1
|
Lameira I, Pinto AS, Lima Â, Muzny CA, Cerca N. Optimized bacterial absolute quantification method by qPCR using an exogenous bacterial culture as a normalization strategy in triple-species BV-like biofilms. J Microbiol Methods 2024; 219:106895. [PMID: 38331102 PMCID: PMC11149788 DOI: 10.1016/j.mimet.2024.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Abstract
Quantitative Polymerase Chain Reaction (qPCR) is a widely used method in molecular biology to quantify target DNA sequences. Despite its accuracy, there are important experimental controls that should be considered to avoid biased results. One of them is gDNA loss during extraction, which is higher among samples with lower bacterial concentrations. Improvement in qPCR quantification procedures is mandatory to obtain reproducible and accurate results. Herein, we report an improved qPCR method for bacterial quantification of Gardnerella vaginalis, Prevotella bivia, and Fannyhessea vaginae, three key-bacterial vaginosis (BV)-associated bacteria (BVAB) thought to play important roles in the pathogenesis of this common vaginal infection. The formation of a mature biofilm on vaginal epithelial cells is an unique feature of BV and, despite over 60 years of research, the exact etiology of BV remains unknown. Here, we optimized a qPCR method that accurately quantified triple-species biofilms containing these key BVAB, after the addition of an exogenous bacterial control containing a fixed concentration of Escherichia coli, prior to gDNA extraction. This improved method minimized and normalized the inherent losses associated with bacterial centrifugation, which allows better sensitivity at lower bacterial concentrations.
Collapse
Affiliation(s)
- Inês Lameira
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Ana S Pinto
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Ângela Lima
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Campus de Gualtar, Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Silva V, Correia E, Pereira JE, González-Machado C, Capita R, Alonso-Calleja C, Igrejas G, Poeta P. Biofilm Formation of Staphylococcus aureus from Pets, Livestock, and Wild Animals: Relationship with Clonal Lineages and Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060772. [PMID: 35740178 PMCID: PMC9219840 DOI: 10.3390/antibiotics11060772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to compare the biofilm formation ability of Staphylococcus aureus isolated from a wide range of animals and study the association between biofilm formation and antimicrobial resistance and genetic lineages. A total of 214 S. aureus strains isolated from pets, livestock, and wild animals were evaluated regarding their ability to form biofilms by the microtiter biofilm assay and their structure via confocal scanning laser microscopy. Statistical analysis was used to find an association between biofilm formation and antimicrobial resistance, multidrug resistance, sequence types (STs), spa and agr-types of the isolates. The antimicrobial susceptibility of 24 h-old biofilms was assessed against minimum inhibitory concentrations (MIC) and 10× MIC of amikacin and tetracycline, and the biomass reduction was measured. The metabolic activity of biofilms after antimicrobial treatment was evaluated by the XTT assay. All isolates were had the ability to form biofilms. Yet, significant differences in biofilm biomass production were detected among animal species. Multidrug resistance had a positive association with biofilm formation as well as methicillin-resistance. Significant differences were also detected among the clonal lineages of the isolates. Both tetracycline and amikacin were able to significantly reduce the biofilm mass. However, none of the antimicrobials were able to eradicate the biofilm at the maximum concentration used. Our results provide important information on the biofilm-forming capacity of animal-adapted S. aureus isolates, which may have potential implications for the development of new biofilm-targeted therapeutics.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal;
| | - José Eduardo Pereira
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Camino González-Machado
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; (C.G.-M.); (R.C.); (C.A.-C.)
- Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence:
| |
Collapse
|
3
|
Gaio V, Lima T, Vilanova M, Cerca N, França A. mazEF Homologue Has a Minor Role in Staphylococcus epidermidis 1457 Virulence Potential. Front Cell Infect Microbiol 2022; 11:803134. [PMID: 35096651 PMCID: PMC8792614 DOI: 10.3389/fcimb.2021.803134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus epidermidis biofilm cells are characterized by increased antimicrobial tolerance and improved ability to evade host immune system defenses. These features are, in part, due to the presence of viable but non-culturable (VBNC) cells. A previous study identified genes potentially involved in VBNC cells formation in S. epidermidis biofilms, among which SERP1682/1681 raised special interest due to their putative role as a toxin–antitoxin system of the mazEF family. Herein, we constructed an S. epidermidis mutant lacking the mazEF genes homologues and determined their role in (i) VBNC state induction during biofilm formation, (ii) antimicrobial susceptibility, (iii) survival in human blood and plasma, and (iv) activation of immune cells. Our results revealed that mazEF homologue did not affect the proportion of VBNC cells in S. epidermidis 1457, refuting the previous hypothesis that mazEF homologue could be linked with the emergence of VBNC cells in S. epidermidis biofilms. Additionally, mazEF homologue did not seem to influence key virulence factors on this strain, since its deletion did not significantly affect the mutant biofilm formation capacity, antimicrobial tolerance or the response by immune cells. Surprisingly, our data suggest that mazEF does not behave as a toxin–antitoxin system in S. epidermidis strain 1457, since no decrease in the viability and culturability of bacteria was found when only the mazF toxin homologue was being expressed.
Collapse
Affiliation(s)
- Vânia Gaio
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Tânia Lima
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
4
|
Sousa LGV, Castro J, Cavaleiro C, Salgueiro L, Tomás M, Palmeira-Oliveira R, Martinez-Oliveira J, Cerca N. Synergistic effects of carvacrol, α-terpinene, γ-terpinene, ρ-cymene and linalool against Gardnerella species. Sci Rep 2022; 12:4417. [PMID: 35292704 PMCID: PMC8924259 DOI: 10.1038/s41598-022-08217-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal infection affecting women worldwide. This infection is characterized by the loss of the dominant Lactobacillus community in the vaginal microbiota and an increase of anaerobic bacteria, that leads to the formation of a polymicrobial biofilm, mostly composed of Gardnerella spp. Treatment of BV is normally performed using broad-spectrum antibiotics, such as metronidazole and clindamycin. However, the high levels of recurrence of infection after treatment cessation have led to a demand for new therapeutic alternatives. Thymbra capitata essential oils (EOs) are known to have a wide spectrum of biological properties, including antibacterial activity. Thus, herein, we characterized two EOs of T. capitata and tested their antimicrobial activity as well as some of their main components, aiming to assess possible synergistic effects. Our findings showed that carvacrol and ρ-cymene established a strong synergistic antimicrobial effect against planktonic cultures of Gardnerella spp. On biofilm, carvacrol and linalool at sub-MIC concentrations proved more efficient in eliminating biofilm cells, while showing no cytotoxicity observed in a reconstituted human vaginal epithelium. The antibiofilm potential of the EOs and compounds was highlighted by the fact cells were not able to recover culturability after exposure to fresh medium.
Collapse
Affiliation(s)
- Lúcia G V Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal.,LABBELS -Associate Laboratory, Braga, Portugal
| | - Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,CIEPQPF, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Mariana Tomás
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Rita Palmeira-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - José Martinez-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal. .,LABBELS -Associate Laboratory, Braga, Portugal.
