1
|
Guo J, Zhou YL, Yang Y, Guo S, You E, Xie X, Jiang Y, Mao C, Xu HE, Zhang Y. Structural basis of tethered agonism and G protein coupling of protease-activated receptors. Cell Res 2024; 34:725-734. [PMID: 38997424 PMCID: PMC11443083 DOI: 10.1038/s41422-024-00997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Protease-activated receptors (PARs) are a unique group within the G protein-coupled receptor superfamily, orchestrating cellular responses to extracellular proteases via enzymatic cleavage, which triggers intracellular signaling pathways. Protease-activated receptor 1 (PAR1) is a key member of this family and is recognized as a critical pharmacological target for managing thrombotic disorders. In this study, we present cryo-electron microscopy structures of PAR1 in its activated state, induced by its natural tethered agonist (TA), in complex with two distinct downstream proteins, the Gq and Gi heterotrimers, respectively. The TA peptide is positioned within a surface pocket, prompting PAR1 activation through notable conformational shifts. Contrary to the typical receptor activation that involves the outward movement of transmembrane helix 6 (TM6), PAR1 activation is characterized by the simultaneous downward shift of TM6 and TM7, coupled with the rotation of a group of aromatic residues. This results in the displacement of an intracellular anion, creating space for downstream G protein binding. Our findings delineate the TA recognition pattern and highlight a distinct role of the second extracellular loop in forming β-sheets with TA within the PAR family, a feature not observed in other TA-activated receptors. Moreover, the nuanced differences in the interactions between intracellular loops 2/3 and the Gα subunit of different G proteins are crucial for determining the specificity of G protein coupling. These insights contribute to our understanding of the ligand binding and activation mechanisms of PARs, illuminating the basis for PAR1's versatility in G protein coupling.
Collapse
Affiliation(s)
- Jia Guo
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun-Li Zhou
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yixin Yang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shimeng Guo
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Erli You
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Chunyou Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou, Zhejiang, China.
| | - H Eric Xu
- CAS Key Laboratory of Receptor Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yan Zhang
- Department of Pharmacology and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Wadding-Lee CA, Jay M, Jones SM, Thompson J, Howatt DA, Daugherty A, Mackman N, Owens AP. Attenuation of Atherosclerosis with PAR4 Deficiency: Differential Platelet Outcomes in apoE -/- vs. Ldlr -/- Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606266. [PMID: 39211209 PMCID: PMC11361089 DOI: 10.1101/2024.08.01.606266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective Cardiovascular disease (CVD) is a significant burden globally and, despite current therapeutics, remains the leading cause of death. Platelet inhibitors are of interest in CVD treatment to reduce thrombus formation post-plaque rupture as well their contribution to inflammation throughout the progression of atherosclerosis. Protease activated receptor 4 (PAR4) is a receptor highly expressed by platelets, strongly activated by thrombin, and plays a vital role in platelet activation and aggregation. However, the role of PAR4. Approach and Results Mice on a low-density lipoprotein receptor-deficient ( Ldlr -/- ) background were bred with Par4 deficient ( Par4 -/- ) mice to create Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- cousin lines. Mice were fed high fat (42%) and cholesterol (0.2%) 'Western' diet for 12 weeks for all studies. Bone marrow transplant (BMT) studies were conducted by irradiating Ldlr -/- /Par4 +/+ and Ldlr -/- /Par4 -/- mice with 550 rads (2x, 4 hours apart) and then repopulated with Par4 +/+ or Par4 -/- bone marrow. To determine if the effects of thrombin were mediated solely by PAR4, the thrombin inhibitor dabigatran was added to the 'Western' diet. Ldlr -/- /Par4 -/- given dabigatran did not further decrease their atherosclerotic burden. Differences between apolipoprotein E deficient ( apoE -/- ) and Ldlr -/- platelets were assessed for changes in reactivity. We observed higher PAR4 abundance in arteries with atherosclerosis in human and mice versus healthy controls. PAR4 deficiency attenuated atherosclerosis in the aortic sinus and root versus proficient controls. BMT studies demonstrated this effect was due to hematopoietic cells, most likely platelets. PAR4 appeared to be acting independent of PAR1, as there werer no changes with addition of dabigatran to PAR4 deficient mice. apoE -/- platelets are hyperreactive compared to Ldlr -/- platelets. Conclusions Hematopoietic-derived PAR4, most likely platelets, plays a vital role in the development and progression of atherosclerosis. Specific targeting of PAR4 may be a potential therapeutic target for CVD. Highlights Deficiency of protease-activated receptor 4 attenuates the development of diet-induced atherosclerosis in a Ldlr -/- mouse model. PAR4 deficiency in hematopoietic cells is atheroprotective. PAR4 deficiency accounts for the majority of thrombin-induced atherosclerosis in a Ldlr -/- mouse model. The examination of platelet-specific proteins and platelet activation should be carefully considered before using the apoE -/- or Ldlr -/- mouse models of atherosclerosis.
