1
|
Karash S, Jiang T, Kwon YM. Genome-wide characterization of Salmonella Typhimurium genes required for the fitness under iron restriction. BMC Genom Data 2022; 23:55. [PMID: 35869435 PMCID: PMC9308263 DOI: 10.1186/s12863-022-01069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background Iron is a crucial element for bacterial survival and virulence. During Salmonella infection, the host utilizes a variety of mechanisms to starve the pathogen from iron. However, Salmonella activates distinctive defense mechanisms to acquire iron and survive in iron-restricted host environments. Yet, the comprehensive set of the conditionally essential genes that underpin Salmonella survival under iron-restricted niches has not been fully explored. Results Here, we employed transposon sequencing (Tn-seq) method for high-resolution elucidation of the genes in Salmonella Typhimurium (S. Typhimurium) 14028S strain required for the growth under the in vitro conditions with four different levels of iron restriction achieved by iron chelator 2,2′-dipyridyl (Dip): mild (100 and 150 μM), moderate (250 μM) and severe iron restriction (400 μM). We found that the fitness of the mutants reduced significantly for 28 genes, suggesting the importance of these genes for the growth under iron restriction. These genes include sufABCDSE, iron transport fepD, siderophore tonB, sigma factor E ropE, phosphate transport pstAB, and zinc exporter zntA. The siderophore gene tonB was required in mild and moderate iron-restricted conditions, but it became dispensable in severe iron-restricted conditions. Remarkably, rpoE was required in moderate and severe iron restrictions, leading to complete attenuation of the mutant under these conditions. We also identified 30 genes for which the deletion of the genes resulted in increased fitness under iron-restricted conditions. Conclusions The findings broaden our knowledge of how S. Typhimurium survives in iron-deficient environments, which could be utilized for the development of new therapeutic strategies targeting the pathways vital for iron metabolism, trafficking, and scavenging. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01069-3.
Collapse
|
2
|
Fan Y, Bai J, Xi D, Yang B. RpoE Facilitates Stress-Resistance, Invasion, and Pathogenicity of Escherichia coli K1. Microorganisms 2022; 10:microorganisms10050879. [PMID: 35630325 PMCID: PMC9147696 DOI: 10.3390/microorganisms10050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Escherichia coli K1 is the most common Gram-negative bacterium that causes neonatal meningitis; thus, a better understanding of its pathogenic molecular mechanisms is critical. However, the mechanisms by which E. coli K1 senses the signals of the host and expresses toxins for survival are poorly understood. As an extracytoplasmic function sigma factor, RpoE controls a wide range of pathogenesis-associated pathways in response to environmental stress. We found that the ΔrpoE mutant strain reduced the binding and invasion rate in human brain microvascular endothelial cells (HBMECs) in vitro, level of bacteremia, and percentage of meningitis in vivo. To confirm the direct targets of RpoE in vivo, we performed qRT-PCR and ChIP-qPCR on known toxic genes. RpoE was found to regulate pathogenic target genes, namely, ompA, cnf1, fimB, ibeA, kpsM, and kpsF directly and fimA, aslA, and traJ indirectly. The expression of these genes was upregulated when E. coli K1 was cultured with antibacterial peptides, whereas remained unchanged in the presence of the ΔrpoE mutant strain. Moreover, RpoE reduced IL-6 and IL-8 levels in E. coli K1-infected HBMECs. Altogether, these findings demonstrate that RpoE mediates the host adaptation capacity of E. coli K1 via a regulatory mechanism on virulence factors.
Collapse
Affiliation(s)
- Yu Fan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Jing Bai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Daoyi Xi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Bin Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; (Y.F.); (J.B.)
