1
|
Aydın Uysal A, Tünger A. Investigation of Colistin resistance and method comparison in Klebsiella pneumoniae strains. Diagn Microbiol Infect Dis 2025; 111:116584. [PMID: 39520775 DOI: 10.1016/j.diagmicrobio.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE This study aimed to assess the prevalence of colistin resistance in the study group and compare alternative methods with the gold standard. It sought to evaluate the prevalence of plasmid-mediated colistin resistance genes. MATERIAL AND METHODS The colistin susceptibility of 151 K. pneumoniae strains was determined using Sensititre™, CBDE, ETEST®, and VITEK®2. Results were compared with BMD. The presence of the mcr gene was assessed using polymerase chain reaction. RESULTS The colistin resistance rate was 16,6 %. The categorical agreement of Sensititre™, CBDE, and ETEST® was 100 %. VITEK®2 had a CA of 98 %, a major error of 0.79 %, and a very major error of 8 %. Essential agreement for Sensititre™, ETEST®, and VITEK®2 was 92.7 %, 52.3 %, and 78.1 %, respectively. There were no mcr genes in any strains. CONCLUSIONS Due to the difficulty of applying BMD, colistin resistance data are insufficient globally. Continuous epidemiological studies and validation of alternative methods are needed.
Collapse
Affiliation(s)
- Ayça Aydın Uysal
- Ege University Faculty of Medicine Hospital, Department of Medical Microbiology 35100, Bornova, İzmir, Türkiye.
| | - Alper Tünger
- Ege University Faculty of Medicine Hospital, Department of Medical Microbiology 35100, Bornova, İzmir, Türkiye
| |
Collapse
|
2
|
Guibert F, Rojo-Bezares B, Espinoza K, Alonso CA, Oporto-Llerena R, López M, Taboada-Blanco C, Sáenz Y, Pons MJ, Ruiz J. Antibiotic-Resistant Pseudomonas aeruginosa from Market Meat in Peru. Foodborne Pathog Dis 2024. [PMID: 39658015 DOI: 10.1089/fpd.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Unconsidered microorganisms, such as Pseudomonas aeruginosa, may be often recovered from food samples. This study aimed to characterize seven P. aeruginosa recovered from traditional market chicken meat in Lima, Peru. Antimicrobial susceptibility to 18 antimicrobial agents as well as the presence of amino acid changes in fluoroquinolone targets, 10 mediated colistin resistance (mcr) genes and integrons were analyzed. Clonal relationships were determined through pulsed-field gel electrophoresis (PFGE). Serotype by agglutination, multilocus sequence typing and the presence of 14 virulence factors (VFs) were established. Two isolates were multidrug-resistant, all being fluoroquinolone-resistant and exhibited the amino acid changes GyrA T83I and ParC S87L. No mcr gene was detected in the colistin-resistant isolates. The isolates showed identical PFGE patterns, and the selected P6 isolate belonged to the serotype O:4 and the sequence type 1800, and presented 12 VFs (all but exoU and exlA). The present study highlights the presence of multidrug and virulent P. aeruginosa in market chicken meat, and suggests cross-contamination during meat manipulation.
Collapse
Affiliation(s)
- Fernando Guibert
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Kathya Espinoza
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| | - Carla A Alonso
- Departamento de Diagnóstico Biomédico, Laboratorio de Microbiología, Hospital San Pedro, Logroño, Spain
| | - Rosario Oporto-Llerena
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Clara Taboada-Blanco
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Maria J Pons
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos - "One Health", Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
3
|
Gahlot DK, Patkowski JB, Fernández de Santaella J, Allsopp LP, Pan Z, Filloux A, Larrouy-Maumus G, Francis MS, Costa TRD. Cpx-signalling in Yersinia pseudotuberculosis modulates Lipid-A remodelling and resistance to last-resort antimicrobials. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:39. [PMID: 39568730 PMCID: PMC11573712 DOI: 10.1038/s44259-024-00059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Antibiotic resistance is a global healthcare crisis. Bacteria are highly adaptable and can rapidly acquire mechanisms of resistance towards conventional antibiotics. The permeability barrier conferred by the Gram-negative bacteria cell envelope constitutes a first line of defence against the action of antibiotics. Exposure to extracytoplasmic stresses can negatively affect cell envelope homoeostasis and this causes localised protein misfolding, compromised envelope integrity and impairs barrier function. The CpxA-CpxR two-component regulatory system has evolved to sense extracytoplasmic stresses and to regulate processes that restore homoeostasis of the cell envelope. Hence, controlled Cpx-signalling assists bacteria in adapting, surviving and proliferating in harsh environments, including exposure to antibiotics. Herein, we determined that an intact Cpx-signalling is key to maintaining the Yersinia pseudotuberculosis resistance to colistin and polymyxin B. The susceptibility displayed by Cpx-signalling defective mutants, correlated with cell-envelope deformity and specific modifications of Lipid-A. In vivo transcriptional analysis and in vitro protein-DNA binding studies demonstrated that these modifications were dependent on the direct regulation of Lipid-A biogenesis and modifications of operons by the active phosphorylated CpxR~P isoform. Altogether, our work defines the regulatory mechanism that enables Cpx-signalling to actively control cell envelope remodelling and the permeability of antibiotics in the clinically relevant enteropathogen Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Dharmender K Gahlot
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jonasz B Patkowski
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | | | - Luke P Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zhiqiao Pan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alain Filloux
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
- School of Biological Sciences, Nanyang Technological University Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gerald Larrouy-Maumus
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Matthew S Francis
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Tiago R D Costa
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Yang J, Xu JF, Liang S. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Crit Rev Microbiol 2024:1-19. [PMID: 39556143 DOI: 10.1080/1040841x.2024.2429599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Pseudomonas aeruginosa, able to survive on the surfaces of medical devices, is a life-threatening pathogen that mainly leads to nosocomial infection especially in immunodeficient and cystic fibrosis (CF) patients. The antibiotic resistance in P. aeruginosa has become a world-concerning problem, which results in reduced and ineffective therapy efficacy. Besides intrinsic properties to decrease the intracellular content and activity of antibiotics, P. aeruginosa develops acquired resistance by gene mutation and acquisition, as well as adaptive resistance under specific situations. With in-depth research on drug resistance mechanisms and the development of biotechnology, innovative strategies have emerged and yielded benefits such as screening for new antibiotics based on artificial intelligence technology, utilizing drugs synergistically, optimizing administration, and developing biological therapy. This review summarizes the recent advances in the mechanisms of antibiotic resistance and emerging treatments for combating resistance, aiming to provide a reference for the development of therapy against drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jian Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Nuske MR, Zhong J, Huang R, Sarojini V, Chen JLY, Squire CJ, Blaskovich MAT, Leung IKH. Adjuvant strategies to tackle mcr-mediated polymyxin resistance. RSC Med Chem 2024:d4md00654b. [PMID: 39539347 PMCID: PMC11556429 DOI: 10.1039/d4md00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The emergence of the mobile colistin resistance (mcr) gene is a demonstrable threat contributing to the worldwide antibiotic resistance crisis. The gene is encoded on plasmids and can easily spread between different bacterial strains. mcr encodes a phosphoethanolamine (pEtN) transferase, which catalyses the transfer of the pEtN moiety from phosphatidylethanolamine to lipid A, the head group of lipopolysaccharides (LPS). This neutralises the overall negative charge of the LPS and prevents the binding of polymyxins to bacterial membranes. We believe that the development of polymyxin adjuvants could be a promising approach to prolong the use of this important class of last-resort antibiotics. This review discusses recent progress in the identification, design and development of adjuvants to restore polymyxin sensitivity in these resistant bacteria, and focuses on both MCR inhibitors as well as alternative approaches that modulate polymyxin resistance.
Collapse
Affiliation(s)
- Madison R Nuske
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Junlang Zhong
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Renjie Huang
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| | | | - Jack L Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology Auckland 1010 New Zealand
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, Università degli Studi di Siena 53100 Siena Italy
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland Auckland 1010 New Zealand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Ivanhoe K H Leung
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| |
Collapse
|
6
|
Zhang T, Jiang H, Zhao Y, Yao T, Li R. Insertion with long target duplication in polymyxin B-induced resistant mutant of Salmonella. J Glob Antimicrob Resist 2024; 38:231-235. [PMID: 39009134 DOI: 10.1016/j.jgar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES A Salmonella enterica subsp. diarizonae (hereafter S. diarizonae) clinical strain S499 demonstrated unique genomic features. The strain S499 was treated with polymyxin B in vitro to investigate the mechanism of resistance. METHODS S499 was treated with polymyxin B by increasing concentration gradually to obtain a resistant mutant S499V. Whole genomes of the two strains were sequenced using Illumina HiSeq X-10 and PacBio RS II platforms. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to compare the gene expression. RESULTS The chromosome of strain S499 contained a 40-kb DNA region that was replicated after treatment with polymyxin B and generated a triple tandem DNA repeat region in the chromosome of mutant strain S499V. This repeat region in S499V was flanked by IS1 and contained pmrD, pmrG, and arnBCADTEF operon. In comparison to the homologous 40-kb DNA region of strain S499, a few genes in the repeat DNA region of strain S499V contained truncating mutations that generate two open reading frames (ORFs). The expression of pmrD, pmrG, and arnT was significantly upregulated in S499V. CONCLUSION The duplication and overexpression of pmrD, pmrG, and arnT operon may be responsible for the polymyxin B resistance of mutant strain S499V.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Huifen Jiang
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ying Zhao
- Wuhan Center for Disease Control and Prevention, Wuhan, China
| | - Tingting Yao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rui Li
- Department of Biotechnology and Science, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
7
|
Chunduru J, LaRoe N, Garza J, Hamood AN, Paré PW. Nosocomial Bacteria Inhibition with Polymyxin B: In Silico Gene Mining and In Vitro Analysis. Antibiotics (Basel) 2024; 13:745. [PMID: 39200045 PMCID: PMC11350920 DOI: 10.3390/antibiotics13080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Multidrug-resistant bacteria present a significant public health challenge; such pathogens exhibit reduced susceptibility to conventional antibiotics, limiting current treatment options. Cationic non-ribosomal peptides (CNRPs) such as brevicidine and polymyxins have emerged as promising candidates to block Gram-negative bacteria. To investigate the capability of bacteria to biosynthesize CNRPs, and specifically polymyxins, over 11,000 bacterial genomes were mined in silico. Paenibacillus polymyxa was identified as having a robust biosynthetic capacity, based on multiple polymyxin gene clusters. P. polymyxa biosynthetic competence was confirmed by metabolite characterization via HPLC purification and MALDI TOF/TOF analysis. When grown in a selected medium, the metabolite yield was 4 mg/L with a 20-fold specific activity increase. Polymyxin B (PMB) was assayed with select nosocomial pathogens, including Pseudomonas aeruginosa, Klebsiella pneumonia, and Acinetobacter baumaii, which exhibited minimum inhibitory concentrations of 4, 1, and 1 µg/mL, respectively.
