1
|
Zhang Y, Zhao X, Zhang J, Zhang Y, Wei Y. Advancements in the impact of human microbiota and probiotics on leukemia. Front Microbiol 2024; 15:1423838. [PMID: 39021626 PMCID: PMC11251910 DOI: 10.3389/fmicb.2024.1423838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The human gut microbiota is a complex ecosystem that plays a crucial role in promoting the interaction between the body and its environment. It has been increasingly recognized that the gut microbiota has diverse physiological functions. Recent studies have shown a close association between the gut microbiota and the development of certain tumors, including leukemia. Leukemia is a malignant clonal disease characterized by the uncontrolled growth of one or more types of blood cells, which is the most common cancer in children. The imbalance of gut microbiota is linked to the pathological mechanisms of leukemia. Probiotics, which are beneficial microorganisms that help maintain the balance of the host microbiome, play a role in regulating gut microbiota. Probiotics have the potential to assist in the treatment of leukemia and improve the clinical prognosis of leukemia patients. This study reviews the relationship between gut microbiota, probiotics, and the progression of leukemia based on current research. In addition, utilizing zebrafish leukemia models in future studies might reveal the specific mechanisms of their interactions, thereby providing new insights into the clinical treatment of leukemia. In conclusion, further investigation is still needed to fully understand the accurate role of microbes in leukemia.
Collapse
Affiliation(s)
| | | | | | - Yaodong Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, School of Pharmaceutical Sciences, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, School of Pharmaceutical Sciences, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Li Y, Kan X. Cuproptosis-Related Genes MTF1 and LIPT1 as Novel Prognostic Biomarker in Acute Myeloid Leukemia. Biochem Genet 2024; 62:1136-1159. [PMID: 37561332 DOI: 10.1007/s10528-023-10473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Acute myeloid leukemia (AML) is a life-threatening hematologic malignant disease with high morbidity and mortality in both adults and children. Cuproptosis, a novel mode of cell death, plays an important role in tumor development, but the functional mechanisms of cuproptosis-related genes (CRGs) in AML are unclear. The differential expression of CRGs between tumors such as AML and normal tissues in UCSC XENA, TCGA and GTEx was verified using R (version: 3.6.3). Lasso regression, Cox regression and Nomogram were used to screen for prognostic biomarkers of AML and to construct corresponding prognostic models. Kaplan-Meier analysis, ROC analysis, clinical correlation analysis, immune infiltration analysis and enrichment analysis were used to further investigate the correlation and functional mechanisms of CRGs with AML. The ceRNA regulatory network was used to identify the mRNA-miRNA-lncRNA regulatory axis. Cuproptosis-related genes LIPT1, MTF1, GLS and CDKN2A were highly expressed in AML, while FDX1, LIAS, DLD, DLAT, PDHA1, SLC31A1 and ATP7B were lowly expressed in AML. Lasso regression, Cox regression, Nomogram and calibration curve finally identified MTF1 and LIPT1 as two novel prognostic biomarkers of AML and constructed the corresponding prognostic models. In addition, all 12 CRGs had predictive power for AML, with MTF1, LIAS, SLC31A1 and CDKN2A showing more reliable results. Further analysis showed that ATP7B was closely associated with mutation types such as FLT3, NPM1, RAS and IDH1 R140 in AML, while the expression of MTF1, LIAS and ATP7B in AML was closely associated with immune infiltration. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) revealed that biological functions such as metal ion transmembrane transporter activity, haptoglobin binding and oxygen carrier activity, pathways such as interferon alpha response, coagulation, UV response DN, apoptosis, hypoxia and heme metabolism all play a role in the development of AML. The ceRNA regulatory network revealed that 6 lncRNAs such as MALAT1, interfere with MTF1 expression through 6 miRNAs such as hsa-miR-32-5p, which in turn affect the development and progression of AML. In addition, APTO-253 has the potential to become an AML-targeted drug. The cuproptosis-related genes MTF1 and LIPT1 can be used as prognostic biomarkers in AML. A total of six lncRNAs, including MALAT1, are involved in the expression and regulation of MTF1 in AML through six miRNAs such as hsa-miR-32-5p.
Collapse
Affiliation(s)
- Yujian Li
- Department of Pediatrics, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xuan Kan
- Department of Pediatrics, General Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Naoe T, Saito A, Hosono N, Kasahara S, Muto H, Hatano K, Ogura M, Masunari T, Tanaka M, Usuki K, Ishikawa Y, Ando K, Kondo Y, Takagi Y, Takada S, Ishikawa M, Choi I, Sano A, Nagai H. Immunoreactivity to WT1 peptide vaccine is associated with prognosis in elderly patients with acute myeloid leukemia: follow-up study of randomized phase II trial of OCV-501, an HLA class II-binding WT1 polypeptide. Cancer Immunol Immunother 2023:10.1007/s00262-023-03432-4. [PMID: 37093243 PMCID: PMC10123586 DOI: 10.1007/s00262-023-03432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/19/2023] [Indexed: 04/25/2023]
Abstract
We previously conducted a randomized phase II trial of OCV-501, a WT1 peptide presented by helper T cells, in elderly AML (acute myeloid leukemia) patients in first remission, indicating no difference in 2-year disease-free survival (DSF) between the OCV-501 and placebo groups. Here, we analyzed 5-year outcome and biomarkers. Five-year DFS was 36.0% in the OCV-501 group (N = 52) and 33.7% in the placebo group (N = 53), with no significant difference (p = 0.74). The peripheral WT1 mRNA levels were marginally suppressed in the OCV-501 group compared with the placebo group. Enhanced anti-OCV-501 IgG response by the 25th week was an independent favorable prognostic factor. Anti-OCV-501 IFNγ responses were less frequent than the IgG reactions. These findings suggest that host immunoreactivity has a significant impact on the prognosis of AML and that further improvement of the WT1 peptide vaccine is needed.