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Correspondence:
| |
Collapse
|
3
|
Impact of the Resistance Responses to Stress Conditions Encountered in Food and Food Processing Environments on the Virulence and Growth Fitness of Non-Typhoidal Salmonellae. Foods 2021; 10:foods10030617. [PMID: 33799446 PMCID: PMC8001757 DOI: 10.3390/foods10030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
The success of Salmonella as a foodborne pathogen can probably be attributed to two major features: its remarkable genetic diversity and its extraordinary ability to adapt. Salmonella cells can survive in harsh environments, successfully compete for nutrients, and cause disease once inside the host. Furthermore, they are capable of rapidly reprogramming their metabolism, evolving in a short time from a stress-resistance mode to a growth or virulent mode, or even to express stress resistance and virulence factors at the same time if needed, thanks to a complex and fine-tuned regulatory network. It is nevertheless generally acknowledged that the development of stress resistance usually has a fitness cost for bacterial cells and that induction of stress resistance responses to certain agents can trigger changes in Salmonella virulence. In this review, we summarize and discuss current knowledge concerning the effects that the development of resistance responses to stress conditions encountered in food and food processing environments (including acid, osmotic and oxidative stress, starvation, modified atmospheres, detergents and disinfectants, chilling, heat, and non-thermal technologies) exerts on different aspects of the physiology of non-typhoidal Salmonellae, with special emphasis on virulence and growth fitness.
Collapse
|
4
|
Effect of rpoE on the Non-coding RNA Expression Profiles of Salmonella enterica serovar Typhi under the Stress of Ampicillin. Curr Microbiol 2020; 77:2405-2412. [DOI: 10.1007/s00284-020-02055-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
|
5
|
Hews CL, Cho T, Rowley G, Raivio TL. Maintaining Integrity Under Stress: Envelope Stress Response Regulation of Pathogenesis in Gram-Negative Bacteria. Front Cell Infect Microbiol 2019; 9:313. [PMID: 31552196 PMCID: PMC6737893 DOI: 10.3389/fcimb.2019.00313] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative bacterial envelope is an essential interface between the intracellular and harsh extracellular environment. Envelope stress responses (ESRs) are crucial to the maintenance of this barrier and function to detect and respond to perturbations in the envelope, caused by environmental stresses. Pathogenic bacteria are exposed to an array of challenging and stressful conditions during their lifecycle and, in particular, during infection of a host. As such, maintenance of envelope homeostasis is essential to their ability to successfully cause infection. This review will discuss our current understanding of the σE- and Cpx-regulated ESRs, with a specific focus on their role in the virulence of a number of model pathogens.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Timothy Cho
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tracy L Raivio
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Hews CL, Pritchard EJ, Rowley G. The Salmonella Specific, σ E-Regulated, STM1250 and AgsA, Function With the sHsps IbpA and IbpB, to Counter Oxidative Stress and Survive Macrophage Killing. Front Cell Infect Microbiol 2019; 9:263. [PMID: 31396489 PMCID: PMC6663981 DOI: 10.3389/fcimb.2019.00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/04/2019] [Indexed: 11/13/2022] Open
Abstract
The host presents an array of environments which induce bacterial stress including changes in pH, antimicrobial compounds and reactive oxygen species. The bacterial envelope sits at the interface between the intracellular and extracellular environment and its maintenance is essential for Salmonella cell viability under a range of conditions, including during infection. In this study, we aimed to understand the contribution of the σH- and σE-regulated small heat shock proteins IbpA, IbpB, and AgsA and the putative σE-regulated stress response protein STM1250 to the Salmonella envelope stress response. Due to shared sequence identity, regulatory overlap, and the specificity of STM1250 and AgsA to Salmonella sp., we hypothesized that functional overlap exists between these four stress response proteins, which might afford a selective advantage during Salmonella exposure to stress. We present here new roles for three small heat shock proteins and a putative stress response protein in Salmonella that are not limited to heat shock. We have shown that, compared to WT, a quadruple mutant is significantly more sensitive to hydrogen peroxide, has a lower minimum bactericidal concentration to the cationic antimicrobial peptide polymyxin B, and is attenuated in macrophages.