Collapse
Affiliation(s)
- Jayendra Chunduru
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas LaRoe
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Jeremy Garza
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (A.N.H.)
| | - Abdul N. Hamood
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (A.N.H.)
| | - Paul W. Paré
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
8
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
9
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
10
|
Gao X, Han J, Zhu L, Nychas GJE, Mao Y, Yang X, Liu Y, Jiang X, Zhang Y, Dong P. The Effect of the PhoP/PhoQ System on the Regulation of Multi-Stress Adaptation Induced by Acid Stress in Salmonella Typhimurium. Foods 2024; 13:1533. [PMID: 38790833 PMCID: PMC11121531 DOI: 10.3390/foods13101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Acidic stress in beef cattle slaughtering abattoirs can induce the acid adaptation response of in-plant contaminated Salmonella. This may further lead to multiple resistance responses threatening public health. Therefore, the acid, heat, osmotic and antibiotic resistances of Salmonella typhimurium (ATCC14028) were evaluated after a 90 min adaption in a pH = 5.4 "mild acid" Luria-Bertani medium. Differences in such resistances were also determined between the ∆phoP mutant and wild-type Salmonella strains to confirm the contribution of the PhoP/PhoQ system. The transcriptomic differences between the acid-adapted and ∆phoP strain were compared to explore the role of the PhoP/Q two-component system in regulating multi-stress resistance. Acid adaptation was found to increase the viability of Salmonella to lethal acid, heat and hyperosmotic treatments. In particular, acid adaptation significantly increased the resistance of Salmonella typhimurium to Polymyxin B, and such resistance can last for 21 days when the adapted strain was stored in meat extract medium at 4 °C. Transcriptomics analysis revealed 178 up-regulated and 274 down-regulated genes in the ∆phoP strain. The Salmonella infection, cationic antimicrobial peptide (CAMP) resistance, quorum sensing and two-component system pathways were down-regulated, while the bacterial tricarboxylic acid cycle pathways were up-regulated. Transcriptomics and RT-qPCR analyses revealed that the deletion of the phoP gene resulted in the down-regulation of the expression of genes related to lipid A modification and efflux pumps. These changes in the gene expression result in the change in net negative charge and the mobility of the cell membrane, resulting in enhanced CAMP resistance. The confirmation of multiple stress resistance under acid adaptation and the transcriptomic study in the current study may provide valuable information for the control of multiple stress resistance and meat safety.
Collapse
Affiliation(s)
- Xu Gao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Jina Han
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China;
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - George-John E. Nychas
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xueqing Jiang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| |
Collapse
|
11
|
Jafari-Ramedani S, Nazari M, Arzanlou M, Peeri-Dogaheh H, Sahebkar A, Khademi F. Prevalence and molecular characterization of colistin resistance in Pseudomonas aeruginosa isolates: insights from a study in Ardabil hospitals. BMC Microbiol 2024; 24:152. [PMID: 38702660 PMCID: PMC11067120 DOI: 10.1186/s12866-024-03309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a common cause of nosocomial infections. However, the emergence of multidrug-resistant strains has complicated the treatment of P. aeruginosa infections. While polymyxins have been the mainstay for treatment, there is a global increase in resistance to these antibiotics. Therefore, our study aimed to determine the prevalence and molecular details of colistin resistance in P. aeruginosa clinical isolates collected between June 2019 and May 2023, as well as the genetic linkage of colistin-resistant P. aeruginosa isolates. RESULTS The resistance rate to colistin was 9% (n = 18) among P. aeruginosa isolates. All 18 colistin-resistant isolates were biofilm producers and carried genes associated with biofilm formation. Furthermore, the presence of genes encoding efflux pumps, TCSs, and outer membrane porin was observed in all colistin-resistant P. aeruginosa strains, while the mcr-1 gene was not detected. Amino acid substitutions were identified only in the PmrB protein of multidrug- and colistin-resistant strains. The expression levels of mexA, mexC, mexE, mexY, phoP, and pmrA genes in the 18 colistin-resistant P. aeruginosa strains were as follows: 88.8%, 94.4%, 11.1%, 83.3%, 83.3%, and 38.8%, respectively. Additionally, down-regulation of the oprD gene was observed in 44.4% of colistin-resistant P. aeruginosa strains. CONCLUSION This study reports the emergence of colistin resistance with various mechanisms among P. aeruginosa strains in Ardabil hospitals. We recommend avoiding unnecessary use of colistin to prevent potential future increases in colistin resistance.
Collapse
Affiliation(s)
- Saghar Jafari-Ramedani
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Nazari
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hadi Peeri-Dogaheh
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
- Arthropod-Borne Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
12
|
Zheng EJ, Valeri JA, Andrews IW, Krishnan A, Bandyopadhyay P, Anahtar MN, Herneisen A, Schulte F, Linnehan B, Wong F, Stokes JM, Renner LD, Lourido S, Collins JJ. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem Biol 2024; 31:712-728.e9. [PMID: 38029756 PMCID: PMC11031330 DOI: 10.1016/j.chembiol.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.
Collapse
Affiliation(s)
- Erica J Zheng
- Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jacqueline A Valeri
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ian W Andrews
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aarti Krishnan
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Parijat Bandyopadhyay
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melis N Anahtar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alice Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brooke Linnehan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01062 Dresden, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Barretto LAF, Van PKT, Fowler CC. Conserved patterns of sequence diversification provide insight into the evolution of two-component systems in Enterobacteriaceae. Microb Genom 2024; 10:001215. [PMID: 38502064 PMCID: PMC11004495 DOI: 10.1099/mgen.0.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism used by bacteria to sense and respond to their environments. Many of the same TCSs are used by biologically diverse organisms with different regulatory needs, suggesting that the functions of TCS must evolve. To explore this topic, we analysed the amino acid sequence divergence patterns of a large set of broadly conserved TCS across different branches of Enterobacteriaceae, a family of Gram-negative bacteria that includes biomedically important genera such as Salmonella, Escherichia, Klebsiella and others. Our analysis revealed trends in how TCS sequences change across different proteins or functional domains of the TCS, and across different lineages. Based on these trends, we identified individual TCS that exhibit atypical evolutionary patterns. We observed that the relative extent to which the sequence of a given TCS varies across different lineages is generally well conserved, unveiling a hierarchy of TCS sequence conservation with EnvZ/OmpR as the most conserved TCS. We provide evidence that, for the most divergent of the TCS analysed, PmrA/PmrB, different alleles were horizontally acquired by different branches of this family, and that different PmrA/PmrB sequence variants have highly divergent signal-sensing domains. Collectively, this study sheds light on how TCS evolve, and serves as a compendium for how the sequences of the TCS in this family have diverged over the course of evolution.
Collapse
Affiliation(s)
- Luke A. F. Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Patryc-Khang T. Van
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G2E9, Canada
| |
Collapse
|
14
|
Cuicapuza D, Loyola S, Velásquez J, Fernández N, Llanos C, Ruiz J, Tsukayama P, Tamariz J. Molecular characterization of carbapenemase-producing Enterobacterales in a tertiary hospital in Lima, Peru. Microbiol Spectr 2024; 12:e0250323. [PMID: 38193666 PMCID: PMC10846045 DOI: 10.1128/spectrum.02503-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/26/2023] [Indexed: 01/10/2024] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-β-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The blaNDM-1 gene was located in the truncated ΔISAba125 element, and the blaKPC-2 gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (blaNDM-1 and blaKPC-2) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The blaKPC-2 genes were located in Tn4401a transposons, while the blaNDM-1 genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control.
