1
|
Chai CY, Ke T, Niu QH, Hui FL. Diversity of Wickerhamomyces (Wickerhamomycetaceae, Saccharomycetales) in China with the description of four new species. Front Microbiol 2024; 15:1338231. [PMID: 38389540 PMCID: PMC10881795 DOI: 10.3389/fmicb.2024.1338231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Wickerhamomyces is a well-known genus of the family Wickerhamomycetaceae in the class Ascomycetes. These fungi can survive in a variety of substrates and environments and perform many valuable roles in both industrial processes and the natural ecosystems. During our investigation of yeast diversity associated with plant materials, 53 Wickerhamomyces isolates were obtained from rotting wood and plant leaves collected in Fujian, Guizhou, Henan, and Yunnan Provinces of China. Isolates were identified as 14 Wickerhamomyces species, including 1 species known previously to occur in China (W. anomalus), 9 new record species in China (W. arborarius, W. ciferrii, W. edaphicus, W. lynferdii, W. pijperi, W. subpelliculosa, W. xylosica, W. strasburgensis, and W. sydowiorum), and 4 novel species (W. guiyangensis sp. nov., W. paramyanmarensis sp. nov., W. quanzhouensis sp. nov., and W. phyllophilus sp. nov.). This study presents a detailed account of these new species, illustrating their morphology and analyzing their phylogenetic relationships with other Wickerhamomyces species. Our study is the first comprehensive study on Wickerhamomyces species associated with plant materials from tropical and subtropical China. The results of this study update our understanding of the phylogenetic relationships, systematics, and ecology of Wickerhamomyces.
Collapse
Affiliation(s)
- Chun-Yue Chai
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang, China
| | - Tao Ke
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang, China
| | - Qiu-Hong Niu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang, China
| | - Feng-Li Hui
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang, China
| |
Collapse
|
2
|
Aminasnafi A, Khodavaisy S, Moslem M, Esmaeilpour Jouneghani M, Sarbandi F, Falahatinejad M, Bashardoust B, Badali H, Kiasat N. Port implantation-related bloodstream infection caused by Wickerhamomyces myanmarensis: A case report. Curr Med Mycol 2023; 9:32-35. [PMID: 37867594 PMCID: PMC10590188 DOI: 10.18502/cmm.2023.150671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/25/2023] [Accepted: 04/10/2023] [Indexed: 10/24/2023] Open
Abstract
Background and Purpose Wickerhamomyces myanmarensis is a new opportunistic yeast previously named Pichai myanmarensis, which belongs to the order Saccharomycetales. Since its discovery, one environmental isolate of W. myanmarensis has been reported from Myanmar, and one clinical sample from Iran. Case Report We report a case of bloodstream infection related to an implantable venous access port. W. myanmarensis was isolated from patient's blood after chemotherapy, which was meant to control and heal T-cell lymphoblastic lymphoma. Broth dilution minimum inhibitory concentrations were performed according to the CLSI M27-A3 document. The patient recovered with intravenous voriconazole and was discharged with the recommended prescription of oral voriconazole as a maintenance drug. Conclusion So far, only one case of W. myanmarensis fungemia has been reported in the world in 2019. This is the second case of bloodstream infection with this yeast from a patient undergoing chemotherapy in Iran.
Collapse
Affiliation(s)
- Ali Aminasnafi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Moslem
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Fatemeh Sarbandi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Bahareh Bashardoust
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Badali
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas, San Antonio, Texas, USA
| | - Neda Kiasat
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Kunyeit L, Rao RP, Anu-Appaiah KA. Yeasts originating from fermented foods, their potential as probiotics and therapeutic implication for human health and disease. Crit Rev Food Sci Nutr 2023; 64:6660-6671. [PMID: 36728916 DOI: 10.1080/10408398.2023.2172546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Yeasts derived from fermented foods have historically been known for their organoleptic properties, enriching nutritional values, and producing bioactive metabolites with therapeutic potential. In this review, we discuss the yeast flora in fermented foods, their functional aspects in fermentation, as well as their probiotic and biotherapeutic properties. These yeasts have numerous physical and biochemical characteristics, such as larger cells as compared to bacteria, a rigid cell wall composed primarily of glucans and mannans, natural resistance to antibiotics, and the secretion of secondary metabolites that are both pleasing to the consumer and beneficial to the host's health and well-being. The review also focused on therapeutic applications of probiotic yeasts derived from fermented foods on infections associated with Candida species. These potential probiotic yeasts present an additional avenue to treat dysbiosis of the gut microbiota and prevent health complications that arise from opportunistic fungal colonization, especially drug-resistant superbugs, which are highlighted in this review.