Collapse
Affiliation(s)
- Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, 4-1-1 San-No-Maru, Naka-Ku, Nagoya, Japan.
| | - Akiko Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Clinical Research Center, National Hospital Organization Headquarters, Tokyo, Japan
| | - Nahoko Hosono
- Department of Hematology and Oncology, University of Fukui, Fukui, Japan
| | - Senji Kasahara
- Department of Hematology, Gifu Municipal Hospital, Gifu, Japan
| | - Hideharu Muto
- Department of Blood Transfusion, Tokyo Metropolitan Otsuka Hospital, Tokyo, Japan
| | - Kaoru Hatano
- Department of Hematology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Mizuki Ogura
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Taro Masunari
- Department of Hematology/Infectious Diseases, Chugoku Central Hospital, Fukuyama, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Yuichi Ishikawa
- Department Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ando
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Yukio Kondo
- Department of Hematology, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Yusuke Takagi
- Department of Hematology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Satoru Takada
- Leukemia Research Center, Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Maho Ishikawa
- Department of Hemato-Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Ilseung Choi
- Department of Hematology and Cell Therapy, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Akihiro Sano
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hirokazu Nagai
- Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
4
|
TP53 Mutant Acute Myeloid Leukemia: The Immune and Metabolic Perspective. HEMATO 2022. [DOI: 10.3390/hemato3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TP53 mutated/deleted acute myeloid leukemia (AML) stands out as one of the poorest prognosis forms of acute leukemia with a median overall survival not reaching one year in most cases, even in selected cases when allogenic stem-cell transplantation is performed. This aggressive behavior relies on intrinsic chemoresistance of blast cells and on high rates of relapse. New insights into the biology of the disease have shown strong linkage between TP53 mutant AML, altered metabolic features and immunoregulation uncovering new scenarios and leading to possibilities beyond current treatment approaches. Furthermore, new targeted therapies acting on misfolded/dysfunctional p53 protein are under current investigation with the aim to improve outcomes. In this review, we sought to offer an insight into TP53 mutant AML current biology and treatment approaches, with a special focus on leukemia-associated immune and metabolic changes.
Collapse
|
5
|
Yin X, Li Z, Lyu C, Wang Y, Ding S, Ma C, Wang J, Cui S, Wang J, Guo D, Xu R. Induced Effect of Zinc oxide nanoparticles on human acute myeloid leukemia cell apoptosis by regulating mitochondrial division. IUBMB Life 2022; 74:519-531. [PMID: 35383422 DOI: 10.1002/iub.2615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have exhibited excellent anti-tumor, the present study aimed to elucidate the underlying mechanism of ZnO NPs induced apoptosis in acute myeloid leukemia (AML) cells by regulating mitochondrial division. THP-1 cells, an AML cell line, were first incubated with different concentrations ZnO NPs for 24 h. Next, the expression of Drp-1, Bcl-2, Bax mRNA and protein was detected, and the effects of ZnO NPs on the levels of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), apoptosis and ATP generation in THP-1 cells were measured. Moreover, the effect of Drp-1 inhibitor Mdivi-1 and ZnO NPs on THP-1 cells was also detected. The results showed that the THP-1 cells survival rate decreased with the increment of ZnO NPs concentration and incubation time in a dose- and time-dependent manner. ZnO NPs can reduce the cell Δψm and ATP levels, induce the ROS production, and increase the levels of mitochondrial division and apoptosis. In contrast, the apoptotic level was significantly reduced after intervention of Drp-1 inhibitor, suggesting that ZnO NPs can induce the apoptosis of THP-1 cells by regulating mitochondrial division. Overall, ZnO NPs may provide a new basis and idea in treating human acute myeloid leukemia in clinical practice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Shumin Ding
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Chenchen Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jingyi Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Siyuan Cui
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jinxin Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
6
|
Wnt signaling pathway in cancer immunotherapy. Cancer Lett 2022; 525:84-96. [PMID: 34740608 DOI: 10.1016/j.canlet.2021.10.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Wnt/β-catenin signaling is a highly conserved pathway that regulates cell proliferation, differentiation, apoptosis, stem cell self-renewal, tissue homeostasis, and wound healing. Dysregulation of the Wnt pathway is intricately involved in almost all stages of tumorigenesis in various cancers. Through direct and/or indirect effects on effector T cells, T-regulatory cells, T-helper cells, dendritic cells, and other cytokine-expressing immune cells, abnormal activation of Wnt/β-catenin signaling benefits immune exclusion and hinders T-cell-mediated antitumor immune responses. Activation of Wnt signaling results in increased resistance to immunotherapies. In this review, we summarize the process by which Wnt signaling affects cancer and immune surveillance, and the potential for targeting the Wnt-signaling pathway via cancer immunotherapy.
Collapse
|
7
|
Kiguchi T, Yamaguchi M, Takezako N, Miyawaki S, Masui K, Ihara Y, Hirota M, Shimofurutani N, Naoe T. Efficacy and safety of Wilms' tumor 1 helper peptide OCV-501 in elderly patients with acute myeloid leukemia: a multicenter, randomized, double-blind, placebo-controlled phase 2 trial. Cancer Immunol Immunother 2021; 71:1419-1430. [PMID: 34677647 DOI: 10.1007/s00262-021-03074-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Complete remission (CR) of acute myeloid leukemia (AML) in elderly patients has a short duration, and there is no suitable post-remission therapy. We explored the role of the Wilms' tumor 1 helper peptide OCV-501 to prevent recurrence after remission. METHODS This placebo-controlled phase 2 study was designed to evaluate accurately the efficacy and immunogenicity of OCV-501 in elderly AML patients. Elderly AML patients who achieved first CR were randomly allocated to receive either OCV-501 (N = 69) or placebo (N = 65) once a week for eight weeks and then every two weeks until week 104. The primary endpoint was disease-free survival (DFS). RESULTS Nineteen (27.5%) patients in the OCV-501 group and 23 (35.4%) patients in the placebo group completed the study without relapse. The median DFS in the OCV-501 and placebo groups was 12.1 and 8.4 months, respectively (p = 0.7671, hazard ratio [95% confidence interval]: 0.933 [0.590, 1.477]). The major drug adverse reactions were injection-site reactions. Although treatment with OCV-501 did not prolong DFS for elderly AML patients, post hoc analysis found that immune responders to OCV-501 whose specific IgG was > 10,000 ng/mL (N = 16) and whose WT1-specific interferon-γ response was > 10 pg/mL (N = 26) had significantly longer overall survival compared with placebo. CONCLUSIONS The placebo-controlled design of this study and quantitative immunological monitoring provides new insight into the relationship between peptide-induced immune responses and survival, suggesting future perspectives for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Naoki Takezako
- National Hospital Organization Disaster Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
8
|
Kaleka G, Schiller G. Immunotherapy for Acute Myeloid Leukemia: Allogeneic hematopoietic cell transplantation is here to stay. Leuk Res 2021; 112:106732. [PMID: 34864447 DOI: 10.1016/j.leukres.2021.106732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 01/20/2023]
Abstract
Acute Myeloid Leukemia (AML) represents 1 % of all new cancer diagnosis made annually in the US and has a five-year survival of 30 %. Traditional treatment includes aggressive induction therapy followed by consolidation therapy that may include a hematopoietic stem cell transplant (HSCT). Thus far, HSCT remains the only potentially curative therapy for many patients with AML owing to the graft-versus-leukemia effect elicited by this treatment. The use of novel therapies, specifically immunotherapy, in the treatment of AML has been limited by the lack of appropriate target antigens, therapy associated toxicities and variable success with treatment. Antigenic variability on leukemia cells and the sharing of antigens by malignant and non-malignant cells makes the identification of appropriate antigens problematic. While studies with immunotherapeutic agents are underway, prior investigations have demonstrated a mixed response with some studies prematurely discontinued due to associated toxicities. This review presents a discussion of the envisioned role of immunotherapy in the treatment of AML in the setting of mixed therapeutic success and potentially lethal toxicities.
