylation and histone methylation are involved in innate and adaptive immune cell differentiation and migration, proliferation, apoptosis, and mesenchymal characteristics of fibroblast-like synoviocytes (FLS). Epigenetic-mediated regulation of immune-related genes and inflammation pathways explains the dynamic expression network of RA. In this review, we summarize the comprehensive evidence to show that methylation of DNA and histones is significantly involved in the pathogenesis of RA and could be applied as a promising biomarker in the disease progression and drug-response prediction. We also explain the advantages and challenges of the current epigenetics research in RA. In summary, epigenetic modules provide a possible interface through which genetic and environmental risk factors connect to contribute to the susceptibility and pathogenesis of RA. Additionally, epigenetic regulators provide promising drug targets to develop novel therapeutic drugs for RA. Finally, DNA methylation and histone modifications could be important features for providing a better RA subtype identification to accelerate personalized treatment and precision medicine.
Collapse
Affiliation(s)
- Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Lingxia Xu
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yehua Jin
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Aberrant epigenetic changes in DNA methylation, histone marks, and noncoding RNA expression regulate the pathogenesis of many rheumatic diseases. The present article will review the recent advances in the epigenetic profile of inflammatory arthritis and discuss diagnostic biomarkers and potential therapeutic targets. RECENT FINDINGS Methylation signatures of fibroblast-like synoviocytes not only distinguish rheumatoid arthritis (RA) and osteoarthritis (OA), but also early RA from late RA or juvenile idiopathic arthritis. Methylation patterns are also specific to individual joint locations, which might explain the distribution of joint involvement in some rheumatic diseases. Hypomethylation in systemic lupus erythematosus (SLE) T cells is, in part, because of active demethylation and 5-hydroxymethylation. The methylation status of some genes in SLE is associated with disease severity and has potential as a diagnostic marker. An integrative analysis of OA methylome, transcriptome, and proteome in chondrocytes has identified multiple-evidence genes that might be evaluated for therapeutic potential. Class-specific histone deacetylase inhibitors are being evaluated for therapy in inflammatory arthritis. SUMMARY Disease pathogenesis is regulated by the interplay of genetics, environment, and epigenetics. Understanding how these mechanisms regulate cell function in health and disease has implications for individualized therapy.
Collapse
|
8
|
He A, Ning Y, Wen Y, Cai Y, Xu K, Cai Y, Han J, Liu L, Du Y, Liang X, Li P, Fan Q, Hao J, Wang X, Guo X, Ma T, Zhang F. Use of integrative epigenetic and mRNA expression analyses to identify significantly changed genes and functional pathways in osteoarthritic cartilage. Bone Joint Res 2018; 7:343-350. [PMID: 29922454 PMCID: PMC5987683 DOI: 10.1302/2046-3758.75.bjr-2017-0284.r1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim Osteoarthritis (OA) is caused by complex interactions between genetic and environmental factors. Epigenetic mechanisms control the expression of genes and are likely to regulate the OA transcriptome. We performed integrative genomic analyses to define methylation-gene expression relationships in osteoarthritic cartilage. Patients and Methods Genome-wide DNA methylation profiling of articular cartilage from five patients with OA of the knee and five healthy controls was conducted using the Illumina Infinium HumanMethylation450 BeadChip (Illumina, San Diego, California). Other independent genome-wide mRNA expression profiles of articular cartilage from three patients with OA and three healthy controls were obtained from the Gene Expression Omnibus (GEO) database. Integrative pathway enrichment analysis of DNA methylation and mRNA expression profiles was performed using integrated analysis of cross-platform microarray and pathway software. Gene ontology (GO) analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Results We identified 1265 differentially methylated genes, of which 145 are associated with significant changes in gene expression, such as DLX5, NCOR2 and AXIN2 (all p-values of both DNA methylation and mRNA expression < 0.05). Pathway enrichment analysis identified 26 OA-associated pathways, such as mitogen-activated protein kinase (MAPK) signalling pathway (p = 6.25 × 10-4), phosphatidylinositol (PI) signalling system (p = 4.38 × 10-3), hypoxia-inducible factor 1 (HIF-1) signalling pathway (p = 8.63 × 10-3 pantothenate and coenzyme A (CoA) biosynthesis (p = 0.017), ErbB signalling pathway (p = 0.024), inositol phosphate (IP) metabolism (p = 0.025), and calcium signalling pathway (p = 0.032). Conclusion We identified a group of genes and biological pathwayswhich were significantly different in both DNA methylation and mRNA expression profiles between patients with OA and controls. These results may provide new clues for clarifying the mechanisms involved in the development of OA. Cite this article: A. He, Y. Ning, Y. Wen, Y. Cai, K. Xu, Y. Cai, J. Han, L. Liu, Y. Du, X. Liang, P. Li, Q. Fan, J. Hao, X. Wang, X. Guo, T. Ma, F. Zhang. Use of integrative epigenetic and mRNA expression analyses to identify significantly changed genes and functional pathways in osteoarthritic cartilage. Bone Joint Res 2018;7:343–350. DOI: 10.1302/2046-3758.75.BJR-2017-0284.R1.