| |
Collapse
|
5
|
Yu C, Armengaud J, Blaustein RA, Chen K, Ye Z, Xu F, Gaillard JC, Qin Z, Fu Y, Hartmann EM, Shen C. Antibiotic tolerance and degradation capacity of the organic pollutant-degrading bacterium Rhodococcus biphenylivorans TG9 T. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127712. [PMID: 34865898 DOI: 10.1016/j.jhazmat.2021.127712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are ubiquitous in soil due to natural ecological competition, as well as emerging contaminants due to anthropogenic inputs. Under environmental factors like antibiotic stress, some bacteria, including those that degrade environmental pollutants, can enter a dormant state as a survival strategy, thereby limiting their metabolic activity and function. Dormancy has a critical influence on the degradative activity of bacteria, dramatically decreasing the rate at which they transform organic pollutants. To better understand this phenomenon in environmental pollutant-degrading bacteria, we investigated dormancy transitions induced with norfloxacin in Rhodococcus biphenylivorans TG9T using next-generation proteomics, proteogenomics, and additional experiments. Our results suggest that exposure to norfloxacin inhibited DNA replication, which led to damage to the cell. Dormant cells then likely triggered DNA repair, particularly homologous recombination, for continued survival. The results also indicated that substrate transport (ATP-binding cassette transporter), ATP production, and the tricarboxylic acid (TCA) cycle were repressed during dormancy, and degradation of organic pollutants was down-regulated. Given the widespread phenomenon of dormancy among bacteria involved in pollutant removal systems, this study improves our understanding of possible implications of antibiotic survival strategies on biotransformation of mixtures containing antibiotics as well as other organics.
Collapse
Affiliation(s)
- Chungui Yu
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France
| | - Ryan Andrew Blaustein
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Kezhen Chen
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Zhe Ye
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Fengjun Xu
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France
| | - Zhihui Qin
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Yulong Fu
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Erica Marie Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Chaofeng Shen
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
6
|
Castro J, Lima Â, Sousa LGV, Rosca AS, Muzny CA, Cerca N. Crystal Violet Staining Alone Is Not Adequate to Assess Synergism or Antagonism in Multi-Species Biofilms of Bacteria Associated With Bacterial Vaginosis. Front Cell Infect Microbiol 2022; 11:795797. [PMID: 35071046 PMCID: PMC8766793 DOI: 10.3389/fcimb.2021.795797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial Vaginosis (BV) involves the presence of a multi-species biofilm adhered to vaginal epithelial cells, but its in-depth study has been limited due to the complexity of the bacterial community, which makes the design of in vitro models challenging. Perhaps the most common experimental technique to quantify biofilms is the crystal violet (CV) staining method. Despite its widespread utilization, the CV method is not without flaws. While biofilm CV quantification within the same strain in different conditions is normally accepted, assessing multi-species biofilms formation by CV staining might provide significant bias. For BV research, determining possible synergism or antagonism between species is a fundamental step for assessing the roles of individual species in BV development. Herein, we provide our perspective on how CV fails to properly quantify an in vitro triple-species biofilm composed of Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, and Prevotella bivia, three common BV-associated bacteria thought to play key roles in incident BV pathogenesis. We compared the CV method with total colony forming units (CFU) and fluorescence microscopy cell count methods. Not surprisingly, when comparing single-species biofilms, the relationship between biofilm biomass, total number of cells, and total cultivable cells was very different between each tested method, and also varied with the time of incubation. Thus, despite its wide utilization for single-species biofilm quantification, the CV method should not be considered for accurate quantification of multi-species biofilms in BV pathogenesis research.
Collapse
Affiliation(s)
- Joana Castro
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Ângela Lima
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Lúcia G V Sousa
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Aliona S Rosca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nuno Cerca
- Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| |
Collapse
|
7
|
Gaio V, Lopes N, Cerca N, França A. codY and pdhA Expression Is Induced in Staphylococcus epidermidis Biofilm and Planktonic Populations With Higher Proportions of Viable but Non-Culturable Cells. Front Cell Infect Microbiol 2021; 11:771666. [PMID: 34869073 PMCID: PMC8634161 DOI: 10.3389/fcimb.2021.771666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus epidermidis biofilm cells can enter a physiological state known as viable but non-culturable (VBNC), where, despite being alive, they do not grow in conventional laboratory media. As such, the presence of VBNC cells impacts the diagnosis of S. epidermidis biofilm-associated infections. Previous transcriptomics analysis of S. epidermidis strain 9142 biofilms with higher proportions of VBNC cells suggested that the genes pdhA, codY and mazEF could be involved in the induction of the VBNC state. However, it was previously demonstrated that VBNC induction is strain-dependent. To properly assess the role of these genes in VBNC induction, the construction of mutant strains is necessary. Thus, herein, we assessed if VBNC cells could be induced in strain 1457, a strain amenable to genetic manipulation, and if the previously identified genes were involved in the modulation of the VBNC state in this strain. Furthermore, we evaluated the formation of VBNC cells on planktonic cultures. Our results showed that despite being commonly associated with biofilms, the proportion of VBNC cells can be modulated in both biofilm and planktonic cultures and that the expression of codY and pdhA was upregulated under VBNC inducing conditions in both phenotypes. Overall, our study revealed that the formation of VBNC cells in S. epidermidis is independent of the mode of growth and that the genes codY and pdhA seem to be relevant for the regulation of this physiological condition.