Collapse
Affiliation(s)
- Guneet Kaleka
- UCLA-Olive View Medical Center, Department of Medicine, Room 2B-182, 14445 Olive View Drive, Sylmar, CA, 91342, United States.
| | - Gary Schiller
- Department of Medicine, Hematology & Oncology at UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
9
|
Rennert PD, Dufort FJ, Su L, Sanford T, Birt A, Wu L, Lobb RR, Ambrose C. Anti-CD19 CAR T Cells That Secrete a Biparatopic Anti-CLEC12A Bridging Protein Have Potent Activity Against Highly Aggressive Acute Myeloid Leukemia In Vitro and In Vivo. Mol Cancer Ther 2021; 20:2071-2081. [PMID: 34253594 PMCID: PMC9398100 DOI: 10.1158/1535-7163.mct-20-1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Refractory acute myeloid leukemia (AML) remains an incurable malignancy despite the clinical use of novel targeted therapies, new antibody-based therapies, and cellular therapeutics. Here, we describe the preclinical development of a novel cell therapy that targets the antigen CLEC12A with a biparatopic bridging protein. Bridging proteins are designed as "CAR-T cell engagers," with a CAR-targeted protein fused to antigen binding domains derived from antibodies. Here, we created a CD19-anti-CLEC12A bridging protein that binds to CAR19 T cells and to the antigen CLEC12A. Biparatopic targeting increases the potency of bridging protein-mediated cytotoxicity by CAR19 T cells. Using CAR19 T cells that secrete the bridging protein we demonstrate potent activity against aggressive leukemic cell lines in vivo This CAR-engager platform is facile and modular, as illustrated by activity of a dual-antigen bridging protein targeting CLEC12A and CD33, designed to counter tumor heterogeneity and antigen escape, and created without the need for extensive CAR T-cell genetic engineering. CAR19 T cells provide an optimal cell therapy platform with well-understood inherent persistence and fitness characteristics.
Collapse
Affiliation(s)
- Paul D. Rennert
- Corresponding Author: Paul D. Rennert, Research & Development, Aleta Biotherapeutics Inc., Natick, MA 01760. Phone: 508-282-6370; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Xu L, Liu L, Yao D, Zeng X, Zhang Y, Lai J, Zhong J, Zha X, Zheng R, Lu Y, Li M, Jin Z, Hebbar Subramanyam S, Chen S, Huang X, Li Y. PD-1 and TIGIT Are Highly Co-Expressed on CD8 + T Cells in AML Patient Bone Marrow. Front Oncol 2021; 11:686156. [PMID: 34490086 PMCID: PMC8416522 DOI: 10.3389/fonc.2021.686156] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 02/03/2023] Open
Abstract
Despite the great success of immune-checkpoint inhibitor (ICI) treatment for multiple cancers, evidence for the clinical use of ICIs in acute myeloid leukemia (AML) remains inadequate. Further exploration of the causes of immune evasion in the bone marrow (BM) environment, the primary leukemia site, and peripheral blood (PB) and understanding how T cells are affected by AML induction chemotherapy or the influence of age may help to select patients who may benefit from ICI treatment. In this study, we comprehensively compared the distribution of PD-1 and TIGIT, two of the most well-studied IC proteins, in PB and BM T cells from AML patients at the stages of initial diagnosis, complete remission (CR), and relapse-refractory (R/R) disease after chemotherapy. Our results show that PD-1 was generally expressed higher in PB and BM T cells from de novo (DN) and R/R patients, while it was partially recovered in CR patients. The expression of TIGIT was increased in the BM of CD8+ T cells from DN and R/R patients, but it did not recover with CR. In addition, according to age correlation analysis, we found that elderly AML patients possess an even higher percentage of PD-1 and TIGIT single-positive CD8+ T cells in PB and BM, which indicate greater impairment of T cell function in elderly patients. In addition, we found that both DN and R/R patients accumulate a higher frequency of PD-1+ and TIGIT+ CD8+ T cells in BM than in corresponding PB, indicating that a more immunosuppressive microenvironment in leukemia BM may promote disease progression. Collectively, our study may help guide the combined use of anti-PD-1 and anti-TIGIT antibodies for treating elderly AML patients and pave the way for the exploration of strategies for reviving the immunosuppressive BM microenvironment to improve the survival of AML patients.
Collapse
Affiliation(s)
- Ling Xu
- The Clinical Medicine Postdoctoral Research Station, Department of Hematology, First Affiliated Hospital; Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
- Laboratory Center, Tianhe Nuoya Bio-Engineering Co. Ltd, Guangzhou, China
| | - Jing Lai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Jun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China Guangzhou, China
| | - Runhui Zheng
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China, China
| | - Yuhong Lu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Minming Li
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenyi Jin
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Sudheendra Hebbar Subramanyam
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- The Clinical Medicine Postdoctoral Research Station, Department of Hematology, First Affiliated Hospital; Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine; Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Immunotherapy in AML: a brief review on emerging strategies. Clin Transl Oncol 2021; 23:2431-2447. [PMID: 34160771 DOI: 10.1007/s12094-021-02662-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML), the most common form of leukemia amongst adults, is one of the most important hematological malignancies. Epidemiological data show both high incidence rates and low survival rates, especially in secondary cases among adults. Although classic and novel chemotherapeutic approaches have extensively improved disease prognosis and survival, the need for more personalized and target-specific methods with less side effects have been inevitable. Therefore, immunotherapeutic methods are of importance. In the following review, primarily a brief understanding of the molecular basis of the disease has been represented. Second, prior to the introduction of immunotherapeutic approaches, the entangled relationship of AML and patient's immune system has been discussed. At last, mechanistic and clinical evidence of each of the immunotherapy approaches have been covered.