Collapse
Affiliation(s)
- Diego Cuicapuza
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Resistencia Antibiótica e Inmunopatología, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Emerge (Emerging Diseases and Climate Change Research Unit), Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Steev Loyola
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Resistencia Antibiótica e Inmunopatología, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Grupo de Investigación UNIMOL, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias, Colombia
| | - Jorge Velásquez
- Departamento de Patología Clínica y Banco de Sangre, Hospital Nacional Arzobispo Loayza, Lima, Peru
| | - Nathaly Fernández
- Departamento de Patología Clínica y Banco de Sangre, Hospital Nacional Arzobispo Loayza, Lima, Peru
| | - Carlos Llanos
- Laboratorio de Resistencia Antibiótica e Inmunopatología, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquim Ruiz
- Grupo de Investigación en Dinámicas y Epidemiología de la Resistencia a Antimicrobianos-“One Health”, Universidad Científica de Sur, Lima, Peru
| | - Pablo Tsukayama
- Laboratorio de Genómica Microbiana, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima, Peru
- Emerge (Emerging Diseases and Climate Change Research Unit), Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jesús Tamariz
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Resistencia Antibiótica e Inmunopatología, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
15
|
Mukhopadhyay S, Singh M, Ghosh MM, Chakrabarti S, Ganguli S. Comparative Genomics and Characterization of Shigella flexneri Isolated from Urban Wastewater. Microbes Environ 2024; 39:ME23105. [PMID: 38839365 PMCID: PMC11220449 DOI: 10.1264/jsme2.me23105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 06/07/2024] Open
Abstract
Shigella species are a group of highly transmissible Gram-negative pathogens. Increasing reports of infection with extensively drug-resistant varieties of this stomach bug has convinced the World Health Organization to prioritize Shigella for novel therapeutic interventions. We herein coupled the whole-genome sequencing of a natural isolate of Shigella flexneri with a pangenome ana-lysis to characterize pathogen genomics within this species, which will provide us with an insight into its existing genomic diversity and highlight the root causes behind the emergence of quick vaccine escape variants. The isolated novel strain of S. flexneri contained ~4,500 protein-coding genes, 57 of which imparted resistance to antibiotics. A comparative pan-genomic ana-lysis revealed genomic variability of ~64%, the shared conservation of core genes in central metabolic processes, and the enrichment of unique/accessory genes in virulence and defense mechanisms that contributed to much of the observed antimicrobial resistance (AMR). A pathway ana-lysis of the core genome mapped 22 genes to 2 antimicrobial resistance pathways, with the bulk coding for multidrug efflux pumps and two component regulatory systems that are considered to work synergistically towards the development of resistance phenotypes. The prospective evolvability of Shigella species as witnessed by the marked difference in genomic content, the strain-specific essentiality of unique/accessory genes, and the inclusion of a potent resistance mechanism within the core genome, strengthens the possibility of novel serotypes emerging in the near future and emphasizes the importance of tracking down genomic diversity in drug/vaccine design and AMR governance.
Collapse
Affiliation(s)
- Sarmishta Mukhopadhyay
- Post Graduate and Research Department of Biotechnology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Meesha Singh
- Post Graduate and Research Department of Microbiology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Mahashweta Mitra Ghosh
- Post Graduate and Research Department of Microbiology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Santanu Chakrabarti
- Department of Zoology, Government General Degree College Singur, Hooghly, West Bengal, India
| | - Sayak Ganguli
- Post Graduate and Research Department of Biotechnology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| |
Collapse
|
16
|
Chen XW, Wu JH, Liu YL, Munang’andu HM, Peng B. Fructose promotes ampicillin killing of antibiotic-resistant Streptococcus agalactiae. Virulence 2023; 14:2180938. [PMID: 36803528 PMCID: PMC9980678 DOI: 10.1080/21505594.2023.2180938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Streptococcus agalactiae (GBS) is an important pathogenic bacteria that infected both aquatic animals and human beings, causing huge economic loss. The increasing cases of antibiotic-resistant GBS impose challenges to treat such infection by antibiotics. Thus, it is highly demanded for the approach to tackle antibiotic resistance in GBS. In this study, we adopt a metabolomic approach to identify the metabolic signature of ampicillin-resistant GBS (AR-GBS) that ampicillin is the routine choice to treat infection by GBS. We find glycolysis is significantly repressed in AR-GBS, and fructose is the crucial biomarker. Exogenous fructose not only reverses ampicillin resistance in AR-GBS but also in clinic isolates including methicillin-resistant Staphylococcus aureus (MRSA) and NDM-1 expressing Escherichia coli. The synergistic effect is confirmed in a zebrafish infection model. Furthermore, we demonstrate that the potentiation by fructose is dependent on glycolysis that enhances ampicillin uptake and the expression of penicillin-binding proteins, the ampicillin target. Our study demonstrates a novel approach to combat antibiotic resistance in GBS.
Collapse
Affiliation(s)
- Xuan-Wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-Han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | - Ying-Li Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
| | | | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,CONTACT Bo Peng
| |
Collapse
|
17
|
Liu R, Xu H, Zhao J, Hu X, Wu L, Qiao J, Ge H, Guo X, Gou J, Zheng B. Emergence of mcr-8.2-harboring hypervirulent ST412 Klebsiella pneumoniae strain from pediatric sepsis: A comparative genomic survey. Virulence 2023; 14:233-245. [PMID: 36529894 PMCID: PMC9794005 DOI: 10.1080/21505594.2022.2158980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Emerging mobile colistin resistance (mcr) genes pose a significant threat to public health for colistin was used as the last resort to treat multidrug-resistant (MDR) pathogenic bacterial infections. Hypervirulent Klebsiella pneumoniae (hvKP) is a clinically significant pathogen resulting in highly invasive infections, often complicated by devastating dissemination. Worryingly, the untreatable and severe infections caused by mcr-harbouring hvKP leave the selection of antibiotics for clinical anti-infective treatment in a dilemma. Herein, we screened 3,461 isolates from a tertiary teaching hospital from November 2018 to March 2021, and an mcr-8.2-harbouring hvKP FAHZZU2591 with a conjugative plasmid was identified from paediatric sepsis. This is the first report of MCR-8-producing hvKP from paediatric sepsis to our best knowledge. The susceptibility, genetic features, and plasmid profiles of the isolate were investigated. Further, we assessed the virulence potential of FAHZZU2591 and verified its pathogenicity and invasive capacity using a mouse model. The phylogenetic analysis of mcr-8-bearing K. pneumoniae revealed that China is the predominant reservoir of the mcr-8 gene, and the clinic is the primary source. Our work highlights the risk for the spread of mcr-positive hvKP in clinical, especially in paediatric sepsis, and the persistent surveillance of colistin-resistance hvKP is urgent.
Collapse
Affiliation(s)
- Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine, Shandong Laboratory, Jinan, China
| | - Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Lingjiao Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,CONTACT Xiaobing Guo
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Jianjun Gou
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Jinan Microecological Biomedicine, Shandong Laboratory, Jinan, China,Research Units of Infectious Diseases and Microecology, Chinese Academy of Medical Sciences, Hangzhou, China,Beiwen Zheng
| |
Collapse
|
18
|
Han R, Xing J, Sun H, Guo Z, Yi K, Hu G, Zhai Y, Velkov T, Wu H. The antihelminth drug rafoxanide reverses chromosomal-mediated colistin-resistance in Klebsiella pneumoniae. mSphere 2023; 8:e0023423. [PMID: 37747188 PMCID: PMC10597454 DOI: 10.1128/msphere.00234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
The emergence and rapid spread of multi-drug-resistant (MDR) bacteria pose a serious threat to global healthcare. Although the synergistic effect of rafoxanide and colistin was reported, little is known regarding the potential mechanism of this synergy, particularly against chromosomal-mediated colistin-resistant Klebsiella pneumoniae. In the present study, we elucidated the synergistic effect of rafoxanide and colistin against chromosomal-mediated colistin-resistant Klebsiella pneumoniae isolates from human (KP-9) and swine (KP-1) infections. Treatment with 1 mg/L rafoxanide overtly reversed the MIC max to 512-fold. Time-kill assays indicated that rafoxanide acted synergistically with colistin against the growth of KP-1 and KP-9. Mechanistically, we unexpectedly found that the combination destroys the inner-membrane integrity, and ATP synthesis was also quenched, albeit, not via F1F0-ATPase; thereby also inhibiting the activity of efflux pumps. Excessive production of reactive oxygen species (ROS) was also an underlying factor contributing to the bacterial-killing effect of the combination. Transcriptomic analysis unraveled overt heterogeneous expression as treated with both administrations compared with monotherapy. Functional analysis of these differentially expressed genes (DEGs) targeted to the plasma membrane and ATP-binding corroborated phenotypic screening results. These novel findings highlight the synergistic mechanism of rafoxanide in combination with colistin which effectively eradicates chromosomal-mediated colistin-resistant Klebsiella pneumoniae. IMPORTANCE The antimicrobial resistance of Klebsiella pneumoniae caused by the abuse of colistin has increased the difficulty of clinical treatment. A promising combination (i.e., rafoxanide+ colistin) has successfully rescued the antibacterial effect of colistin. However, we still failed to know the potential effect of this combination on chromosome-mediated Klebsiella pneumoniae. Through a series of in vitro experiments, as well as transcriptomic profiling, we confirmed that the MIC of colistin was reduced by rafoxanide by destroying the inner-membrane integrity, quenching ATP synthesis, inhibiting the activity of the efflux pump, and increasing the production of reactive oxygen species. In turn, the expression of relevant colistin resistance genes was down-regulated. Collectively, our study revealed rafoxanide as a promising colistin adjuvant against chromosome-mediated Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huarun Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zeyu Guo
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaifang Yi
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Department of Pharmacology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
Muñoz-Escudero D, Breazeale SD, Lee M, Guan Z, Raetz CRH, Sousa MC. Structure and Function of ArnD. A Deformylase Essential for Lipid A Modification with 4-Amino-4-deoxy-l-arabinose and Polymyxin Resistance. Biochemistry 2023; 62:2970-2981. [PMID: 37782650 PMCID: PMC10914315 DOI: 10.1021/acs.biochem.3c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Covalent modification of lipid A with 4-deoxy-4-amino-l-arabinose (Ara4N) mediates resistance to cationic antimicrobial peptides and polymyxin antibiotics in Gram-negative bacteria. The proteins required for Ara4N biosynthesis are encoded in the pmrE and arnBCADTEF loci, with ArnT ultimately transferring the amino sugar from undecaprenyl-phospho-4-deoxy-4-amino-l-arabinose (C55P-Ara4N) to lipid A. However, Ara4N is N-formylated prior to its transfer to undecaprenyl-phosphate by ArnC, requiring a deformylase activity downstream in the pathway to generate the final C55P-Ara4N donor. Here, we show that deletion of the arnD gene in an Escherichia coli mutant that constitutively expresses the arnBCADTEF operon leads to accumulation of the formylated ArnC product undecaprenyl-phospho-4-deoxy-4-formamido-l-arabinose (C55P-Ara4FN), suggesting that ArnD is the downstream deformylase. Purification of Salmonella typhimurium ArnD (stArnD) shows that it is membrane-associated. We present the crystal structure of stArnD revealing a NodB homology domain structure characteristic of the metal-dependent carbohydrate esterase family 4 (CE4). However, ArnD displays several distinct features: a 44 amino acid insertion, a C-terminal extension in the NodB fold, and sequence divergence in the five motifs that define the CE4 family, suggesting that ArnD represents a new family of carbohydrate esterases. The insertion is responsible for membrane association as its deletion results in a soluble ArnD variant. The active site retains a metal coordination H-H-D triad, and in the presence of Co2+ or Mn2+, purified stArnD efficiently deformylates C55P-Ara4FN confirming its role in Ara4N biosynthesis. Mutations D9N and H233Y completely inactivate stArnD implicating these two residues in a metal-assisted acid-base catalytic mechanism.