Collapse
Affiliation(s)
- Lohith Kunyeit
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
4
|
Nundaeng S, Suwannarach N, Limtong S, Khuna S, Kumla J, Lumyong S. An Updated Global Species Diversity and Phylogeny in the Genus Wickerhamomyces with Addition of Two New Species from Thailand. J Fungi (Basel) 2021; 7:957. [PMID: 34829244 PMCID: PMC8618796 DOI: 10.3390/jof7110957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ascomycetous yeast species in the genus Wickerhamomyces (Saccharomycetales, Wickerhamomycetaceae) are isolated from various habitats and distributed throughout the world. Prior to this study, 35 species had been validly published and accepted into this genus. Beneficially, Wickerhamomyces species have been used in a number of biotechnologically applications of environment, food, beverage industries, biofuel, medicine and agriculture. However, in some studies, Wickerhamomyces species have been identified as an opportunistic human pathogen. Through an overview of diversity, taxonomy and recently published literature, we have updated a brief review of Wickerhamomyces. Moreover, two new Wickerhamomyces species were isolated from the soil samples of Assam tea (Camellia sinensis var. assamica) that were collected from plantations in northern Thailand. Herein, we have identified these species as W. lannaensis and W. nanensis. The identification of these species was based on phenotypic (morphological, biochemical and physiological characteristics) and molecular analyses. Phylogenetic analyses of a combination of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) of ribosomal DNA genes support that W. lannaensis and W. nanensis are distinct from other species within the genus Wickerhamomyces. A full description, illustrations and a phylogenetic tree showing the position of both new species have been provided. Accordingly, a new combination species, W. myanmarensis has been proposed based on the phylogenetic results. A new key for species identification is provided.
Collapse
Affiliation(s)
- Supakorn Nundaeng
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
5
|
Tiew PY, Dicker AJ, Keir HR, Poh ME, Pang SL, Mac Aogáin M, Chua BQY, Tan JL, Xu H, Koh MS, Tee A, Abisheganaden JA, Chew FT, Miller BE, Tal-Singer R, Chalmers JD, Chotirmall SH. A high-risk airway mycobiome is associated with frequent exacerbation and mortality in COPD. Eur Respir J 2021; 57:2002050. [PMID: 32972986 DOI: 10.1183/13993003.02050-2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The chronic obstructive pulmonary disease (COPD) bacteriome associates with disease severity, exacerbations and mortality. While COPD patients are susceptible to fungal sensitisation, the role of the fungal mycobiome remains uncertain. METHODS We report the largest multicentre evaluation of the COPD airway mycobiome to date, including participants from Asia (Singapore and Malaysia) and the UK (Scotland) when stable (n=337) and during exacerbations (n=66) as well as nondiseased (healthy) controls (n=47). Longitudinal mycobiome analysis was performed during and following COPD exacerbations (n=34), and examined in terms of exacerbation frequency, 2-year mortality and occurrence of serum specific IgE (sIgE) against selected fungi. RESULTS A distinct mycobiome profile is observed in COPD compared with controls as evidenced by increased α-diversity (Shannon index; p<0.001). Significant airway mycobiome differences, including greater interfungal interaction (by co-occurrence), characterise very frequent COPD exacerbators (three or more exacerbations per year) (permutational multivariate ANOVA; adjusted p<0.001). Longitudinal analyses during exacerbations and following treatment with antibiotics and corticosteroids did not reveal any significant change in airway mycobiome profile. Unsupervised clustering resulted in two clinically distinct COPD groups: one with increased symptoms (COPD Assessment Test score) and Saccharomyces dominance, and another with very frequent exacerbations and higher mortality characterised by Aspergillus, Curvularia and Penicillium with a concomitant increase in serum sIgE levels against the same fungi. During acute exacerbations of COPD, lower fungal diversity associates with higher 2-year mortality. CONCLUSION The airway mycobiome in COPD is characterised by specific fungal genera associated with exacerbations and increased mortality.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- Dept of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Alison J Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Holly R Keir