Collapse
Affiliation(s)
- Vânia Gaio
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Nathalie Lopes
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Magalhães AP, Grainha T, Sousa AM, França Â, Cerca N, Pereira MO. Viable but non-cultivable state: a strategy for Staphylococcus aureus survivable in dual-species biofilms with Pseudomonas aeruginosa? Environ Microbiol 2021; 23:5639-5649. [PMID: 34423890 DOI: 10.1111/1462-2920.15734] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are two of the most prevalent respiratory pathogens in cystic fibrosis patients. Both organisms often cause chronic and recalcitrant infections, in large part due to their ability to form biofilms, being these mixed-species infections correlated with poor clinical outcomes. In this study, the hypothesis that S. aureus adopts phenotypes allowing its coexistence with P. aeruginosa during biofilm growth was put forward. We noticed that S. aureus undergoes a viable but non-cultivable (VBNC) state in the dominated P. aeruginosa dual-species consortia, whatsoever the strains used to form the biofilms. Moreover, an increased expression of genes associated with S. aureus virulence was detected suggesting that the phenotypic switching to VBNC state might account for S. aureus pathogenicity and, in turn, influence the clinical outcome of the mixed-species infection. Thus, P. aeruginosa seems to induce both phenotypic and transcriptomic changes in S. aureus, helping its survival and coexistence in the dual-species biofilms. Overall, our findings illustrate how interspecies interactions can modulate bacterial virulence in vitro, contributing to a better understanding of the behaviour of P. aeruginosa-S. aureus dual-species biofilms.
Collapse
Affiliation(s)
- Andreia Patrícia Magalhães
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Tânia Grainha
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ana Margarida Sousa
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Ângela França
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Maria Olívia Pereira
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
9
|
Li T, Lu Y, Zhang H, Wang L, Beier RC, Jin Y, Wang W, Li H, Hou X. Antibacterial Activity and Membrane-Targeting Mechanism of Aloe-Emodin Against Staphylococcus epidermidis. Front Microbiol 2021; 12:621866. [PMID: 34484130 PMCID: PMC8415635 DOI: 10.3389/fmicb.2021.621866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of multidrug-resistant Staphylococcus epidermidis (S. epidermidis) dwarfs the current antibiotic development and calls for the discovery of new antibacterial agents. Aloe-emodin is a plant-derived compound that holds promise to battle against these strains. This work reports the antimicrobial activity of aloe-emodin against S. epidermidis and other Gram-positive pathogenic species, manifesting minimum inhibitory concentrations (MICs) and minimum bactericidal concentration (MBCs) around 4-32 and 32-128 μg/mL, respectively. For Gram-negative bacteria tested, the MICs and MBCs of aloe-emodin were 128-256 and above 1024 μg/mL, respectively. Aloe-emodin at the MBC for 4 h eradicated 96.9% of S. epidermidis cells. Aloe-emodin treatment led to deformities in the morphology of S. epidermidis cells and the destroy of the selective permeability of the cell membranes. Analysis of the transcriptional profiles of aloe-emodin-treated cells revealed changes of genes involved in sulfur metabolism, L-lysine and peptidoglycan biosynthesis, and biofilm formation. Aloe-emodin therefore can safely control Gram-positive bacterial infections and proves to target the bacterial outer membrane.
