1
|
Ng WZJ, van Hasselt J, Aggarwal B, Manoharan A. Association Between Adult Antibiotic Use, Microbial Dysbiosis and Atopic Conditions - A Systematic Review. J Asthma Allergy 2023; 16:1115-1132. [PMID: 37822520 PMCID: PMC10564082 DOI: 10.2147/jaa.s401755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Background Strong associations between early antibiotic exposure and increased risk of childhood allergies have been established. Antibiotics have the potential to induce microbial dysbiosis that may be linked to allergic conditions. This review examines the limited available evidence on the associations between adult antibiotic use, microbial dysbiosis and atopic conditions. Methods A systematic literature search was conducted using PubMed and Embase for relevant studies, published between 01-01-2000 and 08-17-2022. We searched for associations between antibiotic use, microbial dysbiosis, and allergic conditions in adults, defined as over 13 years of age for the purposes of this review. Results Twenty-one studies were analyzed, with the inclusion of four narrative reviews as scarce relevant literature was found when stricter selection criteria were employed. Relevant studies predominantly focused on asthma. Significant microbial differences were observed in most measures between healthy subjects and subjects with allergic conditions. However, no system-wise and strain-wise associations were evident. Notably, at the phyla level, the Bacillota and Pseudomonadota phyla were associated with asthmatics, while the Actinobacteria phylum was linked to healthy controls. Asthmatics tends to reflect upregulation in the Bacillota and Pseudomonadota phyla in both airway and gut microbiomes. Conclusion No compelling evidence could be found between adult antibiotic exposure, consequent microbial dysbiosis, and allergic conditions in adults. Our review is limited by scarce literature and therefore remains inconclusive. However, potential implications of antibiotic use impacting on allergic conditions justify additional research and heightened pharmacovigilance in this area.
Collapse
Affiliation(s)
- Wan Zhen Janice Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Bhumika Aggarwal
- Regional Respiratory Medical Affairs, GSK Plc, Singapore, Singapore
| | - Anand Manoharan
- Infectious Diseases Medical & Scientific Affairs, GSK, Mumbai, India
| |
Collapse
|
2
|
Hu H, Zhao G, Wang K, Han P, Ye H, Wang F, Liu N, Zhou P, Lu X, Zhou Z, Cui H. Study on the Mechanism of Qing-Fei-Shen-Shi Decoction on Asthma Based on Integrated 16S rRNA Sequencing and Untargeted Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1456844. [PMID: 36846048 PMCID: PMC9946754 DOI: 10.1155/2023/1456844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 11/24/2022] [Indexed: 02/17/2023]
Abstract
Qing-Fei-Shen-Shi decoction (QFSS) consists of Prunus armeniaca L., Gypsum Fibrosum, Smilax glabra Roxb., Coix lacryma-jobi L., Benincasa hispida (Thunb.) Cogn., Plantago asiatica L., Pyrrosia lingua (Thunb.) Farw., Houttuynia cordata Thunb., Fritillaria thunbergii Miq., Cicadae Periostracum, and Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle. QFSS shows significant clinical efficacy in the treatment of asthma. However, the specific mechanism of QFSS on asthma remains unclear. Recently, multiomics techniques are widely used in elucidating the mechanisms of Chinese herbal formulas. The use of multiomics techniques can better illuminate the multicomponents and multitargets of Chinese herbal formulas. In this study, ovalbumin (OVA) was first employed to induce an asthmatic mouse model, followed by a gavage of QFSS. First, we evaluated the therapeutic effects of QFSS on the asthmatic model mice. Second, we investigated the mechanism of QFSS in treating asthma by using an integrated 16S rRNA sequencing technology and untargeted metabolomics. Our results showed that QFSS treatment ameliorated asthma in mice. In addition, QFSS treatment affected the relative abundances of gut microbiota including Lactobacillus, Dubosiella, Lachnospiraceae_NK4A136_group, and Helicobacter. Untargeted metabolomics results showed that QFSS treatment regulated the metabolites such as 2-(acetylamino)-3-[4-(acetylamino) phenyl] acrylic acid, D-raffinose, LysoPC (15 : 1), methyl 10-undecenoate, PE (18 : 1/20 : 4), and D-glucose6-phosphate. These metabolites are associated with arginine and proline metabolism, arginine biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism. Correlation analysis indicated that arginine and proline metabolism and pyrimidine metabolism metabolic pathways were identified as the common metabolic pathways of 16s rRNA sequencing and untargeted metabolomics. In conclusion, our results showed that QFSS could ameliorate asthma in mice. The possible mechanism of QFSS on asthma may be associated with regulating the gut microbiota and arginine and proline metabolism and pyrimidine metabolism. Our study may be useful for researchers to study the integrative mechanisms of Chinese herbal formulas based on modulating gut microbiota and metabolism.