Collapse
|
12
|
Toporski J, Król L, Dykes J, Håkansson Y, Pronk C, Turkiewicz D. The combination of clofarabine, etoposide, and cyclophosphamide shows limited efficacy as a bridge to transplant for children with refractory acute leukemia: results of a monitored prospective study. Pediatr Hematol Oncol 2021; 38:216-226. [PMID: 33150834 DOI: 10.1080/08880018.2020.1838012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Clofarabine has been shown to effectively induce remission in children with refractory leukemia. We conducted a prospective trial (clinicval.trials.gov NCT01025778) to explore the use of clofarabine-based chemotherapy as a bridge-to-transplant approach. Children with refractory acute leukemia were enrolled to receive two induction courses of clofarabine, etoposide, and cyclophosphamide (CloEC). Responding patients were scheduled for T-cell depleted haploidentical hematopoietic stem cell transplantation (HSCT). The primary objective was to improve survival by achieving sufficient disease control to enable stem cell transplantation. Secondary objectives were to evaluate safety and toxicity. Seven children with active disease entered the study. Two children responded to induction courses and underwent transplantation. Five children did not respond to induction: one died in progression after the first course; two received off-protocol chemotherapy and were transplanted; and two succumbed to progressive leukemia. All transplanted children engrafted and no acute skin graft-versus-host disease > grade I was observed. One child is alive and well 7.5 years after the first CloEC course. One child developed fulminant adenovirus hepatitis and died in continuous complete remission 7 months after start of induction. Two children relapsed and died 6.5 and 7.5 months after enrollment. Infection was the most common toxicity. CloEC can induce responses in some patients with refractory acute leukemia but is highly immunosuppressive, resulting in substantial risk of life-threatening infections. In our study, haploidentical HSCT was feasible with sustained engraftment. No clinically significant organ toxicity was observed. Also, repeating CloEC probably does not increase the chance of achieving remission.
Collapse
Affiliation(s)
- Jacek Toporski
- Department of Pediatrics, Section of Pediatric Oncology, Hematology, Immunology and Nephrology, Skåne University Hospital, Lund, Sweden
| | - Ladislav Król
- Department of Pediatrics, Section of Pediatric Oncology, Hematology, Immunology and Nephrology, Skåne University Hospital, Lund, Sweden
| | - Josefina Dykes
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, University and Regional Laboratories, Lund, Sweden
| | - Yvonne Håkansson
- Department of Pediatrics, Section of Pediatric Oncology, Hematology, Immunology and Nephrology, Skåne University Hospital, Lund, Sweden
| | - Cornelis Pronk
- Department of Pediatrics, Section of Pediatric Oncology, Hematology, Immunology and Nephrology, Skåne University Hospital, Lund, Sweden
| | - Dominik Turkiewicz
- Department of Pediatrics, Section of Pediatric Oncology, Hematology, Immunology and Nephrology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Taghiloo S, Asgarian-Omran H. Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways. Crit Rev Oncol Hematol 2020; 157:103164. [PMID: 33271388 DOI: 10.1016/j.critrevonc.2020.103164] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Immune surveillance mechanisms comprising of adaptive and innate immune systems are naturally designed to eliminate AML development. However, leukemic cells apply various immune evasion mechanisms to deviate host immune responses resulting tumor progression. One of the recently well-known immune escape mechanisms is over-expression of immune checkpoint receptors and their ligands. Introduction of blocking antibodies targeting co-inhibitory molecules achieved invaluable success in tumor targeted therapy. Moreover, several new co-inhibitory pathways are currently studying for their potential impacts on improving anti-tumor immune responses. Although immunotherapeutic strategies based on the blockade of immune checkpoint molecules have shown promising results in a number of hematological malignances, their effectiveness in AML patients showed less remarkable success. This review discusses current knowledge about the involvement of co-inhibitory signaling pathways in immune evasion mechanisms of AML and potential application of immune checkpoint inhibitors for targeted immunotherapy of this malignancy.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
dos Santos Ramos MA, dos Santos KC, da Silva PB, de Toledo LG, Marena GD, Rodero CF, de Camargo BAF, Fortunato GC, Bauab TM, Chorilli M. Nanotechnological strategies for systemic microbial infections treatment: A review. Int J Pharm 2020; 589:119780. [PMID: 32860856 PMCID: PMC7449125 DOI: 10.1016/j.ijpharm.2020.119780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Systemic infections is one of the major causes of mortality worldwide, and a shortage of drug approaches applied for the rapid and necessary treatment contribute to increase the levels of death in affected patients. Several drug delivery systems based in nanotechnology such as metallic nanoparticles, liposomes, nanoemulsion, microemulsion, polymeric nanoparticles, solid lipid nanoparticles, dendrimers, hydrogels and liquid crystals can contribute in the biological performance of active substances for the treatment of microbial diseases triggered by fungi, bacteria, virus and parasites. In the presentation of these statements, this review article present and demonstrate the effectiveness of these drug delivery systems for the treatment of systemic diseases caused by several microorganisms, through a review of studies on scientific literature worldwide that contributes to better information for the most diverse professionals from the areas of health sciences. The studies demonstrated that the drug delivery systems described can contribute to the therapeutic scenario of these diseases, being classified as safe, active platforms and with therapeutic versatility.