Collapse
|
3
|
Deng L, Costa F, Blake KJ, Choi S, Chandrabalan A, Yousuf MS, Shiers S, Dubreuil D, Vega-Mendoza D, Rolland C, Deraison C, Voisin T, Bagood MD, Wesemann L, Frey AM, Palumbo JS, Wainger BJ, Gallo RL, Leyva-Castillo JM, Vergnolle N, Price TJ, Ramachandran R, Horswill AR, Chiu IM. S. aureus drives itch and scratch-induced skin damage through a V8 protease-PAR1 axis. Cell 2023; 186:5375-5393.e25. [PMID: 37995657 PMCID: PMC10669764 DOI: 10.1016/j.cell.2023.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.
Collapse
Affiliation(s)
- Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Flavia Costa
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kimbria J Blake
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Samantha Choi
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Arundhasa Chandrabalan
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Muhammad Saad Yousuf
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Daniel Dubreuil
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniela Vega-Mendoza
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Tiphaine Voisin
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle D Bagood
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lucia Wesemann
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Abigail M Frey
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph S Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brian J Wainger
- Departments of Neurology and Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRAe, ENVT, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Moll G, Luecht C, Gyamfi MA, da Fonseca DLM, Wang P, Zhao H, Gong Z, Chen L, Ashraf MI, Heidecke H, Hackel AM, Dragun D, Budde K, Penack O, Riemekasten G, Cabral-Marques O, Witowski J, Catar R. Autoantibodies from patients with kidney allograft vasculopathy stimulate a proinflammatory switch in endothelial cells and monocytes mediated via GPCR-directed PAR1-TNF-α signaling. Front Immunol 2023; 14:1289744. [PMID: 37965310 PMCID: PMC10642342 DOI: 10.3389/fimmu.2023.1289744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Non-HLA-directed regulatory autoantibodies (RABs) are known to target G-protein coupled receptors (GPCRs) and thereby contribute to kidney transplant vasculopathy and failure. However, the detailed underlying signaling mechanisms in human microvascular endothelial cells (HMECs) and immune cells need to be clarified in more detail. In this study, we compared the immune stimulatory effects and concomitant intracellular and extracellular signaling mechanisms of immunoglobulin G (IgG)-fractions from kidney transplant patients with allograft vasculopathy (KTx-IgG), to that from patients without vasculopathy, or matched healthy controls (Con-IgG). We found that KTx-IgG from patients with vasculopathy, but not KTx-IgG from patients without vasculopathy or Con-IgG, elicits HMEC activation and subsequent upregulation and secretion of tumor necrosis factor alpha (TNF-α) from HMECs, which was amplified in the presence of the protease-activated thrombin receptor 1 (PAR1) activator thrombin, but could be omitted by selectively blocking the PAR1 receptor. The amount and activity of the TNF-α secreted by HMECs stimulated with KTx-IgG from patients with vasculopathy was sufficient to induce subsequent THP-1 monocytic cell activation. Furthermore, AP-1/c-FOS, was identified as crucial transcription factor complex controlling the KTx-IgG-induced endothelial TNF-α synthesis, and mircoRNA-let-7f-5p as a regulatory element in modulating the underlying signaling cascade. In conclusion, exposure of HMECs to KTx-IgG from patients with allograft vasculopathy, but not KTx-IgG from patients without vasculopathy or healthy Con-IgG, triggers signaling through the PAR1-AP-1/c-FOS-miRNA-let7-axis, to control TNF-α gene transcription and TNF-α-induced monocyte activation. These observations offer a greater mechanistic understanding of endothelial cells and subsequent immune cell activation in the clinical setting of transplant vasculopathy that can eventually lead to transplant failure, irrespective of alloantigen-directed responses.