Collapse
Affiliation(s)
- Tao Li
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Yan Lu
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Lei Wang
- Beijing Huafukang Bioscience Co., Ltd., Beijing, China
| | - Ross C. Beier
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Yajie Jin
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Wenjing Wang
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Huanrong Li
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- Beijing Key Laboratory of Chinese Veterinary Medicine, Department of Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
10
|
Biofilm Formation of Multidrug-Resistant MRSA Strains Isolated from Different Types of Human Infections. Pathogens 2021; 10:pathogens10080970. [PMID: 34451434 PMCID: PMC8400568 DOI: 10.3390/pathogens10080970] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main pathogens causing chronic infections, mainly due to its capacity to form biofilms. However, the mechanisms underlying the biofilm formation of MRSA strains from different types of human infections are not fully understood. MRSA strains isolated from distinct human infections were characterized aiming to determine their biofilm-forming capacity, the biofilm resistance to conventional antibiotics and the prevalence of biofilm-related genes, including, icaA, icaB, icaC, icaD, fnbA, fnbB, clfA, clfB, cna, eno, ebpS, fib and bbp. Eighty-three clinical MRSA strains recovered from bacteremia episodes, osteomyelitis and diabetic foot ulcers were used. The biofilm-forming capacity was evaluated by the microtiter biofilm assay and the biofilm structure was analyzed via confocal scanning laser microscopy. The antimicrobial susceptibility of 24-h-old biofilms was assessed against three antibiotics and the biomass reduction was measured. The metabolic activity of biofilms was evaluated by the XTT assay. The presence of biofilm-related genes was investigated by whole-genome sequencing and by PCR. Despite different intensities, all strains showed the capacity to form biofilms. Most strains had also a large number of biofilm-related genes. However, strains isolated from osteomyelitis showed a lower capacity to form biofilms and also a lower prevalence of biofilm-associated genes. There was a significant reduction in the biofilm biomass of some strains tested against antibiotics. Our results provide important information on the biofilm-forming capacity of clinical MRSA strains, which may be essential to understand the influence of different types of infections on biofilm production and chronic infections.
Collapse
|
11
|
Mangiaterra G, Carotti E, Vaiasicca S, Cedraro N, Citterio B, La Teana A, Biavasco F. Contribution of Drugs Interfering with Protein and Cell Wall Synthesis to the Persistence of Pseudomonas aeruginosa Biofilms: An In Vitro Model. Int J Mol Sci 2021; 22:ijms22041628. [PMID: 33562782 PMCID: PMC7914939 DOI: 10.3390/ijms22041628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The occurrence of Pseudomonas aeruginosa (PA) persisters, including viable but non-culturable (VBNC) forms, subpopulations of tolerant cells that can survive high antibiotic doses, is the main reason for PA lung infections failed eradication and recurrence in Cystic Fibrosis (CF) patients, subjected to life-long, cyclic antibiotic treatments. In this paper, we investigated the role of subinhibitory concentrations of different anti-pseudomonas antibiotics in the maintenance of persistent (including VBNC) PA cells in in vitro biofilms. Persisters were firstly selected by exposure to high doses of antibiotics and their abundance over time evaluated, using a combination of cultural, qPCR and flow cytometry assays. Two engineered GFP-producing PA strains were used. The obtained results demonstrated a major involvement of tobramycin and bacterial cell wall-targeting antibiotics in the resilience to starvation of VBNC forms, while the presence of ciprofloxacin and ceftazidime/avibactam lead to their complete loss. Moreover, a positive correlation between tobramycin exposure, biofilm production and c-di-GMP levels was observed. The presented data could allow a deeper understanding of bacterial population dynamics during the treatment of recurrent PA infections and provide a reliable evaluation of the real efficacy of the antibiotic treatments against the bacterial population within the CF lung.