Collapse
Affiliation(s)
- Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil,Corresponding authors
| | - Karen Cristina dos Santos
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Patrícia Bento da Silva
- Department of Genetic and Morphology, Brasília University (UNB), Institute of Biological Sciences, Zip Code: 70735100, Brazil
| | - Luciani Gaspar de Toledo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Gabriel Davi Marena
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Camila Fernanda Rodero
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Bruna Almeida Furquim de Camargo
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Giovanna Capaldi Fortunato
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State Zip Code: 14.800-903, Brazil.
| |
Collapse
|
15
|
Valent P, Bauer K, Sadovnik I, Smiljkovic D, Ivanov D, Herrmann H, Filik Y, Eisenwort G, Sperr WR, Rabitsch W. Cell-based and antibody-mediated immunotherapies directed against leukemic stem cells in acute myeloid leukemia: Perspectives and open issues. Stem Cells Transl Med 2020; 9:1331-1343. [PMID: 32657052 PMCID: PMC7581453 DOI: 10.1002/sctm.20-0147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
Abstract
Despite new insights in molecular features of leukemic cells and the availability of novel treatment approaches and drugs, acute myeloid leukemia (AML) remains a major clinical challenge. In fact, many patients with AML relapse after standard therapy and eventually die from progressive disease. The basic concept of leukemic stem cells (LSC) has been coined with the goal to decipher clonal architectures in various leukemia-models and to develop curative drug therapies by eliminating LSC. Indeed, during the past few years, various immunotherapies have been tested in AML, and several of these therapies follow the strategy to eliminate relevant leukemic subclones by introducing LSC-targeting antibodies or LSC-targeting immune cells. These therapies include, among others, new generations of LSC-eliminating antibody-constructs, checkpoint-targeting antibodies, bi-specific antibodies, and CAR-T or CAR-NK cell-based strategies. However, responses are often limited and/or transient which may be due to LSC resistance. Indeed, AML LSC exhibit multiple forms of resistance against various drugs and immunotherapies. An additional problems are treatment-induced myelotoxicity and other side effects. The current article provides a short overview of immunological targets expressed on LSC in AML. Moreover, cell-based therapies and immunotherapies tested in AML are discussed. Finally, the article provides an overview about LSC resistance and strategies to overcome resistance.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Daniel Ivanov
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
| | - Harald Herrmann
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
- Department of Radiation OncologyMedical University of ViennaViennaAustria
| | - Yüksel Filik
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology and HemostaseologyMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
- Department of Internal Medicine I, Stem Cell Transplantation UnitMedical University of ViennaViennaAustria
| |
Collapse
|
16
|
Przespolewski AC, Griffiths EA. BITES and CARS and checkpoints, oh my! Updates regarding immunotherapy for myeloid malignancies from the 2018 annual ASH meeting. Blood Rev 2020; 43:100654. [PMID: 32029263 PMCID: PMC7371541 DOI: 10.1016/j.blre.2020.100654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 02/03/2023]
Abstract
It is without question that immune checkpoint inhibitors and adoptive cellular therapies have revolutionized the treatment of solid and hematologic malignancies. Investigators are now developing novel strategies to integrate these groundbreaking modalities into the care of patients with acute myeloid leukemia (AML) and other myeloid malignancies. Here we provide an overview of the most recent developments in immunotherapy for myeloid cancers presented at the 2018 American Society of Hematology annual meeting. Topics discussed include adoptive cellular therapies (CAR-T, NK cell, and vaccines), checkpoint inhibitors, and bispecific T-cell engager (BITE) antibodies. Despite reservations regarding low antigenicity and having long been considered a "cold" tumor, immunotherapy remains a highly promising strategy for patients with aggressive myeloid cancers like myelodysplasia (MDS) and AML.
Collapse
Affiliation(s)
- Amanda C Przespolewski
- Leukemia Section, Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Elizabeth A Griffiths
- Leukemia Section, Department of Medicine, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
17
|
Wan Z, Sun R, Moharil P, Chen J, Liu Y, Song X, Ao Q. Research advances in nanomedicine, immunotherapy, and combination therapy for leukemia. J Leukoc Biol 2020; 109:425-436. [PMID: 33259068 DOI: 10.1002/jlb.5mr0620-063rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
In the past decade, clinical and laboratory studies have led to important new insights into the biology of leukemia and its treatment. This review describes the progress of leukemia research in the United States in recent years. Whereas the traditional method of treatment is chemotherapy, it is nonselective and could induce systemic toxicities. Thus, in parallel with research on new chemotherapies, great emphasis has been placed on developing immunotherapies. Here, we will review the current immunotherapies available in research and development that overcome current challenges, specifically looking in the field of chimeric antigen receptor T-cell (CAR-T) therapies, checkpoint inhibitors, and antibody-drug conjugates. With about 100 clinical trials for CAR-T therapies and 30 in checkpoint inhibitors for leukemia treatment, scientists are trying to make these technologies cheaper, faster, and more feasible. Further describing the delivery of these therapeutics, we look at the current progress, clinical, and preclinical status of nano-based medicines such as liposomes, polymeric micelles, and metal nanoparticles. Taking advantage of their physicochemical and biologic properties, nanoparticles have been shown to increase the efficacy of commonly administered chemotherapies with reduced adverse effects.
Collapse
Affiliation(s)
- Zhuoya Wan
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Runzi Sun
- Department of Immunology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Pearl Moharil
- Department of Cell Biology, Harvard Medical School, Harvard University, Massachusetts, USA.,Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pennsylvania, USA
| | - Jing Chen
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.,Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pennsylvania, USA
| | - Yuzhe Liu
- Department of Materials Engineering, Purdue University, Indiana, USA
| | - Xu Song
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Araujo VHS, Duarte JL, Carvalho GC, Silvestre ALP, Fonseca-Santos B, Marena GD, Ribeiro TDC, Dos Santos Ramos MA, Bauab TM, Chorilli M. Nanosystems against candidiasis: a review of studies performed over the last two decades. Crit Rev Microbiol 2020; 46:508-547. [PMID: 32795108 DOI: 10.1080/1040841x.2020.1803208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crescent number of cases of candidiasis and the increase in the number of infections developed by non-albicans species and by multi-resistant strains has taken the attention of the scientific community, which has been searching for new therapeutic alternatives. Among the alternatives found the use of nanosystems for delivery of drugs already commercialized and new biomolecules have grown, in order to increase stability, solubility, optimize efficiency and reduce adverse effects. In view of the growing number of studies involving technological alternatives for the treatment of candidiasis, the present review came with the intention of gathering studies from the last two decades that used nanotechnology for the treatment of candidiasis, as well as analysing them critically and pointing out the future perspectives for their application with this purpose. Different studies were considered for the development of this review, addressing nanosystems such as metallic nanoparticles, mesoporous silica nanoparticles, polymeric nanoparticles, liposomes, nanoemulsion, microemulsion, solid lipid nanoparticle, nanostructured lipid carrier, lipidic nanocapsules and liquid crystals; and different clinical presentations of candidiasis. As a general overview, nanotechnology has proven to be an important ally for the treatment against the diversity of candidiasis found in the clinic, whether in increasing the effectiveness of commercialized drugs and reducing their adverse effects, as well as allowing exploring more effectively properties therapeutics of new biomolecules.