Collapse
Affiliation(s)
- Haibo Hu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Guojing Zhao
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Kun Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Ping Han
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Haiyan Ye
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Fengchan Wang
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Na Liu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Peixia Zhou
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Xuechao Lu
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Zhaoshan Zhou
- Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao University, Qingdao, China
| | - Huantian Cui
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Integrated Network Pharmacology and Gut Microbiota Analysis to Explore the Mechanism of Sijunzi Decoction Involved in Alleviating Airway Inflammation in a Mouse Model of Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1130893. [PMID: 36636604 PMCID: PMC9831717 DOI: 10.1155/2023/1130893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Background Asthma is a chronic inflammatory disease of the airways with recurrent attacks, which seriously affects the patients' quality of life and even threatens their lives. The disease can even threaten the lives of patients. Sijunzi decoction (SJZD), a classical Chinese medicine formula with a long history of administration, is a basic formula used for the treatment of asthma and demonstrates remarkable efficacy. However, the underlying mechanism has not been elucidated. Materials and Methods We aimed to integrate network pharmacology and intestinal flora sequencing analysis to study the mechanism of SJZD in the treatment of allergic asthmatic mice. The active compounds of SJZD and their asthma-related targets were predicted by various databases. We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify potentially relevant pathways for target genes. Furthermore, the active compound-target and target-signaling pathway network maps were constructed by using Cytoscape 3.8.2. These results were combined with those of the intestinal flora sequencing analysis to study the influence of SJZD on airway inflammation in allergic asthmatic mice. Result We obtained 137 active compounds from SJZD and associated them with 1445 asthma-related targets acquired from the databases. A total of 109 common targets were identified. We visualized active compound-target and target-signaling pathway network maps. The pathological analysis and inflammation score results suggested that SJZD could alleviate airway inflammation in asthmatic mice. Sequencing analysis of intestinal flora showed that SJZD could increase the relevant abundance of beneficial bacterial genus and maintain the balance of the intestinal flora. The core toll-like receptor (TLR) signaling pathway was identified based on network pharmacology analysis, and the important role TLRs play in intestinal flora and organismal immunity was also recognized. The analysis of the correlation between environmental factors and intestinal flora revealed that beneficial bacterial genera were negatively correlated with TLR2 and positively correlated with the TLR7 expression. Furthermore, they were positively correlated with IFN-γ and IL-10 levels and negatively correlated with IL-4 and IL-17 levels. Conclusion SJZD alleviated the airway inflammation state in asthmatic mice. The findings suggest that increasing the relevant abundance of beneficial intestinal bacteria in mice with asthma, regulating intestinal flora, interfering with the level of TLR2 and TLR7 expression to adjust the secretion of inflammatory factors, and alleviating asthmatic airway inflammation may be the possible mechanism involved in the treatment of asthma by SJZD, providing a basis for further studies on SJZD.