Collapse
Affiliation(s)
- A He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Y Ning
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Y Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Y Cai
- Department of Orthopaedics, The First Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - K Xu
- Department of Joint Surgery, Xi'an Hong-Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Y Cai
- Department of Joint Surgery, Xi'an Hong-Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - J Han
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - L Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Y Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - X Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - P Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Q Fan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - J Hao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - X Wang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - X Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - T Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - F Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
9
|
Carnero-Montoro E, Alarcón-Riquelme ME. Epigenome-wide association studies for systemic autoimmune diseases: The road behind and the road ahead. Clin Immunol 2018; 196:21-33. [PMID: 29605707 DOI: 10.1016/j.clim.2018.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
Epigenetics is known to be an important mechanism in the pathogenesis of autoimmune diseases. Epigenetic variations can act as integrators of environmental and genetic exposures and propagate activated states in immune cells. Studying epigenetic alterations by means of genome-wide approaches promises to unravel novel molecular mechanisms related to disease etiology, disease progression, clinical manifestations and treatment responses. This paper reviews what we have learned in the last five years from epigenome-wide studies for three systemic autoimmune diseases, namely systemic lupus erythematosus, primary Sjögren's syndrome, and rheumatoid arthritis. We examine the degree of epigenetic sharing between different diseases and the possible mediating role of epigenetic associations in genetic and environmental risks. Finally, we also shed light into the use of epigenetic markers towards a better precision medicine regarding disease prediction, prevention and personalized treatment in systemic autoimmunity.
Collapse
Affiliation(s)
- Elena Carnero-Montoro
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada, Spain.
| | - Marta E Alarcón-Riquelme
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada, Spain; Unit of Inflammatory Chronic Diseases, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
10
|
Nair N, Wilson AG, Barton A. DNA methylation as a marker of response in rheumatoid arthritis. Pharmacogenomics 2017; 18:1323-1332. [PMID: 28836487 DOI: 10.2217/pgs-2016-0195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex disease affecting approximately 0.5-1% of the population. While there are effective biologic therapies, in up to 40% of patients, disease activity remains inadequately controlled. Therefore, identifying factors that predict, prior to the initiation of therapy, which patients are likely to respond best to which treatment is a research priority and DNA methylation is increasingly being explored as a potential theranostic biomarker. DNA methylation is thought to play a role in RA disease pathogenesis and in mediating the relationship between genetic variants and patient outcomes. The role of DNA methylation has been most extensively explored in cancer medicine, where it has been shown to be predictive of treatment response. Studies in RA, however, are in their infancy and, while showing promise, further investigation in well-powered studies is warranted.
Collapse
Affiliation(s)
- Nisha Nair
- Arthritis Research UK Centre for Genetics & Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Anthony G Wilson
- University College Dublin School of Medicine & Medical Science & Conway Institute, Dublin, Ireland
| | - Anne Barton
- Arthritis Research UK Centre for Genetics & Genomics, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal BRU, Central Manchester Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
11
|
Li H, Lu H, Tang W, Zuo J. Targeting methionine cycle as a potential therapeutic strategy for immune disorders. Expert Opin Ther Targets 2017; 21:1-17. [PMID: 28829212 DOI: 10.1080/14728222.2017.1370454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.