Collapse
Affiliation(s)
- Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
- Correspondence: ; Tel.: +39-071-220-4622; Fax: +39-071-220-4316
| | - Elisa Carotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Salvatore Vaiasicca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Nicholas Cedraro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Barbara Citterio
- Department of Biomolecular Science, Biotechnology Section, University of Urbino “Carlo Bo”, via Arco d’Augusto 2, 61032 Fano, Italy;
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (E.C.); (S.V.); (N.C.); (A.L.T.); (F.B.)
| |
Collapse
|
12
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Grainha T, Magalhães AP, Melo LDR, Pereira MO. Pitfalls Associated with Discriminating Mixed-Species Biofilms by Flow Cytometry. Antibiotics (Basel) 2020; 9:antibiotics9110741. [PMID: 33121057 PMCID: PMC7694060 DOI: 10.3390/antibiotics9110741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Since biofilms are ubiquitous in different settings and act as sources of disease for humans, reliable methods to characterize and quantify these microbial communities are required. Numerous techniques have been employed, but most of them are unidirectional, labor intensive and time consuming. Although flow cytometry (FCM) can be a reliable choice to quickly provide a multiparametric analysis, there are still few applications on biofilms, and even less on the study of inter-kingdom communities. This work aimed to give insights into the application of FCM in order to more comprehensively analyze mixed-species biofilms, formed by different Pseudomonas aeruginosa and Candida albicans strains, before and after exposure to antimicrobials. For comparison purposes, biofilm culturability was also assessed determining colony-forming units. The results showed that some aspects, namely the microbial strain used, the morphological state of the cells and the biofilm matrix, make the accurate analysis of FCM data difficult. These aspects were even more challenging when double-species biofilms were being inspected, as they could engender data misinterpretations. The outcomes draw our attention towards the need to always take into consideration the characteristics of the biofilm samples to be analyzed through FCM, and undoubtedly link to the need for optimization of the processes tailored for each particular case study.
Collapse
Affiliation(s)
| | | | - Luís D. R. Melo
- Correspondence: (L.D.R.M.); (M.O.P.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-402 (M.O.P.)
| | - Maria O. Pereira
- Correspondence: (L.D.R.M.); (M.O.P.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-402 (M.O.P.)
| |
Collapse
|
14
|
Mangiaterra G, Cedraro N, Vaiasicca S, Citterio B, Galeazzi R, Laudadio E, Mobbili G, Minnelli C, Bizzaro D, Biavasco F. Role of Tobramycin in the Induction and Maintenance of Viable but Non-Culturable Pseudomonas aeruginosa in an In Vitro Biofilm Model. Antibiotics (Basel) 2020; 9:antibiotics9070399. [PMID: 32664334 PMCID: PMC7400124 DOI: 10.3390/antibiotics9070399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023] Open
Abstract
The recurrence of Pseudomonas aeruginosa (PA) biofilm infections is a major issue in cystic fibrosis (CF) patients. A pivotal role is played by the presence of antibiotic-unresponsive persisters and/or viable but non-culturable (VBNC) forms, whose development might be favored by subinhibitory antibiotic concentrations. The involvement of tobramycin and ciprofloxacin, widely used to treat CF PA lung infections, in the abundance of VBNC cells was investigated in PA biofilms models. In vitro biofilms of the laboratory strain PAO1-N and the clinical strain C24 were developed and starved by subculture for 170 days in a non-nutrient (NN) broth, unsupplemented or supplemented with one-quarter minimal inhibitory concentration (MIC) of tobramycin or ciprofloxacin. VBNC cells abundance, estimated as the difference between total live (detected by qPCR and flow cytometry) and colony forming unit (CFU) counts, showed a strain- and drug-specific pattern. A greater and earlier abundance of VBNC PAO1-N cells was detected in all conditions. Exposure of the C24 strain to NN and NN + ciprofloxacin induced only a transient VBNC subpopulation, which was more abundant and stable until the end of the experiment in tobramycin-exposed biofilms. The same response to tobramycin was observed in the PAO1-N strain. These findings suggest that low tobramycin concentrations might contribute to PA infection recurrence by favoring the development of VBNC forms.