Collapse
Affiliation(s)
- Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
- Berlin Institute of Healthy (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Luecht
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| | - Michael Adu Gyamfi
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| | - Dennyson L M da Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo, Brazil
| | - Pinchao Wang
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| | - Hongfan Zhao
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| | - Zexian Gong
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| | - Lei Chen
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| | | | | | | | - Duska Dragun
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| | - Olaf Penack
- Department of Hematology, Oncology and Tumorimmunology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Otávio Cabral-Marques
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, USP, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, USP School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, USP School of Medicine, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, USP, São Paulo, Brazil
| | - Janusz Witowski
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Healthy (BIH), Berlin, Germany
| |
Collapse
|
5
|
Fuentes E, Arauna D, Araya-Maturana R. Regulation of mitochondrial function by hydroquinone derivatives as prevention of platelet activation. Thromb Res 2023; 230:55-63. [PMID: 37639783 DOI: 10.1016/j.thromres.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Platelet activation plays an essential role in the pathogenesis of thrombotic events in different diseases (e.g., cancer, type 2 diabetes, Alzheimer's, and cardiovascular diseases, and even in patients diagnosed with coronavirus disease 2019). Therefore, antiplatelet therapy is essential to reduce thrombus formation. However, the utility of current antiplatelet drugs is limited. Therefore, identifying novel antiplatelet compounds is very important in developing new drugs. In this context, the involvement of mitochondrial function as an efficient energy source required for platelet activation is currently accepted; however, its contribution as an antiplatelet target still has little been exploited. Regarding this, the intramolecular hydrogen bonding of hydroquinone derivatives has been described as a structural motif that allows the reach of small molecules at mitochondria, which can exert antiplatelet activity, among others. In this review, we describe the role of mitochondrial function in platelet activation and how hydroquinone derivatives exert antiplatelet activity through mitochondrial regulation.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile.
| | - Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
6
|
Beleño Acosta B, Advincula RC, Grande-Tovar CD. Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules 2023; 28:1920. [PMID: 36838907 PMCID: PMC9962426 DOI: 10.3390/molecules28041920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiovascular diseases (CVD), such as myocardial infarction (MI), constitute one of the world's leading causes of annual deaths. This cardiomyopathy generates a tissue scar with poor anatomical properties and cell necrosis that can lead to heart failure. Necrotic tissue repair is required through pharmaceutical or surgical treatments to avoid such loss, which has associated adverse collateral effects. However, to recover the infarcted myocardial tissue, biopolymer-based scaffolds are used as safer alternative treatments with fewer side effects due to their biocompatibility, chemical adaptability and biodegradability. For this reason, a systematic review of the literature from the last five years on the production and application of chitosan scaffolds for the reconstructive engineering of myocardial tissue was carried out. Seventy-five records were included for review using the "preferred reporting items for systematic reviews and meta-analyses" data collection strategy. It was observed that the chitosan scaffolds have a remarkable capacity for restoring the essential functions of the heart through the mimicry of its physiological environment and with a controlled porosity that allows for the exchange of nutrients, the improvement of the electrical conductivity and the stimulation of cell differentiation of the stem cells. In addition, the chitosan scaffolds can significantly improve angiogenesis in the infarcted tissue by stimulating the production of the glycoprotein receptors of the vascular endothelial growth factor (VEGF) family. Therefore, the possible mechanisms of action of the chitosan scaffolds on cardiomyocytes and stem cells were analyzed. For all the advantages observed, it is considered that the treatment of MI with the chitosan scaffolds is promising, showing multiple advantages within the regenerative therapies of CVD.