Collapse
Affiliation(s)
- Claire L Hews
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Emily J Pritchard
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
7
|
Huang L, Zhang Y, He R, Zuo Z, Luo Z, Xu W, Yan Q. Phenotypic characterization, virulence, and immunogenicity of Pseudomonas plecoglossicida rpoE knock-down strain. FISH & SHELLFISH IMMUNOLOGY 2019; 87:772-777. [PMID: 30776544 DOI: 10.1016/j.fsi.2019.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Pseudomonas plecoglossicida, a temperature dependent bacterial pathogen in fish, expresses rpoE gene that is sensitive to temperature and probably critical for pathogen virulence and disease development. In this study, the rpoE silence strain rpoE-RNAi-1 was constructed by gene knock-down. The rpoE-RNAi-1 displayed significant changes in biofilm formation, swarming motility, adhesion and virulence. Meanwhile, vaccination of grouper with rpoE-RNAi-1 led to a relative percent survival (RPS) value of 85% after challenged with the wild-type P. plecoglossicida. qRT-PCR assays showed that vaccination with rpoE-RNAi-1 enhanced the expression of immune-related genes, including MHC-I, MHC-II, IgM, and IL-1β, indicating that it was able to induce humoral and cell-mediated immune response in grouper. These results validated the possibility of rpoE as a potential target for constructing P. plecoglossicida live attenuated vaccine.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian, PR China
| | - Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Zhenghong Zuo
- School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Zhuhua Luo
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Wei Xu
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, PR China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China.
| |
Collapse
|
8
|
Expression characteristics of the plasmid-borne mcr-1 colistin resistance gene. Oncotarget 2017; 8:107596-107602. [PMID: 29296190 PMCID: PMC5746092 DOI: 10.18632/oncotarget.22538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
The plasmid-encoded colistin resistance gene (mcr-1) has recently been reported in various Gram-negative species. However, the expression profile of mcr-1 remains unknown. Here, we investigated the expression of mcr-1 in various plasmids and bacteria. The mcr-1 expression levels in pMCR1_IncX4 varied from 1.81 × 10-5 to 1.05 × 10-4 (pmol per μg total RNA) in the two K. pneumoniae strains SZ03 and SZ04 (ST25) and the two E. coli strains SZ01 and CDA6 (ST2448 and ST167, respectively). The mcr-1 expression levels of pMCR1_IncI2 in E. coli SZ02 (ST2085) and E. coli BJ13 (ST457) were 5.27 × 10-5 and 2.58 × 10-5, respectively. In addition, the expression of chromosomal mcr-1 in ST156 E. coli BJ10 was 5.49×10-5. Interestingly, after 4μg/ml colistin treatment, mcr-1 in pMCR1_IncX4 increased 2- and 4-fold at 20 and 120 mins, respectively, in all pMCR1_IncX4-harboring strains, except for ST2448 E. coli, which had a lower expression after 20 mins that restored to baseline levels after 120 mins. In contrast, mcr-1 expression of pMCR1_IncI2 in the two E. coli strains (SZ02, BJ13) and the chromosomal mcr-1 in E. coli (BJ10) remained at baseline levels after 20 and 120 mins. In the same genetic background host strain E. coli E600, mcr-1 expression of pMCR1_IncX4 and pMCR1_IncI2 were similar and were decreased after colistin treatment for 20 min. However, mcr-1 in pMCR1_IncX4 was up-regulated after colistin treatment for 120 min, while mcr-1 in pMCR1_IncI2 was down-regulated compared to the untreated control. Our results suggested that mcr-1 has distinct expression profiles on different plasmids, bacterial hosts, and after antibiotic treatment.
Collapse
|
9
|
Zhang X, Zhu C, Yin J, Sui Y, Wang Y, Zhai G. RpoS Affects Gene Expression in Salmonella enterica serovar Typhi Under Early Hyperosmotic Stress. Curr Microbiol 2017; 74:757-761. [DOI: 10.1007/s00284-017-1243-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|