Collapse
Affiliation(s)
- Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (N.C.); (S.V.); (R.G.); (G.M.); (C.M.); (D.B.); (F.B.)
- Correspondence: ; Tel.: +39-071-220-4622; Fax: +39-071-220-4316
| | - Nicholas Cedraro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (N.C.); (S.V.); (R.G.); (G.M.); (C.M.); (D.B.); (F.B.)
| | - Salvatore Vaiasicca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (N.C.); (S.V.); (R.G.); (G.M.); (C.M.); (D.B.); (F.B.)
| | - Barbara Citterio
- Department of Biomolecular Science, Biotechnology Section, University of Urbino “Carlo Bo”, via Arco d’Augusto 2, 61032 Fano, Italy;
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (N.C.); (S.V.); (R.G.); (G.M.); (C.M.); (D.B.); (F.B.)
| | - Emiliano Laudadio
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy;
| | - Giovanna Mobbili
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (N.C.); (S.V.); (R.G.); (G.M.); (C.M.); (D.B.); (F.B.)
| | - Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (N.C.); (S.V.); (R.G.); (G.M.); (C.M.); (D.B.); (F.B.)
| | - Davide Bizzaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (N.C.); (S.V.); (R.G.); (G.M.); (C.M.); (D.B.); (F.B.)
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; (N.C.); (S.V.); (R.G.); (G.M.); (C.M.); (D.B.); (F.B.)
| |
Collapse
|
15
|
Fernandes TA, André V, Arol AS, França Â, Mikhalyonok S, Cerca N, Kirillov AM. New silver (thio)semicarbazide derivatives: synthesis, structural features, and antimicrobial activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02013c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
New silver(i) (thio)semicarbazide coordination compounds were prepared, fully characterized, and tested as antimicrobial and antibiofilm agents.
Collapse
Affiliation(s)
- Tiago A. Fernandes
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Vânia André
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Aliaksandr S. Arol
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Ângela França
- Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| | - Sergei Mikhalyonok
- Department of Organic Chemistry
- Belarusian State Technological University
- 220006 Minsk
- Belarus
| | - Nuno Cerca
- Centre of Biological Engineering
- University of Minho
- 4710-057 Braga
- Portugal
| | - Alexander M. Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
16
|
RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms. Sci Rep 2019; 9:13639. [PMID: 31541147 PMCID: PMC6754382 DOI: 10.1038/s41598-019-50094-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
While considerable research has focused on studying individual-species, we now face the challenge of determining how interspecies interactions alter bacterial behaviours and pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are often found to co-infect cystic-fibrosis patients. Curiously, their interaction is reported as competitive under laboratory conditions. Selecting appropriate methodologies is therefore critical to analyse multi-species communities. Herein, we demonstrated the major biases associated with qPCR quantification of bacterial populations and optimized a RNA-based qPCR able not only to quantify but also to characterize microbial interactions within dual-species biofilms composed by P. aeruginosa and S. aureus, as assessed by gene expression quantification. qPCR quantification was compared with flow-cytometry and culture-based quantification. Discrepancies between culture independent and culture dependent methods could be the result of the presence of viable but not-cultivable bacteria within the biofilm. Fluorescence microscopy confirmed this. A higher sensitivity to detect viable cells further highlights the potentialities of qPCR approach to quantify biofilm communities. By using bacterial RNA and an exogenous mRNA control, it was also possible to characterize bacterial transcriptomic profile, being this a major advantage of this method.
Collapse
|