Collapse
Affiliation(s)
- Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriel Davi Marena
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Tais de Cassia Ribeiro
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Matheus Aparecido Dos Santos Ramos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.,Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Taís Maria Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
19
|
Checkpoint Inhibitors and Engineered Cells: New Weapons for Natural Killer Cell Arsenal Against Hematological Malignancies. Cells 2020; 9:cells9071578. [PMID: 32610578 PMCID: PMC7407972 DOI: 10.3390/cells9071578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells represent one of the first lines of defense against malignant cells. NK cell activation and recognition are regulated by a balance between activating and inhibitory receptors, whose specific ligands can be upregulated on tumor cells surface and tumor microenvironment (TME). Hematological malignancies set up an extensive network of suppressive factors with the purpose to induce NK cell dysfunction and impaired immune-surveillance ability. Over the years, several strategies have been developed to enhance NK cells-mediated anti-tumor killing, while other approaches have arisen to restore the NK cell recognition impaired by tumor cells and other cellular components of the TME. In this review, we summarize and discuss the strategies applied in hematological malignancies to block the immune check-points and trigger NK cells anti-tumor effects through engineered chimeric antigen receptors.
Collapse
|
20
|
Potential of immunotherapies in the mediation of antileukemic responses for patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) - With a focus on Dendritic cells of leukemic origin (DC leu). Clin Immunol 2020; 217:108467. [PMID: 32464186 DOI: 10.1016/j.clim.2020.108467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2020] [Accepted: 05/16/2020] [Indexed: 11/23/2022]
Abstract
New (non-immunotherapeutic) treatment-strategies for AML/MDS-patients are under development. Dendritic cells (DCs) and 'leukemia-derived DC' (DCleu) connect the innate and the adaptive immunesystem and (re-)activate it, in their capacity as professional antigen-presenting cells (APCs). They can be generated ex vivo from peripheral blood mononuclear cells (PBMNCs) or whole blood (WB), containing the -physiological-cellular/soluble microenvironment of individual patients using various DC/DCleu-generating methods or (for WB) minimalized 'Kits', containing granulocyte-macrophage-colony-stimulating-factor (GM-CSF) and a second response-modifier. Proof for DC/DCleu-mediated activation of the immune-system after T-cell-enriched mixed lymphocyte culture (MLC) is done by flowcytometry, demonstrating increased fractions of certain activated, leukemia-specific or antileukemic cell-subsets of the innate and the adaptive immune-system. Generation of DC/DCleu is possible independent of patients' age, MHC-, mutation- or transplantation-status. In vivo-treatment of AML-/MDS-patients with blast-modulating, DC/DCleu- inducing 'Kits' could contribute to create migratory DCs, as well as antileukemically reactivated and memory-mediating immune-cells, which patrol tissue and blood and could contribute to stabilizing disease or remissions.
Collapse
|
21
|
Yegin ZA, Can F, Aydın Kaynar L, Gökçen S, Eren Sadioğlu R, Özkurt ZN, Karacaoğlu Ö. Pre-transplant sTIM-3 levels may have a predictive impact on transplant outcome in acute leukemia patients. ACTA ACUST UNITED AC 2020; 25:125-133. [PMID: 32153257 DOI: 10.1080/16078454.2020.1738097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: T-cell immunoglobulin and mucin domain-containing protein-3 (TIM-3) is considered as a negative regulator of T-cell driven immune response. This study is planned to investigate the prognostic role of pre-transplant soluble TIM-3 (sTIM-3) levels in allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Methods: Pre-transplant serum sTIM-3 levels were measured in 177 allo-HSCT recipients [median age: 36(16-66) years; male/female: 111/66]. Results: Pre-transplant sTIM-3 levels were significantly higher in acute myeloid leukemia (AML) patients compared to acute lymphoblastic leukemia (ALL) patients (p = 0.01). Pre-transplant sTIM-3 levels were significantly lower in patients with abnormal cytogenetics (p = 0.017). Pre-transplant sTIM-3 levels were significantly higher in patients who developed viral hemorrhagic cystitis (p = 0.034). A positive correlation was demonstrated between sTIM-3 levels and acute graft versus host disease (GvHD) grade (p = 0.013; r = 0.299). Overall survival (OS) was not statistically different between low- and high-TIM-3 groups (%35.2 vs %20.4; p > 0.05). Primary diagnosis (p = 0.042), sinusoidal obstruction syndrome (p < 0.001), acute GvHD (p = 0.001), chronic GvHD (p = 0.009) and post-transplant relapse (p = 0.003) represented significant impact on OS. Discussion: Increased sTIM-3 levels in AML patients seem to be compatible with the previous reports. The inhibitor role of TIM-3 in cellular immune response may be a possible explanation for the association of sTIM-3 with viral infections and GvHD. However, the main challenge remains to be the ambiguous association of pre-transplant sTIM-3 levels and post-transplant complications, as allo-HSCT recipients are expected to represent donor genetic features in the post-transplant setting. Conclusion: Further studies are warranted to clarify the particular role of sTIM-3 in the allo-HSCT setting.
Collapse
Affiliation(s)
- Zeynep Arzu Yegin
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Ferda Can
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Lale Aydın Kaynar
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Sanem Gökçen
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Rezzan Eren Sadioğlu
- Department of Internal Medicine, Gazi University School of Medicine, Ankara, Turkey
| | - Zübeyde Nur Özkurt
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| | - Özlem Karacaoğlu
- Department of Hematology, Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
22
|
Kee BL, Morman RE, Sun M. Transcriptional regulation of natural killer cell development and maturation. Adv Immunol 2020; 146:1-28. [PMID: 32327150 DOI: 10.1016/bs.ai.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural killer cells are lymphocytes that respond rapidly to intracellular pathogens or cancer/stressed cells by producing pro-inflammatory cytokines or chemokines and by killing target cells through direct cytolysis. NK cells are distinct from B and T lymphocytes in that they become activated through a series of broadly expressed germ line encoded activating and inhibitory receptors or through the actions of inflammatory cytokines. They are the founding member of the innate lymphoid cell family, which mirror the functions of T lymphocytes, with NK cells being the innate counterpart to CD8 T lymphocytes. Despite the functional relationship between NK cells and CD8 T cells, the mechanisms controlling their specification, differentiation and maturation are distinct, with NK cells emerging from multipotent lymphoid progenitors in the bone marrow under the control of a unique transcriptional program. Over the past few years, substantial progress has been made in understanding the developmental pathways and the factors involved in generating mature and functional NK cells. NK cells have immense therapeutic potential and understanding how to acquire large numbers of functional cells and how to endow them with potent activity to control hematopoietic and non-hematopoietic malignancies and autoimmunity is a major clinical goal. In this review, we examine basic aspects of conventional NK cell development in mice and humans and discuss multiple transcription factors that are known to guide the development of these cells.