Collapse
|
4
|
Tang W, Zhang L, Ai T, Xia W, Xie C, Fan Y, Chen S, Chen Z, Yao J, Peng Y. A pilot study exploring the association of bronchial bacterial microbiota and recurrent wheezing in infants with atopy. Front Cell Infect Microbiol 2023; 13:1013809. [PMID: 36875523 PMCID: PMC9975506 DOI: 10.3389/fcimb.2023.1013809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Background Differences in bronchial microbiota composition have been found to be associated with asthma; however, it is still unclear whether these findings can be applied to recurrent wheezing in infants especially with aeroallergen sensitization. Objectives To determine the pathogenesis of atopic wheezing in infants and to identify diagnostic biomarkers, we analyzed the bronchial bacterial microbiota of infants with recurrent wheezing and with or without atopic diseases using a systems biology approach. Methods Bacterial communities in bronchoalveolar lavage samples from 15 atopic wheezing infants, 15 non-atopic wheezing infants, and 18 foreign body aspiration control infants were characterized using 16S rRNA gene sequencing. The bacterial composition and community-level functions inferred from between-group differences from sequence profiles were analyzed. Results Both α- and β-diversity differed significantly between the groups. Compared to non-atopic wheezing infants, atopic wheezing infants showed a significantly higher abundance in two phyla (Deinococcota and unidentified bacteria) and one genus (Haemophilus) and a significantly lower abundance in one phylum (Actinobacteria). The random forest predictive model of 10 genera based on OTU-based features suggested that airway microbiota has diagnostic value for distinguishing atopic wheezing infants from non-atopic wheezing infants. PICRUSt2 based on KEGG hierarchy (level 3) revealed that atopic wheezing-associated differences in predicted bacterial functions included cytoskeleton proteins, glutamatergic synapses, and porphyrin and chlorophyll metabolism pathways. Conclusion The differential candidate biomarkers identified by microbiome analysis in our work may have reference value for the diagnosis of wheezing in infants with atopy. To confirm that, airway microbiome combined with metabolomics analysis should be further investigated in the future.
Collapse
Affiliation(s)
- Wei Tang
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Zhang
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Lei Zhang,
| | - Tao Ai
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wanmin Xia
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Xie
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yinghong Fan
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sisi Chen
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Zijin Chen
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiawei Yao
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Peng
- Respiratory Department, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Gao Y, Shang S, Guo S, Wang X, Zhou H, Sun Y, Gan J, Zhang Y, Li X, Ning S, Zhang Y. AgingBank: a manually curated knowledgebase and high-throughput analysis platform that provides experimentally supported multi-omics data relevant to aging in multiple species. Brief Bioinform 2022; 23:6760117. [PMID: 36239391 DOI: 10.1093/bib/bbac438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
Discovering the biological basis of aging is one of the greatest remaining challenges for biomedical field. Work on the biology of aging has discovered a range of interventions and pathways that control aging rate. Thus, we developed AgingBank (http://bio-bigdata.hrbmu.edu.cn/AgingBank) which was a manually curated comprehensive database and high-throughput analysis platform that provided experimentally supported multi-omics data relevant to aging in multiple species. AgingBank contained 3771 experimentally verified aging-related multi-omics entries from studies across more than 50 model organisms, including human, mice, worms, flies and yeast. The records included genome (single nucleotide polymorphism, copy number variation and somatic mutation), transcriptome [mRNA, long non-coding RNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA)], epigenome (DNA methylation and histone modification), other modification and regulation elements (transcription factor, enhancer, promoter, gene silence, alternative splicing and RNA editing). In addition, AgingBank was also an online computational analysis platform containing five useful tools (Aging Landscape, Differential Expression Analyzer, Data Heat Mapper, Co-Expression Network and Functional Annotation Analyzer), nearly 112 high-throughput experiments of genes, miRNAs, lncRNAs, circRNAs and methylation sites related with aging. Cancer & Aging module was developed to explore the relationships between aging and cancer. Submit & Analysis module allows users upload and analyze their experiments data. AginBank is a valuable resource for elucidating aging-related biomarkers and relationships with other diseases.
Collapse
Affiliation(s)
- Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xinyue Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yakun Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
6
|
Huang C, Tang W, Dai R, Wang P, Shi G, Du W, Ni Y. Disentangling the potential roles of the human gut mycobiome and metabolites in asthma. Clin Transl Med 2022; 12:e1012. [PMID: 36030505 PMCID: PMC9420422 DOI: 10.1002/ctm2.1012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Chunrong Huang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Tang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ranran Dai
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ping Wang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|