Collapse
Affiliation(s)
- Daniel Muñoz-Escudero
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309
| | - Steven D. Breazeale
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | - Myeongseon Lee
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710
| | | | - Marcelo C. Sousa
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
20
|
Abban MK, Ayerakwa EA, Mosi L, Isawumi A. The burden of hospital acquired infections and antimicrobial resistance. Heliyon 2023; 9:e20561. [PMID: 37818001 PMCID: PMC10560788 DOI: 10.1016/j.heliyon.2023.e20561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
The burden of Hospital care-associated infections (HCAIs) is becoming a global concern. This is compounded by the emergence of virulent and high-risk bacterial strains such as "ESKAPE" pathogens - (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species), especially within Intensive care units (ICUs) that house high-risk and immunocompromised patients. In this review, we discuss the contributions of AMR pathogens to the increasing burden of HCAIs and provide insights into AMR mechanisms, with a particular focus on last-resort antibiotics like polymyxins. We extensively discuss how structural modifications of surface-membrane lipopolysaccharides and cationic interactions influence and inform AMR, and subsequent severity of HCAIs. We highlight some bacterial phenotypic survival mechanisms against polymyxins. Lastly, we discuss the emergence of plasmid-mediated resistance as a phenomenon making mitigation of AMR difficult, especially within the ICUs. This review provides a balanced perspective on the burden of HCAIs, associated pathogens, implication of AMR and factors influencing emerging AMR mechanisms.
Collapse
Affiliation(s)
- Molly Kukua Abban
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Eunice Ampadubea Ayerakwa
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| | - Abiola Isawumi
- West African Centre for Cell Biology of Infectious Pathogens, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, P.O. Box LG 54, Volta Road, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
21
|
Wei X, Gao J, Xu C, Pan X, Jin Y, Bai F, Cheng Z, Lamont IL, Pletzer D, Wu W. Murepavadin induces envelope stress response and enhances the killing efficacies of β-lactam antibiotics by impairing the outer membrane integrity of Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0125723. [PMID: 37668398 PMCID: PMC10581190 DOI: 10.1128/spectrum.01257-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 09/06/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause a variety of acute and chronic infections. The bacterium is highly resistant to numerous antibiotics. Murepavadin is a peptidomimetic antibiotic that blocks the function of P. aeruginosa lipopolysaccharide (LPS) transport protein D (LptD), thus inhibiting the insertion of LPS into the outer membrane. In this study, we demonstrated that sublethal concentrations of murepavadin enhance the bacterial outer membrane permeability. Proteomic analyses revealed the alteration of protein composition in bacterial inner and outer membranes following murepavadin treatment. The antisigma factor MucA was upregulated by murepavadin. In addition, the expression of the sigma E factor gene algU and the alginate synthesis gene algD was induced by murepavadin. Deletion of the algU gene reduces bacterial survival following murepavadin treatment, indicating a role of the envelope stress response in bacterial tolerance. We further demonstrated that murepavadin enhances the bactericidal activities of β-lactam antibiotics by promoting drug influx across the outer membrane. In a mouse model of acute pneumonia, the murepavadin-ceftazidime/avibactam combination showed synergistic therapeutic effect against P. aeruginosa infection. In addition, the combination of murepavadin with ceftazidime/avibactam slowed down the resistance development. In conclusion, our results reveal the response mechanism of P. aeruginosa to murepavadin and provide a promising antibiotic combination for the treatment of P. aeruginosa infections.IMPORTANCEThe ever increasing resistance of bacteria to antibiotics poses a serious threat to global public health. Novel antibiotics and treatment strategies are urgently needed. Murepavadin is a novel antibiotic that blocks the assembly of lipopolysaccharide (LPS) into the Pseudomonas aeruginosa outer membrane by inhibiting LPS transport protein D (LptD). Here, we demonstrated that murepavadin impairs bacterial outer membrane integrity, which induces the envelope stress response. We further found that the impaired outer membrane integrity increases the influx of β-lactam antibiotics, resulting in enhanced bactericidal effects. In addition, the combination of murepavadin and a β-lactam/β-lactamase inhibitor mixture (ceftazidime/avibactam) slowed down the resistance development of P. aeruginosa. Overall, this study demonstrates the bacterial response to murepavadin and provides a new combination strategy for effective treatment.
Collapse
Affiliation(s)
- Xiaoya Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
22
|
Rogga V, Kosalec I. Untying the anchor for the lipopolysaccharide: lipid A structural modification systems offer diagnostic and therapeutic options to tackle polymyxin resistance. Arh Hig Rada Toksikol 2023; 74:145-166. [PMID: 37791675 PMCID: PMC10549895 DOI: 10.2478/aiht-2023-74-3717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/01/2023] [Accepted: 07/01/2023] [Indexed: 10/05/2023] Open
Abstract
Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes.
Collapse
Affiliation(s)
- Vanessa Rogga
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, Zagreb, Croatia
| | - Ivan Kosalec
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Microbiology, Zagreb, Croatia
| |
Collapse
|
23
|
Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Phosphoethanolamine Transferases as Drug Discovery Targets for Therapeutic Treatment of Multi-Drug Resistant Pathogenic Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:1382. [PMID: 37760679 PMCID: PMC10525099 DOI: 10.3390/antibiotics12091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance caused by multidrug-resistant (MDR) bacteria is a major challenge to global public health. Polymyxins are increasingly being used as last-in-line antibiotics to treat MDR Gram-negative bacterial infections, but resistance development renders them ineffective for empirical therapy. The main mechanism that bacteria use to defend against polymyxins is to modify the lipid A headgroups of the outer membrane by adding phosphoethanolamine (PEA) moieties. In addition to lipid A modifying PEA transferases, Gram-negative bacteria possess PEA transferases that decorate proteins and glycans. This review provides a comprehensive overview of the function, structure, and mechanism of action of PEA transferases identified in pathogenic Gram-negative bacteria. It also summarizes the current drug development progress targeting this enzyme family, which could reverse antibiotic resistance to polymyxins to restore their utility in empiric therapy.
Collapse
Affiliation(s)
- Van C. Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (V.C.T.); (M.S.-T.)