Collapse
Affiliation(s)
- Barbara L Kee
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States.
| | - Rosmary E Morman
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Mengxi Sun
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Zhang X, Li JJ, Lu PH. Advances in the development of chimeric antigen receptor-T-cell therapy in B-cell acute lymphoblastic leukemia. Chin Med J (Engl) 2020; 133:474-482. [PMID: 31977556 PMCID: PMC7046249 DOI: 10.1097/cm9.0000000000000638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
CD19-targeted chimeric antigen receptor T-cell (CAR-T) therapy is effective in refractory/relapsed (R/R) B-cell acute lymphoblastic leukemia (B-ALL). This review focuses on achievements, current obstacles, and future directions in CAR-T research. A high complete remission rate of 68% to 93% could be achieved after anti-CD19 CAR-T treatment for B-ALL. Cytokine release syndrome and CAR-T-related neurotoxicity could be managed. In view of difficulties collecting autologous lymphocytes, universal CAR-T is a direction to explore. Regarding the high relapse rate after anti-CD19 CAR-T therapy, the main solutions have been developing new targets including CD22 CAR-T, or CD19/CD22 dual CAR-T. Additionally, some studies showed that bridging into transplant post-CAR-T could improve leukemia-free survival. Some patients who did not respond to CAR-T therapy were found to have an abnormal conformation of the CD19 exon or trogocytosis. Anti-CD19 CAR-T therapy for R/R B-ALL is effective. From individual to universal CAR-T, from one target to multi-targets, CAR-T-cell has a chance to be off the shelf in the future.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Hematology, Lu Daopei Hospital, Langfang, Hebei 065201, China
- Lu Daopei Institute of Hematology, Beijing 100176, China
| | - Jing-Jing Li
- Department of Hematology, Lu Daopei Hospital, Langfang, Hebei 065201, China
- Lu Daopei Institute of Hematology, Beijing 100176, China
| | - Pei-Hua Lu
- Department of Hematology, Lu Daopei Hospital, Langfang, Hebei 065201, China
- Lu Daopei Institute of Hematology, Beijing 100176, China
| |
Collapse
|
24
|
Updates on DNA methylation modifiers in acute myeloid leukemia. Ann Hematol 2020; 99:693-701. [DOI: 10.1007/s00277-020-03938-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
|
25
|
Perez-Santos M, Guerrero-González T, Gómez-Conde E, Cebada J, Flores A, Villa-Ruano N. Treatment of cancer with an anti-KIR antibody: a patent evaluation of US9879082 and US2018208652. Expert Opin Ther Pat 2020; 30:159-162. [DOI: 10.1080/13543776.2020.1717469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Martin Perez-Santos
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla, Puebla, México
| | - Tayde Guerrero-González
- Servicio De Traumatología Y Ortopedia, Hospital Regional 1o. De Octubre, Instituto De Seguridad Y Servicios Sociales De Los Trabajadores Del Estado, México, México
| | - Eduardo Gómez-Conde
- Laboratorio De Investigación En Inmunobiología, Facultad De Medicina, Benemérita Universidad Autónoma De Puebla, Puebla, Mexico
| | - Jorge Cebada
- Facultad De Medicina, Benemérita Universidad Autónoma De Puebla, Puebla, Mexico
| | - Amira Flores
- Instituto De Fisiología, Benemerita Universidad Autónoma De Puebla, Puebla, Mexico
| | - Nemesio Villa-Ruano
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla, Puebla, México
| |
Collapse
|
26
|
Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, Schulenburg A, Rabitsch W, Sperr WR, Wolf D. Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML. Int J Mol Sci 2019; 20:E4233. [PMID: 31470642 PMCID: PMC6747233 DOI: 10.3390/ijms20174233] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
The concept of leukemic stem cells (LSC) has been developed with the idea to explain the clonal hierarchies and architectures in leukemia, and the more or less curative anti-neoplastic effects of various targeted drugs. It is now widely accepted that curative therapies must have the potential to eliminate or completely suppress LSC, as only these cells can restore and propagate the malignancy for unlimited time periods. Since LSC represent a minor cell fraction in the leukemic clone, little is known about their properties and target expression profiles. Over the past few years, several cell-specific immunotherapy concepts have been developed, including new generations of cell-targeting antibodies, antibody-toxin conjugates, bispecific antibodies, and CAR-T cell-based strategies. Whereas such concepts have been translated and may improve outcomes of therapy in certain lymphoid neoplasms and a few other malignancies, only little is known about immunological targets that are clinically relevant and can be employed to establish such therapies in myeloid neoplasms. In the current article, we provide an overview of the immunologically relevant molecular targets expressed on LSC in patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). In addition, we discuss the current status of antibody-based therapies in these malignancies, their mode of action, and successful examples from the field.
Collapse
MESH Headings
- Acute Disease
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- Humans
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Immunotherapy/trends
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/therapy
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Herrmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Axel Schulenburg
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, 1090 Innsbruck, Austria
- Medical Clinic 3, Oncology, Hematology, Immunoncology & Rheumatology, University Clinic Bonn (UKB), 53127 Bonn, Germany
| |
Collapse
|
27
|
Chen KTJ, Gilabert-Oriol R, Bally MB, Leung AWY. Recent Treatment Advances and the Role of Nanotechnology, Combination Products, and Immunotherapy in Changing the Therapeutic Landscape of Acute Myeloid Leukemia. Pharm Res 2019; 36:125. [PMID: 31236772 PMCID: PMC6591181 DOI: 10.1007/s11095-019-2654-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia that is becoming more prevalent particularly in the older (65 years of age or older) population. For decades, "7 + 3" remission induction therapy with cytarabine and an anthracycline, followed by consolidation therapy, has been the standard of care treatment for AML. This stagnancy in AML treatment has resulted in less than ideal treatment outcomes for AML patients, especially for elderly patients and those with unfavourable profiles. Over the past two years, six new therapeutic agents have received regulatory approval, suggesting that a number of obstacles to treating AML have been addressed and the treatment landscape for AML is finally changing. This review outlines the challenges and obstacles in treating AML and highlights the advances in AML treatment made in recent years, including Vyxeos®, midostaurin, gemtuzumab ozogamicin, and venetoclax, with particular emphasis on combination treatment strategies. We also discuss the potential utility of new combination products such as one that we call "EnFlaM", which comprises an encapsulated nanoformulation of flavopiridol and mitoxantrone. Finally, we provide a review on the immunotherapeutic landscape of AML, discussing yet another angle through which novel treatments can be designed to further improve treatment outcomes for AML patients.