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Mau Ern Poh
- Dept of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sze Lei Pang
- Dept of Biological Sciences, National University of Singapore, Singapore
| | - Micheál Mac Aogáin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Branden Qi Yu Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Jiunn Liang Tan
- Dept of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Huiying Xu
- Dept of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Mariko Siyue Koh
- Dept of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Augustine Tee
- Dept of Respiratory and Critical Care Medicine, Changi General Hospital, Singapore
| | | | - Fook Tim Chew
- Dept of Biological Sciences, National University of Singapore, Singapore
| | | | | | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
6
|
Dutra VR, Silva LF, Oliveira ANM, Beirigo EF, Arthur VM, Bernardes da Silva R, Ferreira TB, Andrade-Silva L, Silva MV, Fonseca FM, Silva-Vergara ML, Ferreira-Paim K. Fatal Case of Fungemia by Wickerhamomyces anomalus in a Pediatric Patient Diagnosed in a Teaching Hospital from Brazil. J Fungi (Basel) 2020; 6:jof6030147. [PMID: 32854208 PMCID: PMC7558373 DOI: 10.3390/jof6030147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, emerging fungal infections have changed the clinical mycology scenario as a consequence of the advances in medical diagnostics and therapeutic procedures, long hospitalization times, and the growing number of individuals with debilitating chronic diseases and impaired immune systems. This report presents a 19 months old Brazilian female patient who developed a severe fungal sepsis by an uncommon yeast. She was admitted at the intensive care unit with severe pneumonia, bronchopulmonary dysplasia, and weight-for-age z score of less than −2. She remained more than 30 days in the intensive care unit where she had a femoral venous catheter placement, enteral nutrition, broad-spectrum antibiotic therapy, and prophylaxis with fluconazole. Moreover, pericardiocentesis was performed due to cardiac tamponade. She had a previous history of prematurity, cardiac surgery due to patent ductus arteriosus, and a long period of hospital stay. Despite the antifungal prophylaxis, two yeast isolates were recovered from blood and then identified by classical mycological methods and internal transcribed spacer (ITS) sequencing as Wickerhamomyces anomalus. Both isolates exhibited susceptibility to amphotericin B, ketoconazole, itraconazole, voriconazole, and fluconazole. Her clinical state worsened, presenting anasarca, epistaxis, and hemorrhagic suffusions in the mouth, sclera, oliguria, and bradycardia. Two days after the first positive culture, she presented a gradual reduction of the white blood cells count, with severe leukopenia and neutropenia. She died five days after.
Collapse
Affiliation(s)
- Vitor Rodrigues Dutra
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (V.R.D.); (L.F.S.); (E.F.B.); (V.M.A.); (R.B.d.S.); (M.V.S.)
| | - Leonardo Francisco Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (V.R.D.); (L.F.S.); (E.F.B.); (V.M.A.); (R.B.d.S.); (M.V.S.)
| | | | - Emília Freitas Beirigo
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (V.R.D.); (L.F.S.); (E.F.B.); (V.M.A.); (R.B.d.S.); (M.V.S.)
| | - Vanessa Mello Arthur
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (V.R.D.); (L.F.S.); (E.F.B.); (V.M.A.); (R.B.d.S.); (M.V.S.)
| | - Raíssa Bernardes da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (V.R.D.); (L.F.S.); (E.F.B.); (V.M.A.); (R.B.d.S.); (M.V.S.)
| | - Thatiana Bragine Ferreira
- Department of Infectious Diseases, Federal University of Triangulo Mineiro, Uberaba 38025-440, Brazil; (T.B.F.); (L.A.-S.); (M.L.S.-V.)
| | - Leonardo Andrade-Silva
- Department of Infectious Diseases, Federal University of Triangulo Mineiro, Uberaba 38025-440, Brazil; (T.B.F.); (L.A.-S.); (M.L.S.-V.)
| | - Marcos Vinícius Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (V.R.D.); (L.F.S.); (E.F.B.); (V.M.A.); (R.B.d.S.); (M.V.S.)
| | | | - Mario León Silva-Vergara
- Department of Infectious Diseases, Federal University of Triangulo Mineiro, Uberaba 38025-440, Brazil; (T.B.F.); (L.A.-S.); (M.L.S.-V.)
| | - Kennio Ferreira-Paim
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba 38015-050, Brazil; (V.R.D.); (L.F.S.); (E.F.B.); (V.M.A.); (R.B.d.S.); (M.V.S.)
- Department of Infectious Diseases, Federal University of Triangulo Mineiro, Uberaba 38025-440, Brazil; (T.B.F.); (L.A.-S.); (M.L.S.-V.)