Collapse
Affiliation(s)
- Bryan Beleño Acosta
- Grupo de Investigación de Fotoquímica y Fotobiología, Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Rigoberto C. Advincula
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- Center for Nanophase Materials Sciences (CNMS), Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Química, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
7
|
Davidson S. Monitoring of Antiplatelet Therapy. Methods Mol Biol 2023; 2663:381-402. [PMID: 37204725 DOI: 10.1007/978-1-0716-3175-1_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In the late 1990s, the antithrombotic antiplatelet agent, clopidogrel, a P2Y12 inhibitor, was introduced. Around the same time, there was an increase in a number of new methods to measure platelet function (e.g., PFA-100 in 1995), and this has continued. It became evident that not all patients responded to clopidogrel in the same way and that some patients had a relative "resistance" to therapy, termed "high on-treatment platelet reactivity." This then led to some publications to advocate platelet function testing being used for patients on antiplatelet therapy. Platelet function testing was also suggested for use in patients awaiting cardiac surgery after stopping their antiplatelet therapy as a way of balancing thrombotic risk pre-surgery and bleeding risk perioperatively. This chapter will discuss some of the commonly used platelet function tests used in these settings, particularly those that are sometimes referred to as point-of-care tests or that require minimal laboratory sample manipulation. The latest guidance and recommendations for platelet function testing will be discussed following several clinical trials looking at the usefulness of platelet function testing in these clinical settings.
Collapse
Affiliation(s)
- Simon Davidson
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
8
|
Hrubša M, Konečný L, Paclíková M, Parvin MS, Skořepa P, Musil F, Karlíčková J, Javorská L, Matoušová K, Krčmová LK, Carazo A, Šmahelová A, Blaha V, Mladěnka P. The Antiplatelet Effect of 4-Methylcatechol in a Real Population Sample and Determination of the Mechanism of Action. Nutrients 2022; 14:nu14224798. [PMID: 36432485 PMCID: PMC9694226 DOI: 10.3390/nu14224798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
A polyphenol-rich diet has beneficial effects on cardiovascular health. However, dietary polyphenols generally have low bioavailability and reach low plasma concentrations. Small phenolic metabolites of these compounds formed by human microbiota are much more easily absorbable and could be responsible for this effect. One of these metabolites, 4-methylcatechol (4-MC), was suggested to be a potent anti-platelet compound. The effect of 4-MC was tested ex vivo in a group of 53 generally healthy donors using impedance blood aggregometry. The mechanism of action of this compound was also investigated by employing various aggregation inducers/inhibitors and a combination of aggregometry and enzyme linked immunosorbent assay (ELISA) methods. 4-MC was confirmed to be more potent than acetylsalicylic acid on both arachidonic acid and collagen-triggered platelet aggregation. Its clinically relevant effect was found even at a concentration of 10 μM. Mechanistic studies showed that 4-MC is able to block platelet aggregation caused by the stimulation of different pathways (receptors for the von Willebrand factor and platelet-activating factor, glycoprotein IIb/IIIa, protein kinase C, intracellular calcium elevation). The major mechanism was defined as interference with cyclooxygenase-thromboxane synthase coupling. This study confirmed the strong antiplatelet potential of 4-MC in a group of healthy donors and defined its mechanism of action.
Collapse
Affiliation(s)
- Marcel Hrubša
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Lukáš Konečný
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Markéta Paclíková
- The 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Mst Shamima Parvin
- The Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Pavel Skořepa
- The 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
- The Department of Military Internal Medicine and Military Hygiene, Faculty of Military Health Sciences, University of Defence, 50001 Hradec Kralove, Czech Republic
| | - František Musil
- The Department of Occupational Medicine, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Jana Karlíčková
- The Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Lenka Javorská
- The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 50005 Hradec Kralove, Czech Republic
| | - Kateřina Matoušová
- The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 50005 Hradec Kralove, Czech Republic
| | - Lenka Kujovská Krčmová
- The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, 50005 Hradec Kralove, Czech Republic
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Alejandro Carazo
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Alena Šmahelová
- The 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Vladimír Blaha
- The 3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Přemysl Mladěnka
- The Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Kralove, Czech Republic
- Correspondence: ; Tel.: +420-495-067-295
| |
Collapse
|
9
|
Dukhin OA, Kalinsaya AI, Shpektor AV, Vasilieva EY. [The role of thrombin in the pathogenesis of atherosclerosis and its complications]. KARDIOLOGIIA 2022; 62:73-81. [PMID: 35414364 DOI: 10.18087/cardio.2022.3.n1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Thrombin is a key regulator of the homeostasis system. Also, it actively participates in progression of various systemic diseases, including atherosclerosis. There is a large amount of experimental and clinical data on the involvement of thrombin in the pathogenesis of ischemic heart disease (IHD). Thus, studying thrombin activity regulation is promising. Also, the question whether it is possible to use biomarkers of thrombin activity as predictors of cardiovascular complications in IHD patients is relevant. The present review focuses on major mechanisms of thrombin functioning, its role in development and progression of atherosclerosis, and available tests for evaluation of thrombin functional activity. Major clinical studies are discussed that evaluated the efficacy of thrombin inhibitors and protease-activated receptor antagonists.