Collapse
Affiliation(s)
- Kent T J Chen
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Interdisciplinary Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Roger Gilabert-Oriol
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marcel B Bally
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- Cuprous Pharmaceuticals Inc., Vancouver, British Columbia, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Ada W Y Leung
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Cuprous Pharmaceuticals Inc., Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
28
|
Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF, Berneman ZN, Anguille S. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J Clin Med 2019; 8:E579. [PMID: 31035598 PMCID: PMC6572115 DOI: 10.3390/jcm8050579] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a type of blood cancer characterized by the uncontrolled clonal proliferation of myeloid hematopoietic progenitor cells in the bone marrow. The outcome of AML is poor, with five-year overall survival rates of less than 10% for the predominant group of patients older than 65 years. One of the main reasons for this poor outcome is that the majority of AML patients will relapse, even after they have attained complete remission by chemotherapy. Chemotherapy, supplemented with allogeneic hematopoietic stem cell transplantation in patients at high risk of relapse, is still the cornerstone of current AML treatment. Both therapies are, however, associated with significant morbidity and mortality. These observations illustrate the need for more effective and less toxic treatment options, especially in elderly AML and have fostered the development of novel immune-based strategies to treat AML. One of these strategies involves the use of a special type of immune cells, the dendritic cells (DCs). As central orchestrators of the immune system, DCs are key to the induction of anti-leukemia immunity. In this review, we provide an update of the clinical experience that has been obtained so far with this form of immunotherapy in patients with AML.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Felix S Lichtenegger
- Department of Medicine III, LMU Munich, University Hospital, 80799 Munich, Germany.
| | - Gils Roex
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Marion Subklewe
- Department of Medicine III, LMU Munich, University Hospital, 80799 Munich, Germany.
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
- Division of Hematology and Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Antwerp, Belgium.
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, 2610 Wilrijk, Antwerp, Belgium.
- Division of Hematology and Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, 2650 Edegem, Antwerp, Belgium.
| |
Collapse
|
29
|
Natural Killer Immunotherapy for Minimal Residual Disease Eradication Following Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemia. Int J Mol Sci 2019; 20:ijms20092057. [PMID: 31027331 PMCID: PMC6539946 DOI: 10.3390/ijms20092057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
The most common cause of death in patients with acute myeloid leukemia (AML) who receive allogeneic hematopoietic stem cell transplantation (allo-HSCT) is AML relapse. Therefore, additive therapies post allo-HSCT have significant potential to prevent relapse. Natural killer (NK)-cell-based immunotherapies can be incorporated into the therapeutic armamentarium for the eradication of AML cells post allo-HSCT. In recent studies, NK cell-based immunotherapies, the use of adoptive NK cells, NK cells in combination with cytokines, immune checkpoint inhibitors, bispecific and trispecific killer cell engagers, and chimeric antigen receptor-engineered NK cells have all shown antitumor activity in AML patients. In this review, we will discuss the current strategies with these NK cell-based immunotherapies as possible therapies to cure AML patients post allo-HSCT. Additionally, we will discuss various means of immune escape in order to further understand the mechanism of NK cell-based immunotherapies against AML.
Collapse
|
30
|
Kloess S, Kretschmer A, Stahl L, Fricke S, Koehl U. CAR-Expressing Natural Killer Cells for Cancer Retargeting. Transfus Med Hemother 2019; 46:4-13. [PMID: 31244577 DOI: 10.1159/000495771] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Since the approval in 2017 and the outstanding success of Kymriah® and Yescarta®, the number of clinical trials investigating the safety and efficacy of chimeric antigen receptor-modified autologous T cells has been constantly rising. Currently, more than 200 clinical trials are listed on clinicaltrial.gov. In contrast to CAR-T cells, natural killer (NK) cells can be used from allogeneic donors as an "off the shelf product" and provide alternative candidates for cancer retargeting. This review summarises preclinical results of CAR-engineered NK cells using both primary human NK cells and the cell line NK-92, and provides an overview about the first clinical CAR-NK cell studies targeting haematological malignancies and solid tumours, respectively.
Collapse
Affiliation(s)
- Stephan Kloess
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute for Cellular Therapeutics, ATMP-GMPDU, Hannover Medical School, Hannover, Germany
| | - Anna Kretschmer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Lilly Stahl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.,Institute of Clinical Immunology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Institute for Cellular Therapeutics, ATMP-GMPDU, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Szostak B, Machaj F, Rosik J, Pawlik A. CTLA4 antagonists in phase I and phase II clinical trials, current status and future perspectives for cancer therapy. Expert Opin Investig Drugs 2018; 28:149-159. [PMID: 30577709 DOI: 10.1080/13543784.2019.1559297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION In cancer, the immune response to tumor antigens is often suppressed by inhibitors and ligands. Checkpoint blockade, considered one of the most promising frontiers for anti-cancer therapy, aims to stimulate the immune anti-cancer response. Agents such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) inhibitors offer prolonged survival with manageable side effects. AREAS COVERED We summarize the recent clinical successes of CTLA-4 inhibitors and place a strong emphasis on those in early phase clinical trials, often in combination with other immune check-point inhibitors, i.e., programmed cell death protein 1 (PD-1) and BRAF/mitogen-activated protein kinase inhibitors. EXPERT OPINION Recent phase I and phase II clinical trials confirm the efficacy of anti-CTLA-4 therapy for treatment of cancers such as renal cell carcinoma. These studies also indicated increased efficacy with combined immune checkpoint blockade with PD-1 or Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) inhibitors. Researchers must search for new immune targets that may enable more effective and safe immune checkpoint blockade and cancer therapy. This goal may be achieved by next-generation combination therapies to overcome immune checkpoint therapy resistance.
Collapse
Affiliation(s)
- Bartosz Szostak
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Filip Machaj
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Jakub Rosik
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Andrzej Pawlik
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| |
Collapse
|