| |
Collapse
|
24
|
Lu J, Han M, Yu HH, Bergen PJ, Liu Y, Zhao J, Wickremasinghe H, Jiang X, Hu Y, Du H, Zhu Y, Velkov T. Lipid A Modification and Metabolic Adaptation in Polymyxin-Resistant, New Delhi Metallo-β-Lactamase-Producing Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0085223. [PMID: 37432123 PMCID: PMC10433984 DOI: 10.1128/spectrum.00852-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023] Open
Abstract
Polymyxins are last-line antibiotics employed against multidrug-resistant (MDR) Klebsiella pneumoniae. Worryingly, polymyxin resistance is rapidly on the rise globally. Polymyxins initially target lipid A of lipopolysaccharides (LPSs) in the cell outer membrane (OM), causing disorganization and cell lysis. While most studies focus on how genetic variations confer polymyxin resistance, the mechanisms of membrane remodeling and metabolic changes in polymyxin-resistant strains remain unclear, thus hampering the development of effective therapies to treat severe K. pneumoniae infections. In the present study, lipid A profiling, OM lipidomics, genomics, and metabolomics were integrated to elucidate the global mechanisms of polymyxin resistance and metabolic adaptation in a polymyxin-resistant strain (strain S01R; MIC of >128 mg/L) obtained from K. pneumoniae strain S01, a polymyxin-susceptible (MIC of 2 mg/L), New Delhi metallo-β-lactamase (NDM)-producing MDR clinical isolate. Genomic analysis revealed a novel in-frame deletion at position V258 of PhoQ in S01R, potentially leading to lipid A modification with 4-amino-4-deoxy-l-arabinose (L-Ara4N) despite the absence of polymyxin B. Comparative metabolomic analysis revealed slightly elevated levels of energy production and amino acid metabolism in S01R compared to their levels in S01. Exposure to polymyxin B (4 mg/L for S01 and 512 mg/L for S01R) substantially altered energy, nucleotide, and amino acid metabolism and resulted in greater accumulation of lipids in both strains. Furthermore, the change induced by polymyxin B treatment was dramatic at both 1 and 4 h in S01 but only significant at 4 h in S01R. Overall, profound metabolic adaptation was observed in S01R following polymyxin B treatment. These findings contribute to our understanding of polymyxin resistance mechanisms in problematic NDM-producing K. pneumoniae strains and may facilitate the discovery of novel therapeutic targets. IMPORTANCE Antimicrobial resistance (AMR) is a major threat to global health. The emergence of resistance to the polymyxins that are the last line of defense in so-called Gram-negative "superbugs" has further increased the urgency to develop novel therapies. There are frequent outbreaks of K. pneumoniae infections in hospitals being reported, and polymyxin usage is increasing remarkably. Importantly, the polymyxin-resistant K. pneumoniae strains are imposing more severe consequences to health systems. Using metabolomics, lipid A profiling, and outer membrane lipidomics, our findings reveal (i) changes in the pentose phosphate pathway and amino acid and nucleotide metabolism in a susceptible strain following polymyxin treatment and (ii) how cellular metabolism, lipid A modification, and outer membrane remodeling were altered in K. pneumoniae following the acquisition of polymyxin resistance. Our study provides, for the first time, mechanistic insights into metabolic responses to polymyxin treatment in a multidrug-resistant, NDM-producing K. pneumoniae clinical isolate with acquired polymyxin resistance. Overall, these results will assist in identifying new therapeutic targets to combat and prevent polymyxin resistance.
Collapse
Affiliation(s)
- Jing Lu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Meiling Han
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Heidi H. Yu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Phillip J. Bergen
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yiyun Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jinxin Zhao
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Hasini Wickremasinghe
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Xukai Jiang
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yang Hu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Haiyan Du
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yan Zhu
- Infection Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tony Velkov
- Department of Pharmacology, The Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Frantz R, Gwozdzinski K, Gisch N, Doijad SP, Hudel M, Wille M, Abu Mraheil M, Schwudke D, Imirzalioglu C, Falgenhauer L, Ehrmann M, Chakraborty T. A Single Residue within the MCR-1 Protein Confers Anticipatory Resilience. Microbiol Spectr 2023; 11:e0359222. [PMID: 37071007 PMCID: PMC10269488 DOI: 10.1128/spectrum.03592-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
The envelope stress response (ESR) of Gram-negative enteric bacteria senses fluctuations in nutrient availability and environmental changes to avert damage and promote survival. It has a protective role toward antimicrobials, but direct interactions between ESR components and antibiotic resistance genes have not been demonstrated. Here, we report interactions between a central regulator of ESR viz., the two-component signal transduction system CpxRA (conjugative pilus expression), and the recently described mobile colistin resistance protein (MCR-1). Purified MCR-1 is specifically cleaved within its highly conserved periplasmic bridge element, which links its N-terminal transmembrane domain with the C-terminal active-site periplasmic domain, by the CpxRA-regulated serine endoprotease DegP. Recombinant strains harboring cleavage site mutations in MCR-1 are either protease resistant or degradation susceptible, with widely differing consequences for colistin resistance. Transfer of the gene encoding a degradation-susceptible mutant to strains that lack either DegP or its regulator CpxRA restores expression and colistin resistance. MCR-1 production in Escherichia coli imposes growth restriction in strains lacking either DegP or CpxRA, effects that are reversed by transactive expression of DegP. Excipient allosteric activation of the DegP protease specifically inhibits growth of isolates carrying mcr-1 plasmids. As CpxRA directly senses acidification, growth of strains at moderately low pH dramatically increases both MCR-1-dependent phosphoethanolamine (PEA) modification of lipid A and colistin resistance levels. Strains expressing MCR-1 are also more resistant to antimicrobial peptides and bile acids. Thus, a single residue external to its active site induces ESR activity to confer resilience in MCR-1-expressing strains to commonly encountered environmental stimuli, such as changes in acidity and antimicrobial peptides. Targeted activation of the nonessential protease DegP can lead to the elimination of transferable colistin resistance in Gram-negative bacteria. IMPORTANCE The global presence of transferable mcr genes in a wide range of Gram-negative bacteria from clinical, veterinary, food, and aquaculture environments is disconcerting. Its success as a transmissible resistance factor remains enigmatic, because its expression imposes fitness costs and imparts only moderate levels of colistin resistance. Here, we show that MCR-1 triggers regulatory components of the envelope stress response, a system that senses fluctuations in nutrient availability and environmental changes, to promote bacterial survival in low pH environments. We identify a single residue within a highly conserved structural element of mcr-1 distal to its catalytic site that modulates resistance activity and triggers the ESR. Using mutational analysis, quantitative lipid A profiling and biochemical assays, we determined that growth in low pH environments dramatically increases colistin resistance levels and promotes resistance to bile acids and antimicrobial peptides. We exploited these findings to develop a targeted approach that eliminates mcr-1 and its plasmid carriers.
Collapse
Affiliation(s)
- Renate Frantz
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Konrad Gwozdzinski
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Swapnil Prakash Doijad
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Martina Hudel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wille
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Partner Site: Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Airway Research Center North, Partner Site: Research Center Borstel, Borstel, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Linda Falgenhauer
- Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Hessian University Competence Center for Hospital Hygiene, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research, Partner Site: Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
26
|
Hu M, Zhang Y, Huang X, He M, Zhu J, Zhang Z, Cui Y, He S, Shi X. PhoPQ Regulates Quinolone and Cephalosporin Resistance Formation in Salmonella Enteritidis at the Transcriptional Level. mBio 2023:e0339522. [PMID: 37184399 DOI: 10.1128/mbio.03395-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The two-component system (TCS) PhoPQ has been demonstrated to be crucial for the formation of resistance to quinolones and cephalosporins in Salmonella Enteritidis (S. Enteritidis). However, the mechanism underlying PhoPQ-mediated antibiotic resistance formation remains poorly understood. Here, it was shown that PhoP transcriptionally regulated an assortment of genes associated with envelope homeostasis, the osmotic stress response, and the redox balance to confer resistance to quinolones and cephalosporins in S. Enteritidis. Specifically, cells lacking the PhoP regulator, under nalidixic acid and ceftazidime stress, bore a severely compromised membrane on the aspects of integrity, fluidity, and permeability, with deficiency to withstand osmolarity stress, an increased accumulation of intracellular reactive oxygen species, and dysregulated redox homeostasis, which are unfavorable for bacterial survival. The phosphorylated PhoP elicited transcriptional alterations of resistance-associated genes, including the outer membrane porin ompF and the aconitate hydratase acnA, by directly binding to their promoters, leading to a limited influx of antibiotics and a well-maintained intracellular metabolism. Importantly, it was demonstrated that the cavity of the PhoQ sensor domain bound to and sensed quinolones/cephalosporins via the crucial surrounding residues, as their mutations abrogated the binding and PhoQ autophosphorylation. This recognition mode promoted signal transduction that activated PhoP, thereby modulating the transcription of downstream genes to accommodate cells to antibiotic stress. These findings have revealed how bacteria employ a specific TCS to sense antibiotics and combat them, suggesting PhoPQ as a potential drug target with which to surmount S. Enteritidis. IMPORTANCE The prevalence of quinolone and cephalosporin-resistant S. Enteritidis is of increasing clinical concern. Thus, it is imperative to identify novel therapeutic targets with which to treat S. Enteritidis-associated infections. The PhoPQ two-component system is conserved across a variety of Gram-negative pathogens, by which bacteria adapt to a range of environmental stimuli. Our earlier work has demonstrated the importance of PhoPQ in the resistance formation in S. Enteritidis to quinolones and cephalosporins. In the current work, we identified a global profile of genes that are regulated by PhoP under antibiotic stresses, with a focus on how PhoP regulated downstream genes, either positively or negatively. Additionally, we established that PhoQ sensed quinolones and cephalosporins in a manner of directly binding to them. These identified genes and pathways that are mediated by PhoPQ represent promising targets for the development of a drug potentiator with which to neutralize antibiotic resistance in S. Enteritidis.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yuyan Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhen Huang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Mu He
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyu Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Shoukui He
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 332] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
28
|
Lim S. A Review of the Bacterial Phosphoproteomes of Beneficial Microbes. Microorganisms 2023; 11:microorganisms11040931. [PMID: 37110354 PMCID: PMC10145908 DOI: 10.3390/microorganisms11040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The number and variety of protein post-translational modifications (PTMs) found and characterized in bacteria over the past ten years have increased dramatically. Compared to eukaryotic proteins, most post-translational protein changes in bacteria affect relatively few proteins because the majority of modified proteins exhibit substoichiometric modification levels, which makes structural and functional analyses challenging. In addition, the number of modified enzymes in bacterial species differs widely, and degrees of proteome modification depend on environmental conditions. Nevertheless, evidence suggests that protein PTMs play essential roles in various cellular processes, including nitrogen metabolism, protein synthesis and turnover, the cell cycle, dormancy, spore germination, sporulation, persistence, and virulence. Additional investigations on protein post-translational changes will undoubtedly close knowledge gaps in bacterial physiology and create new means of treating infectious diseases. Here, we describe the role of the post-translation phosphorylation of major bacterial proteins and review the progress of research on phosphorylated proteins depending on bacterial species.