Collapse
Affiliation(s)
- Heng Li
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Huimin Lu
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Wei Tang
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| | - Jianping Zuo
- a Laboratory of Immunopharmacology, State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
- b College of Pharmacy , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
12
|
Rhead B, Holingue C, Cole M, Shao X, Quach HL, Quach D, Shah K, Sinclair E, Graf J, Link T, Harrison R, Rahmani E, Halperin E, Wang W, Firestein GS, Barcellos LF, Criswell LA. Rheumatoid Arthritis Naive T Cells Share Hypermethylation Sites With Synoviocytes. Arthritis Rheumatol 2017; 69:550-559. [PMID: 27723282 PMCID: PMC5328845 DOI: 10.1002/art.39952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
Abstract
Objective To determine whether differentially methylated CpGs in synovium‐derived fibroblast‐like synoviocytes (FLS) of patients with rheumatoid arthritis (RA) were also differentially methylated in RA peripheral blood (PB) samples. Methods For this study, 371 genome‐wide DNA methylation profiles were measured using Illumina HumanMethylation450 BeadChips in PB samples from 63 patients with RA and 31 unaffected control subjects, specifically in the cell subsets of CD14+ monocytes, CD19+ B cells, CD4+ memory T cells, and CD4+ naive T cells. Results Of 5,532 hypermethylated FLS candidate CpGs, 1,056 were hypermethylated in CD4+ naive T cells from RA PB compared to control PB. In analyses of a second set of CpG candidates based on single‐nucleotide polymorphisms from a genome‐wide association study of RA, 1 significantly hypermethylated CpG in CD4+ memory T cells and 18 significant CpGs (6 hypomethylated, 12 hypermethylated) in CD4+ naive T cells were found. A prediction score based on the hypermethylated FLS candidates had an area under the curve of 0.73 for association with RA case status, which compared favorably to the association of RA with the HLA–DRB1 shared epitope risk allele and with a validated RA genetic risk score. Conclusion FLS‐representative DNA methylation signatures derived from the PB may prove to be valuable biomarkers for the risk of RA or for disease status.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Graf
- University of California, San Francisco
| | | | | | | | - Eran Halperin
- Tel Aviv University, Tel Aviv, Israel, and The International Computer Science Institute, Berkeley, California
| | - Wei Wang
- University of California at San Diego, La Jolla
| | | | | | | |
Collapse
|
13
|
Doody KM, Bottini N, Firestein GS. Epigenetic alterations in rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics 2017; 9:479-492. [PMID: 28322585 DOI: 10.2217/epi-2016-0151] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rheumatoid arthritis is an immune-mediated disease that primarily affects diarthrodial joints. Susceptibility and severity of this disease are influenced by nongenetic factors, such as environmental stress, suggesting an important role of epigenetic changes. In this review, we summarize the epigenetic changes (DNA methylation, histone modification and miRNA expression) in fibroblast-like synoviocytes, which are the joint-lining mesenchymal cells that play an important role in joint inflammation and damage. We also review the effects of these epigenetic changes on rheumatoid arthritis pathogenesis and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Karen M Doody
- Grenfell Campus, Memorial University of Newfoundland, Corner Brook, Newfoundland, Canada
| | - Nunzio Bottini
- Division of Rheumatology, Allergy & Immunology, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy & Immunology, University of California, San Diego School of Medicine, La Jolla, CA, USA
| |
Collapse
|
14
|
Guo S, Zhu Q, Jiang T, Wang R, Shen Y, Zhu X, Wang Y, Bai F, Ding Q, Zhou X, Chen G, He DY. Genome-wide DNA methylation patterns in CD4+ T cells from Chinese Han patients with rheumatoid arthritis. Mod Rheumatol 2016; 27:441-447. [PMID: 27585642 DOI: 10.1080/14397595.2016.1218595] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease that causes chronic inflammation of the joints. Recent evidence indicated the epigenetic changes may contribute to the pathogenesis of RA. METHOD To understand the extent and nature of dysregulated DNA methylation in RA CD4T cells, we performed a genome-wide DNA methylation study in CD4 + T cells in 12 RA patients compared to 12 matched normal healthy controls. Cytosine methylation status was quantified with Illumina methylation 450K microarray. RESULT The DNA methylation profiling showed 383 hyper- and 785 hypo-methylated genes in the CD4 + T cells of the RA patients (p < 3.4 × 10-7). Gene ontology analysis indicated transcript alternative splicing and protein modification mediated by DNA methylation might play an important role in the pathogenesis of RA. In addition, the result showed that human leukocyte antigen (HLA) region including HLA-DRB6, HLA-DQA1 and HLA-E was frequently hypomethylated, but HLA-DQB1 hypermethylated in CpG island region and hypomethylated in CpG shelf region in RA patients. Outside the MHC region, HDAC4, NXN, TBCD and TMEM61 were the most hypermethylated genes, while ITIH3, TCN2, PRDM16, SLC1A5 and GALNT9 are the most hypomethylated genes. CONCLUSION Genome-wide DNA methylation profile revealed significant DNA methylation change in CD4 + T cells from patients with RA.