- Correspondence: ; Tel.: +55-34-3700-6480
| |
Collapse
|
7
|
Arastehfar A, Yazdanpanah S, Bakhtiari M, Fang W, Pan W, Mahmoudi S, Pakshir K, Daneshnia F, Boekhout T, Ilkit M, Perlin DS, Zomorodian K, Zand F. Epidemiology of candidemia in Shiraz, southern Iran: A prospective multicenter study (2016-2018). Med Mycol 2020; 59:422-430. [PMID: 32692816 DOI: 10.1093/mmy/myaa059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Systematic candidemia studies, especially in southern Iran, are scarce. In the current prospective study, we investigated candidemia in three major healthcare centers of Shiraz, the largest city in southern Iran. Yeast isolates from blood and other sterile body fluids were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and subjected to antifungal susceptibility testing (AFST) using the broth microdilution method. Clinical data were retrieved from patients' medical records. In total, 113 yeast isolates were recovered from 109 patients, over 60% of whom received fluconazole. Antifungal drugs were prescribed without considering species identification or AFST. The all-cause mortality rate was 28%. Almost 30% of the patients were from intensive care units (ICUs). Candida albicans (56/113; 49.5%) was the most prevalent species followed by C. glabrata (26/113; 23%), C. parapsilosis (13/113; 11.5%), C. tropicalis (7/113; 6.2%), and C. dubliniensis (5/113; 4.4%). Only five isolates showed antifungal resistance or decreased susceptibility to fluconazole: one C. orthopsilosis isolate from an azole-naïve patient and two C. glabrata, one C. albicans, and one C. dubliniensis isolates from patients treated with azoles, who developed therapeutic failure against azoles later. Our results revealed a low level of antifungal resistance but a notable rate of azole therapeutic failure among patients with candidemia due to non-albicans Candida species, which threaten the efficacy of fluconazole, the most widely used antifungal in southern regions of Iran. Candidemia studies should not be confined to ICUs and treatment should be administered based on species identification and AFST results.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Samira Yazdanpanah
- Basic Sciences in Infectious Diseases Research Center, & Department of Medical Mycology & Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Bakhtiari
- Basic Sciences in Infectious Diseases Research Center, & Department of Medical Mycology & Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wenjie Fang
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China
| | - Shahram Mahmoudi
- Department of Medical Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Keyvan Pakshir
- Basic Sciences in Infectious Diseases Research Center, & Department of Medical Mycology & Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Shanghai Key Laboratory Molecular Medical Mycology, Shanghai, China.,Institute of Biodiversity and Ecosystems Dynamics (IBED, University of Amsterdam, Amsterdam, The Netherlands
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, & Department of Medical Mycology & Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farid Zand
- Department of Anesthesia and Critical Care Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Arastehfar A, Wickes BL, Ilkit M, Pincus DH, Daneshnia F, Pan W, Fang W, Boekhout T. Identification of Mycoses in Developing Countries. J Fungi (Basel) 2019; 5:E90. [PMID: 31569472 PMCID: PMC6958481 DOI: 10.3390/jof5040090] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
Extensive advances in technology offer a vast variety of diagnostic methods that save time and costs, but identification of fungal species causing human infections remains challenging in developing countries. Since the echinocandins, antifungals widely used to treat invasive mycoses, are still unavailable in developing countries where a considerable number of problematic fungal species are present, rapid and reliable identification is of paramount importance. Unaffordability, large footprints, lack of skilled personnel, and high costs associated with maintenance and infrastructure are the main factors precluding the establishment of high-precision technologies that can replace inexpensive yet time-consuming and inaccurate phenotypic methods. In addition, point-of-care lateral flow assay tests are available for the diagnosis of Aspergillus and Cryptococcus and are highly relevant for developing countries. An Aspergillus galactomannan lateral flow assay is also now available. Real-time PCR remains difficult to standardize and is not widespread in countries with limited resources. Isothermal and conventional PCR-based amplification assays may be alternative solutions. The combination of real-time PCR and serological assays can significantly increase diagnostic efficiency. However, this approach is too expensive for medical institutions in developing countries. Further advances in next-generation sequencing and other innovative technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic tools may lead to efficient, alternate methods that can be used in point-of-care assays, which may supplement or replace some of the current technologies and improve the diagnostics of fungal infections in developing countries.
Collapse
Affiliation(s)
- Amir Arastehfar
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands.
| | - Brian L Wickes
- The Department of Microbiology, Immunology, and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana 01330, Turkey.
| | | | - Farnaz Daneshnia
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai 200003, China.
| | - Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai 200003, China.
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands.
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai 200003, China.
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WX Amsterdam, The Netherlands.
| |
Collapse
|