Collapse
Affiliation(s)
- Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| |
Collapse
|
29
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
30
|
Characterization of the Role of Two-Component Systems in Antibiotic Resistance Formation in Salmonella enterica Serovar Enteritidis. mSphere 2022; 7:e0038322. [PMID: 36286534 PMCID: PMC9769886 DOI: 10.1128/msphere.00383-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The two-component system (TCS) is one of the primary pathways by which bacteria adapt to environmental stresses such as antibiotics. This study aimed to systematically explore the role of TCSs in the development of multidrug resistance (MDR) in Salmonella enterica serovar Enteritidis. Twenty-six in-frame deletion mutants of TCSs were generated from S. Enteritidis SJTUF12367 (the wild type [WT]). Antimicrobial susceptibility tests with these mutants revealed that 10 TCSs were involved in the development of antibiotic resistance in S. Enteritidis. In these 10 pairs of TCSs, functional defects in CpxAR, PhoPQ, and GlnGL in various S. Enteritidis isolates led to a frequent decrease in MIC values against at least three classes of clinically important antibiotics, including cephalosporins and quinolones, which indicated the importance of these TCSs to the formation of MDR. Interaction network analysis via STRING revealed that the genes cpxA, cpxR, phoP, and phoQ played important roles in the direct interaction with global regulatory genes and the relevant genes of efflux pumps and outer membrane porins. Quantitative reverse transcription-PCR analysis further demonstrated that the increased susceptibility to cephalosporins and quinolones in ΔphoP and ΔcpxR mutant cells was accompanied by increased expression of membrane porin genes (ompC, ompD, and ompF) and reduced expression of efflux pump genes (acrA, macB, and mdtK), as well as an adverse transcription of the global regulatory genes (ramA and crp). These results indicated that CpxAR and PhoPQ played an important role in the development of MDR in S. Enteritidis through regulation of cell membrane permeability and efflux pump activity. IMPORTANCE S. Enteritidis is a predominant Salmonella serotype that causes human salmonellosis and frequently exhibits high-level resistance to commonly used antibiotics, including cephalosporins and quinolones. Although TCSs are known as regulators for bacterial adaptation to stressful conditions, which modulates β-lactam resistance in Vibrio parahaemolyticus and colistin resistance in Salmonella enterica serovar Typhimurium, there is little knowledge of their functional mechanisms underlying the development of antibiotic resistance in S. Enteritidis. Here, we systematically identified the TCS elements in S. Enteritidis SJTUF12367, revealed that the three TCSs CpxAR, PhoPQ, and GlnGL were crucial for the MDR formation in S. Enteritidis, and preliminarily illustrated the regulatory functions of CpxAR and PhoPQ for antimicrobial resistance genes. Our work provides the basis to understand the important TCSs that regulate formation of antibiotic resistance in S. Enteritidis.
Collapse
|
31
|
Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7120414. [PMID: 36548669 PMCID: PMC9782491 DOI: 10.3390/tropicalmed7120414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
The emergence of genetic mutations in chromosomal genes and the transmissible plasmid-mediated colistin resistance gene may have helped in the spread of colistin resistance among various Klebsiella pneumoniae (K. pneumoniae) isolates and other different bacteria. In this study, the prevalence of mutated colistin-resistant K. pneumoniae isolates was studied globally using a systematic review and meta-analysis approach. A systematic search was conducted in databases including PubMed, ScienceDirect, Scopus and Google Scholar. The pooled prevalence of mutated colistin resistance in K. pneumoniae isolates was analyzed using Comprehensive Meta-Analysis Software (CMA). A total of 50 articles were included in this study. The pooled prevalence of mutated colistin resistance in K. pneumoniae was estimated at 75.4% (95% CI = 67.2−82.1) at high heterogeneity (I2 = 81.742%, p-value < 0.001). Meanwhile, the results of the subgroup analysis demonstrated the highest prevalence in Saudi Arabia with 97.9% (95% CI = 74.1−99.9%) and Egypt, with 4.5% (95% CI = 0.6−26.1%), had the lowest. The majority of mutations could be observed in the mgrB gene (88%), pmrB gene (54%) and phoQ gene (44%). The current study showed a high prevalence of the mutation of colistin resistance genes in K. pneumoniae. Therefore, it is recommended that regular monitoring be performed to control the spread of colistin resistance.
Collapse
|
32
|
Zeczycki TN, Milton ME, Jung D, Thompson RJ, Jaimes FE, Hondros AD, Palethorpe S, Melander C, Cavanagh J. 2-Aminoimidazole Analogs Target PhoP Altering DNA Binding Activity and Affect Outer Membrane Stability in Gram-Negative Bacteria. Biochemistry 2022; 61:2948-2960. [DOI: 10.1021/acs.biochem.2c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tonya N. Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Morgan E. Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - David Jung
- Agile Sciences Inc., 617 Hutton Street, Raleigh, North Carolina27606, United States
| | - Richele J. Thompson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Felicia E. Jaimes
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Alexander D. Hondros
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Samantha Palethorpe
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| |
Collapse
|
33
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
34
|
Hasan CM, Pottenger S, Green AE, Cox AA, White JS, Jones T, Winstanley C, Kadioglu A, Wright MH, Neill DR, Fothergill JL. Pseudomonas aeruginosa utilizes the host-derived polyamine spermidine to facilitate antimicrobial tolerance. JCI Insight 2022; 7:158879. [PMID: 36194492 PMCID: PMC9746822 DOI: 10.1172/jci.insight.158879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa undergoes diversification during infection of the cystic fibrosis (CF) lung. Understanding these changes requires model systems that capture the complexity of the CF lung environment. We previously identified loss-of-function mutations in the 2-component regulatory system sensor kinase gene pmrB in P. aeruginosa from CF lung infections and from experimental infection of mice. Here, we demonstrate that, while such mutations lowered in vitro minimum inhibitory concentrations for multiple antimicrobial classes, this was not reflected in increased antibiotic susceptibility in vivo. Loss of PmrB impaired aminoarabinose modification of LPS, increasing the negative charge of the outer membrane and promoting uptake of cationic antimicrobials. However, in vivo, this could be offset by increased membrane binding of other positively charged molecules present in lungs. The polyamine spermidine readily coated the surface of PmrB-deficient P. aeruginosa, reducing susceptibility to antibiotics that rely on charge differences to bind the outer membrane and increasing biofilm formation. Spermidine was elevated in lungs during P. aeruginosa infection in mice and during episodes of antimicrobial treatment in people with CF. These findings highlight the need to study antimicrobial resistance under clinically relevant environmental conditions. Microbial mutations carrying fitness costs in vitro may be advantageous during infection, where host resources can be utilized.
Collapse
Affiliation(s)
- Chowdhury M. Hasan
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Angharad E. Green
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Adrienne A. Cox
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jack S. White
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Trevor Jones
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Craig Winstanley
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Megan H. Wright
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Joanne L. Fothergill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
35
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
36
|
Genetic Diversity of Virulent Polymyxin-Resistant Klebsiella aerogenes Isolated from Intensive Care Units. Antibiotics (Basel) 2022; 11:antibiotics11081127. [PMID: 36009996 PMCID: PMC9405322 DOI: 10.3390/antibiotics11081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
This study evaluated the scope and genetic basis of polymyxin-resistant Klebsiella aerogenes in Brazil. Eight polymyxin-resistant and carbapenemase-producing K. aerogenes strains were isolated from patients admitted to the ICU of a tertiary hospital. Bacterial species were identified by automated systems and antimicrobial susceptibility profile was confirmed using broth microdilution. The strains displayed a multidrug resistant profile and were subjected to whole-genome sequencing. Bioinformatic analysis revealed a variety of antimicrobial resistance genes, including the blaKPC-2. No plasmid-mediated colistin resistance gene was identified. Nonetheless, nonsynonymous mutations in mgrB, pmrA, pmrB, and eptA were detected, justifying the colistin resistance phenotype. Virulence genes encoding yersiniabactin, colibactin, and aerobactin were also found, associated with ICEKp4 and ICEKp10, and might be related to the high mortality observed among the patients. In fact, this is the first time ICEKp is identified in K. aerogenes in Brazil. Phylogenetic analysis grouped the strains into two clonal groups, belonging to ST93 and ST16. In summary, the co-existence of antimicrobial resistance and virulence factors is deeply worrying, as it could lead to the emergence of untreatable invasive infections. All these factors reinforce the need for surveillance programs to monitor the evolution and dissemination of multidrug resistant and virulent strains among critically ill patients.