Collapse
Affiliation(s)
- Shicheng Guo
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China
| | - Qi Zhu
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China
| | - Ting Jiang
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China.,b Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute , Shanghai , China
| | - Rongsheng Wang
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China.,b Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute , Shanghai , China
| | - Yi Shen
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China.,b Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute , Shanghai , China
| | - Xiao Zhu
- c Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Dongguan Scientific Research Center, Guangdong Medical University , Dongguan , China
| | - Yan Wang
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China
| | - Fengmin Bai
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China.,b Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute , Shanghai , China
| | - Qin Ding
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China.,b Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute , Shanghai , China
| | - Xiaodong Zhou
- d University of Texas Medical School at Houston , Houston , TX , USA , and
| | - Guangjie Chen
- e Department of Immunology and Microbiology , Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Dong Yi He
- a Department of Rheumatology , Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine , Shanghai , China.,b Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute , Shanghai , China
| |
Collapse
|
15
|
Glossop JR, Emes RD, Nixon NB, Packham JC, Fryer AA, Mattey DL, Farrell WE. Genome-wide profiling in treatment-naive early rheumatoid arthritis reveals DNA methylome changes in T and B lymphocytes. Epigenomics 2015; 8:209-24. [PMID: 26556652 DOI: 10.2217/epi.15.103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AIM Although aberrant DNA methylation has been described in rheumatoid arthritis (RA), no studies have interrogated this epigenetic modification in early disease. Following recent investigations of T and B lymphocytes in established disease, we now characterize in these cell populations genome-wide DNA methylation in treatment-naive patients with early RA. PATIENTS & METHODS HumanMethylation450 BeadChips were used to examine genome-wide DNA methylation in lymphocyte populations from 23 early RA patients and 11 healthy individuals. RESULTS Approximately 2000 CpGs in each cell type were differentially methylated in early RA. Clustering analysis identified a novel methylation signature in each cell type (150 sites in T lymphocytes, 113 sites in B lymphocytes) that clustered all patients separately from controls. A subset of sites differentially methylated in early RA displayed similar changes in established disease. CONCLUSION Treatment-naive early RA patients display novel disease-specific DNA methylation aberrations, supporting a potential role for these changes in the development of RA.
Collapse
Affiliation(s)
- John R Glossop
- Institute for Science & Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK.,Haywood Rheumatology Centre, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK
| | - Richard D Emes
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.,Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Nicola B Nixon
- Haywood Rheumatology Centre, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK
| | - Jon C Packham
- Haywood Rheumatology Centre, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK
| | - Anthony A Fryer
- Institute for Science & Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | - Derek L Mattey
- Institute for Science & Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK.,Haywood Rheumatology Centre, Haywood Hospital, High Lane, Burslem, Stoke-on-Trent, Staffordshire, ST6 7AG, UK
| | - William E Farrell
- Institute for Science & Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| |
Collapse
|