Collapse
Affiliation(s)
- O A Dukhin
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
| | - A I Kalinsaya
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
| | - A V Shpektor
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - E Yu Vasilieva
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; Moscow Clinical City Hospital named after I.V. Davydovsky
| |
Collapse
|
10
|
Which proteinase-activated receptor-1 antagonist is better?: Evaluation of vorapaxar and parmodulin-2 effects on human left internal mammary artery endothelial function. Life Sci 2021; 286:120045. [PMID: 34653426 DOI: 10.1016/j.lfs.2021.120045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Endothelial dysfunction occurs as an early event in cardiovascular disease. Previously, vorapaxar, a proteinase-activated receptor-1 antagonist, was shown to cause endothelial damage in a cell culture study. Therefore, our study aimed to compare the effects of vorapaxar and parmodulin-2, proteinase-activated receptor-1 biased agonist, on human left internal mammary artery endothelial function in vitro. METHOD Isolated arteries were hung in the organ baths. Acetylcholine responses (10-11-10-6 M) were obtained in endothelium-intact tissues the following incubation with vorapaxar/parmodulin-2 (10-6 M) to determine the effects of these molecules on the endothelium-dependent relaxation. Subsequently, endothelium-dependent relaxation responses of tissues were investigated in the presence of L-NAME (10-4 M), L-arginine (10-5 M), indomethacin (10-5 M), and charybdotoxin-apamin (10-7 M) in addition to vorapaxar/parmodulin-2 incubation. Besides, the effect of these molecules on endothelium-independent relaxation response was evaluated with sodium nitroprusside (10-11-10-6 M). Finally, the sections of human arteries were imaged using a transmission electron microscope, and the integrity of the endothelial layer was evaluated. RESULTS We found that vorapaxar caused significant endothelial dysfunction by disrupting nitric oxide and endothelium-derived hyperpolarizing factor-dependent relaxation mechanisms. Parmodulin-2 did not cause endothelial damage. Neither vorapaxar nor parmodulin-2 disrupted endothelium-independent relaxation responses. The effect of vorapaxar on the endothelial layer was supported by the transmission electron microscope images. CONCLUSION Parmodulin-2 may be a better option than vorapaxar in treating cardiovascular diseases since it can inhibit PAR-1 without caused endothelial dysfunction.
Collapse
|
11
|
Abstract
Antiplatelet agents are the standard of practice in the management of atherosclerosis and acute coronary syndrome (ACS). In contrast to the available antiplatelet agents, vorapaxar represents a novel mechanism of action. It is an antagonist of the platelet protease-activated receptor-1 (PAR-1) and inhibits thrombin-induced and thrombin receptor agonist peptide (TRAP)- induced platelet aggregation. The TRA2○P-TIMI 50 trial led to the approval of vorapaxar by the Food and Drug Administration and European Medicines Agency for the reduction of thrombotic cardiovascular events in patients with a history of myocardial infarction (MI) or peripheral arterial disease. TRA2○P-TIMI 50 trial showed that the use of vorapaxar (2.5 mg once/daily) in addition to standard dual antiplatelet therapy (DAPT) with aspirin and a P2Y12 receptor inhibitor, was effective in the secondary prevention of recurrent thrombotic events among patients with previous atherothrombosis, particularly in patients with prior MI; at the expense of an increase in major bleeding. Another recently published VORA-PRATIC (Vorapaxar in Patients with Prior Myocardial Infarction Treated with prasugrel and ticagrelor) study showed that among post-MI patients treated with potent P2Y12 inhibitors (prasugrel or ticagrelor), vorapaxar reduced platelet-driven global thrombogenicity, an effect that persisted, albeit attenuated, in the absence of aspirin. The current review summarizes an up to date literature on pharmacokinetics, pharmacodynamics, and clinical efficacy of vorapaxar and proposes future directions of research.
Collapse
|