Collapse
|
37
|
Li L, Qi C, Wei Q, Zhang L, Fu H, Jiang X, Lu F, Sun F. BaeR overexpression enhances the susceptibility of acrB deleted Salmonella enterica serovar Typhimurium to polymyxin. Vet Microbiol 2022; 274:109552. [DOI: 10.1016/j.vetmic.2022.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/17/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|
38
|
Constitutive Phenotypic Modification of Lipid A in Clinical Acinetobacter baumannii Isolates. Microbiol Spectr 2022; 10:e0129522. [PMID: 35861511 PMCID: PMC9431647 DOI: 10.1128/spectrum.01295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The degree of polymyxin B (PMB) resistance was measured in 40 clinical Acinetobacter baumannii isolates obtained from health care facilities. All of the tested isolates possessed a multidrug-resistant (MDR) phenotype against four classes of antibiotics (meropenem, doxycycline, gentamicin, and erythromycin), except for PMB. The blaOXA-23 gene was detected throughout the genetic analysis and experimental assay, indicating that all of the MDR strains were carbapenem-resistant A. baumannii strains. Multilocus sequence typing-based genotyping revealed that nine selected strains belonged to the international clone II lineage. When matrix-assisted laser desorption ionization–time of flight mass spectrometry was performed, intrinsic lipid A modification by phosphoethanolamine (PEtN) incorporation was noticeable only in the PMB-resistant (PMBR) strains. However, the presence of hexa- and penta-acylated lipid A due to the loss of the laurate (C12) acyl chain was noted in all PMB-susceptible strains but not in the PMBR strains. The reduction of negative surface charges in the PMBR strains was assessed by zeta potential analysis. Fluorescence imaging using dansyl-PMB revealed that, in the PMBR strains, PMB was less likely to bind to the cell surface. IMPORTANCE The widespread presence of MDR pathogens, including A. baumannii, is causing serious hospital-acquired infections worldwide. Extensive surveillance of MDR clinical A. baumannii isolates has been conducted, but the underlying mechanisms for their development of MDR phenotypes are often neglected. Either lipid A modification or loss of lipopolysaccharide in Gram-negative bacteria leads to PMBR phenotypes. The prevalence of intrinsic lipid A modification in PMBR clinical strains was attributed to high levels of basal expression of pmrC and eptA-1. Our findings suggest that new therapeutic strategies are warranted to combat MDR pathogens due to the emergence of many PMBR clinical strains.
Collapse
|
39
|
Liu R, Xu H, Guo X, Liu S, Qiao J, Ge H, Zheng B, Gou J. Genomic Characterization of Two Escherichia fergusonii Isolates Harboring mcr-1 Gene From Farm Environment. Front Cell Infect Microbiol 2022; 12:774494. [PMID: 35719362 PMCID: PMC9204285 DOI: 10.3389/fcimb.2022.774494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
The prevalence and transmission of mobile colistin resistance (mcr) genes have led to a severe threat to humans and animals. Escherichia fergusonii is an emerging pathogen which is closely related to a variety of diseases. However, the report of mcr genes harboring E. fergusonii is still rare. One study in Brazil reported the E. fergusonii isolates with IncHI2-type plasmids harboring mcr-1. A Chinese study reported two strains carrying mcr-1 gene with the same plasmid type IncI2. Here, we identified two strains of E. fergusonii carrying mcr-1 gene from farm environments with IncX4-type and IncI2-type plasmids, respectively. To our best knowledge, this is the first report about mcr-1 gene located on IncX4-type plasmid in E. fergusonii. We investigate the resistance mechanism of colistin-resistant Escherichia fergusonii strains 6S41-1 and 5ZF15-2-1 and elucidate the genetic context of plasmids carrying mcr-1 genes. In addition, we also investigated chromosomal mutations mediated colistin resistance in these two strains. Species identification was performed using MALDI-TOF MS and 16S rRNA gene sequencing. The detection of mcr-1 gene was determined by PCR and Sanger sequencing. S1-pulsed-field gel electrophoresis (PFGE), Southern blotting, antimicrobial susceptibility testing, conjugation experiments, complete genome sequencing, and core genome analysis were conducted to investigate the characteristics of isolates harboring mcr-1. The mcr-1 genes on two strains were both plasmids encoded and the typical IS26-parA-mcr-1-pap2 cassette was identified in p6S41-1 while a nikA-nikB-mcr-1 locus sites on the conjugative plasmid p5ZF15-2-1. In addition, Core genome analysis reveals that E. fergusonii 6S41-1 and 5ZF15-2-1 have close genetic relationships. The mcr-1 gene is located on conjugative IncI2-type plasmid p5ZF15-2-1, which provides support for its further transmission. In addition, there’s the possibility of mcr-1 spreading to humans through farm environments and thereby threatening public health. Therefore, continuous monitoring and investigations of mcr-1 among Enterobacteriaceae in farm environments are necessary to control the spread.
Collapse
Affiliation(s)
- Ruishan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuxiu Liu
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
41
|
Xu Y, Abdelhamid AG, Sabag-Daigle A, Sovic MG, Ahmer BM, Yousef AE. The Role of Egg Yolk in Modulating the Virulence of Salmonella Enterica Serovar Enteritidis. Front Cell Infect Microbiol 2022; 12:903979. [PMID: 35774398 PMCID: PMC9237210 DOI: 10.3389/fcimb.2022.903979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Contribution of food vehicles to pathogenicity of disease-causing microorganisms is an important but overlooked research field. The current study was initiated to reveal the relationship between virulence of Salmonella enterica serovar Enteritidis and egg yolk as a hosting medium. Mice were orally challenged with Salmonella Enteritidis cultured in egg yolk or tryptic soy broth (TSB). Additionally, mice were challenged with Salmonella Enteritidis cultured in TSB, followed by administration of sterile egg yolk, to discern the difference between pre-growth of the pathogen and its mere presence in egg yolk during infection. The pathogen's Lethal dose 50 (LD50) was the lowest when grown in yolk (2.8×102 CFU), compared to 1.1×103 CFU in TSB, and 4.6×103 CFU in TSB followed by administration of sterile yolk. Additionally, mice that orally received Salmonella Enteritidis grown in egg yolk expressed a high death rate. These findings were supported by transcriptional analysis results. Expression of promoters of virulence-related genes (sopB and sseA) in genetically modified Salmonella Enteritidis reporter strains was significantly higher (p < 0.05) when the bacterium was grown in the yolk, compared to that grown in TSB. Sequencing of RNA (RNA-seq) revealed 204 differentially transcribed genes in Salmonella Enteritidis grown in yolk vs. TSB. Yolk-grown Salmonella Enteritidis exhibited upregulated virulence pathways, including type III secretion systems, epithelial cell invasion, and infection processes; these observations were confirmed by RT-qPCR results. The transcriptomic analysis suggested that upregulation of virulence machinery of Salmonella Enteritidis grown in egg yolk was related to increased iron uptake, biotin utilization, flagellar biosynthesis, and export of virulence proteins encoded on Salmonella pathogenicity island 1, 2, 4, and 5. These biological responses may have acted in concert to increase the virulence of Salmonella infection in mice. In conclusion, growth in egg yolk enhanced Salmonella Enteritidis virulence, indicating the significance of this food vehicle to the risk assessment of salmonellosis.
Collapse
Affiliation(s)
- Yumin Xu
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Michael G. Sovic
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Brian M.M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
42
|
Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Appl Microbiol Biotechnol 2022; 106:3879-3893. [PMID: 35604438 PMCID: PMC9125544 DOI: 10.1007/s00253-022-11940-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/03/2022]
Abstract
Abstract
It has been about a century since the discovery of the first antibiotic, and during this period, several antibiotics were produced and marketed. The production of high-potency antibiotics against infections led to victories, but these victories were temporary. Overuse and misuse of antibiotics have continued to the point that humanity today is almost helpless in the fight against infection. Researchers have predicted that by the middle of the new century, there will be a dark period after the production of antibiotics that doctors will encounter antibiotic-resistant infections for which there is no cure. Accordingly, researchers are looking for new materials with antimicrobial properties that will strengthen their ammunition to fight antibiotic-resistant infections. One of the most important alternatives to antibiotics introduced in the last three decades is antimicrobial peptides (AMPs), which affect a wide range of microbes. Due to their different antimicrobial properties from antibiotics, AMPs can fight and kill MDR, XDR, and colistin-resistant bacteria through a variety of mechanisms. Therefore, in this study, we intend to use the latest studies to give a complete description of AMPs, the importance of colistin-resistant bacteria, and their resistance mechanisms, and represent impact of AMPs on colistin-resistant bacteria. Key points • AMPs as limited options to kill colistin-resistant bacteria. • Challenge of antibiotics resistance, colistin resistance, and mechanisms. • What is AMPs in the war with colistin-resistant bacteria?
Collapse
|
43
|
Mousavi SM, Babakhani S, Moradi L, Karami S, Shahbandeh M, Mirshekar M, Mohebi S, Moghadam MT. Bacteriophage as a Novel Therapeutic Weapon for Killing Colistin-Resistant Multi-Drug-Resistant and Extensively Drug-Resistant Gram-Negative Bacteria. Curr Microbiol 2021; 78:4023-4036. [PMID: 34633487 PMCID: PMC8503728 DOI: 10.1007/s00284-021-02662-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023]
Abstract
Colistin-resistant multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria are highly lethal and many researchers have tried hard to combat these microorganisms around the world. Infections caused by these bacteria are resistant to the last resort of antibiotic therapy and have posed a major challenge in clinical and public health. Since the production of new antibiotics is very expensive and also very slow compared to the increasing rate of antibiotic resistance, researchers are suggesting the use of natural substances with high antibacterial potential. Bacteriophages are one of the most effective therapeutic measures that are known to exist for use for incurable and highly resistant infections. Phages are highly taken into consideration due to the lack of side effects, potential spread to various body organs, distinct modes of action from antibiotics, and proliferation at the site of infection. Although the effects of phages on MDR and XDR bacteria have been demonstrated in various studies, only a few have investigated the effect of phage therapy on colistin-resistant isolates. Therefore, in this review, we discuss the problems caused by colistin-resistant MDR and XDR bacteria in the clinics, explain the different mechanisms associated with colistin resistance, introduce bacteriophage therapy as a powerful remedy, and finally present new studies that have used bacteriophages against colistin-resistant isolates.
Collapse
Affiliation(s)
| | - Sajad Babakhani
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Leila Moradi
- Department of Microbiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Saina Karami
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahsa Shahbandeh
- Young Researchers and Elite Club, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Maryam Mirshekar
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
| | - Samane Mohebi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Palethorpe S, Milton ME, Pesci EC, Cavanagh J. Structure of the Acinetobacter baumannii PmrA receiver domain and insights into clinical mutants affecting DNA-binding and promoting colistin resistance. J Biochem 2021; 170:787-800. [PMID: 34585233 DOI: 10.1093/jb/mvab102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
Acinetobacter baumannii is an insidious emerging nosocomial pathogen that has developed resistance to all available antimicrobials, including the last resort antibiotic, colistin. Colistin resistance often occurs due to mutations in the PmrAB two component regulatory system. To better understand the regulatory mechanisms contributing to colistin resistance, we have biochemically characterized the A. baumannii PmrA response regulator. Initial DNA-binding analysis shows that A. baumannii PmrA bound to the Klebsiella pneumoniae PmrA box motif. This prompted analysis of the putative A. baumannii PmrAB regulon which indicated that the A. baumannii PmrA consensus box is 5'- HTTAAD N5 HTTAAD. Additionally, we provide the first structural information for the A. baumannii PmrA N-terminal domain through X-ray crystallography, and we present a full-length model using molecular modeling. From these studies, we were able to infer the effects of two critical PmrA mutations, PmrA::I13M and PmrA::P102R, both of which confer increased colistin resistance. Based on these data, we suggest structural and dynamic reasons for how these mutations can affect PmrA function and hence encourage resistive traits. Understanding these mechanisms will aid in the development of new targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Samantha Palethorpe
- Department of Microbiology and Immunology Brody School of Medicine East Carolina University Greenville, NC 27834 United States
| | - Morgan E Milton
- Department of Biochemistry and Molecular Biology Brody School of Medicine East Carolina University Greenville, NC 27834 United States
| | - Everett C Pesci
- Department of Microbiology and Immunology Brody School of Medicine East Carolina University Greenville, NC 27834 United States
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology Brody School of Medicine East Carolina University Greenville, NC 27834 United States
| |
Collapse
|
45
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021. [PMID: 34475315 PMCID: PMC8387214 DOI: 10.1007/s12038-021-00209-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid-1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
46
|
He LY, Le YJ, Guo Z, Li S, Yang XY. The Role and Regulatory Network of the CiaRH Two-Component System in Streptococcal Species. Front Microbiol 2021; 12:693858. [PMID: 34335522 PMCID: PMC8317062 DOI: 10.3389/fmicb.2021.693858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Pathogenic streptococcal species are responsible for a broad spectrum of human diseases ranging from non-invasive and localized infections to more aggressive and life-threatening diseases, which cause great economic losses worldwide. Streptococci possess a dozen two-component systems (TCSs) that play important roles in the response to different environmental changes and adjust the expression of multiple genes to successfully colonize and infect host cells. In this review, we discuss the progress in the study of a conserved TCS named CiaRH in pathogenic or opportunistic streptococci including Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus mutans, Streptococcus gordonii, Streptococcus sanguinis, and Streptococcus suis, focusing on the function and regulatory networks of CiaRH, which will provide a promising strategy for the exploration of novel antistreptococcal therapies. This review highlights the important role of CiaRH and provides an important basis for the development of antistreptococcal drugs and vaccines.
Collapse
Affiliation(s)
- Li-Yuan He
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yao-Jin Le
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zhong Guo
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, China
| | - Sha Li
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xiao-Yan Yang
- Zhuhai Key Laboratory of Basic and Applied Research in Chinese Medicine, Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| |
Collapse
|
47
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
48
|
Röder J, Felgner P, Hensel M. Single-cell analyses reveal phosphate availability as critical factor for nutrition of Salmonella enterica within mammalian host cells. Cell Microbiol 2021; 23:e13374. [PMID: 34160116 DOI: 10.1111/cmi.13374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 01/23/2023]
Abstract
Salmonella enterica serovar Typhimurium (STM) is an invasive, facultative intracellular pathogen and acquisition of nutrients from host cells is essential for survival and proliferation of intracellular STM. The nutritional environment of intracellular STM is only partially understood. We deploy bacteria harbouring reporter plasmids to interrogate the environmental cues acting on intracellular STM, and flow cytometry allows analyses on level of single STM. Phosphorus is a macro-element for cellular life, and in STM inorganic phosphate (Pi ), homeostasis is mediated by the two-component regulatory system PhoBR, resulting in expression of the high affinity phosphate transporter pstSCAB-phoU. Using fluorescent protein reporters, we investigated Pi availability for intracellular STM at single-cell level over time. We observed that Pi concentration in the Salmonella-containing vacuole (SCV) is limiting and activates the promoter of pstSCAB-phoU encoding a high affinity phosphate uptake system. Correlation between reporter activation by STM in defined media and in host cells indicates Pi concentration less 10 μM within the SCV. STM proliferating within the SCV experience increasing Pi limitations. Activity of the Salmonella pathogenicity island 2 (SPI2)-encoded type III secretion system (T3SS) is crucial for efficient intracellular proliferation, and SPI2-T3SS-mediated endosomal remodelling also reliefs Pi limitation. STM that are released from SCV to enter the cytosol of epithelial cells did not indicate Pi limitations. Addition of Pi to culture media of infected cells partially relieved Pi limitations in the SCV, as did inhibition of intracellular proliferation. We conclude that availability of Pi is critical for intracellular lifestyle of STM, and Pi acquisition is maintained by multiple mechanisms. Our work demonstrates the use of bacterial pathogens as sensitive single-cell reporters for their environment in host cell or host organisms. TAKE AWAY: Salmonella strains were engineered to report their intracellular niche and the availability of inorganic phosphate (Pi ) on level of single intracellular bacteria Within the Salmonella-containing vacuole (SCV), Pi is limited and limitation increases with bacterial proliferation Salmonella located in host cell cytosol are not limited in Pi availability Remodelling of the host cell endosomal system mediated by T3SS-2 reliefs Pi limitation in the SCV.
Collapse
Affiliation(s)
- Jennifer Röder
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Pascal Felgner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,CellNanOs-Center of Cellular Nanoanalytics, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
49
|
Sheikh SW, Ali A, Ahsan A, Shakoor S, Shang F, Xue T. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. Antibiotics (Basel) 2021; 10:522. [PMID: 34063307 PMCID: PMC8147483 DOI: 10.3390/antibiotics10050522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of multidrug-resistant pathogens presents a global challenge for treating and preventing disease spread through zoonotic transmission. The water and foodborne Enterohaemorrhagic Escherichia coli (EHEC) are capable of causing intestinal and systemic diseases. The root cause of the emergence of these strains is their metabolic adaptation to environmental stressors, especially acidic pH. Acid treatment is desired to kill pathogens, but the protective mechanisms employed by EHECs cross-protect against antimicrobial peptides and thus facilitate opportunities for survival and pathogenesis. In this review, we have discussed the correlation between acid tolerance and antibiotic resistance, highlighting the identification of novel targets for potential production of antimicrobial therapeutics. We have also summarized the molecular mechanisms used by acid-adapted EHECs, such as the two-component response systems mediating structural modifications, competitive inhibition, and efflux activation that facilitate cross-protection against antimicrobial compounds. Moving beyond the descriptive studies, this review highlights low pH stress as an emerging player in the development of cross-protection against antimicrobial agents. We have also described potential gene targets for innovative therapeutic approaches to overcome the risk of multidrug-resistant diseases in healthcare and industry.
Collapse
Affiliation(s)
- Salma Waheed Sheikh
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Asma Ahsan
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Punjab, Pakistan;
| | - Sidra Shakoor
- Station de Neucfchateau, CIRAD, 97130 Sainte-Marie, Capesterre Belle Eau, Guadeloupe, France;
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| |
Collapse
|
50
|
Stereochemical Trajectories of a Two-Component Regulatory System PmrA/B in a Colistin-Resistant Acinetobacter baumannii Clinical Isolate. IRANIAN BIOMEDICAL JOURNAL 2021. [PMID: 33653023 PMCID: PMC8183390 DOI: 10.52547/ibj.25.3.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: There is limited information on the 3D prediction and modeling of the colistin resistance-associated proteins PmrA/B TCS in Acinetobacter baumannii. We aimed to evaluate the stereochemical structure and domain characterization of PmrA/B in an A. baumannii isolate resistant to high-level colistin, using bioinformatics tools. Methods: The species of the isolate and its susceptibility to colistin were confirmed by PCR-sequencing and MIC assay, respectively. For 3D prediction of the PmrA/B, we used 16 template models with the highest quality (e-value <1 × 10−50). Results: Prediction of the PmrA structure revealed a monomeric non-redundant protein consisting of 28 α-helices and 22 β-sheets. The PmrA DNA-binding motif displayed three antiparallel α-helices, followed by three β-sheets, and was bond to the major groove of DNA by intermolecular van der Waals bonds through amino acids Lys, Asp, His, and Arg, respectively. Superimposition of the deduced PmrA 3D structure with the closely related PmrA protein model (GenBank no. WP_071210493.1) revealed no distortion in conformation, due to Glu→Lys substitution at position 218. Similarly, the PmrB protein structure displayed 24 α-helices and 13 β-sheets. In our case, His251 acted as a phosphate receptor in the HisKA domain. The amino acid substitutions were mainly observed at the putative N-terminus region of the protein. Furthermore, two substitutions (Lys21→Ser and Ser28→Arg) in the transmembrane domain were detected. Conclusion: TheDNA-binding motif of PmrA is highly conserved, though the N-terminal fragment of PmrB showed a high rate of base substitutions. This research provides valuable insights into the mechanism of colistin resistance in A. baumannii.
Collapse
|