1
|
Hojjatipour T, Ajeli M, Maali A, Azad M. Epigenetic-modifying agents: The potential game changers in the treatment of hematologic malignancies. Crit Rev Oncol Hematol 2024; 204:104498. [PMID: 39244179 DOI: 10.1016/j.critrevonc.2024.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Hematologic malignancies are lethal diseases arising from accumulated leukemic cells with substantial genetic or epigenetic defects in their natural development. Epigenetic modifications, including DNA methylation and histone modifications, are critical in hematologic malignancy formation, propagation, and treatment response. Both mutations and aberrant recruitment of epigenetic modifiers are reported in different hematologic malignancies, which regarding the reversible nature of epigenetic regulations, make them a potential target for cancer treatment. Here, we have first outlined a comprehensive overview of current knowledge related to epigenetic regulation's impact on the development and prognosis of hematologic malignancies. Furthermore, we have presented an updated overview regarding the current status of epigenetic-based drugs in hematologic malignancies treatment. And finally, discuss current challenges and ongoing clinical trials based on the manipulation of epigenetic modifies in hematologic malignancies.
Collapse
Affiliation(s)
- Tahereh Hojjatipour
- Cancer Immunology Group, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mina Ajeli
- Department of Medical Laboratory Sciences, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhosein Maali
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, School of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Mohty R, Bazarbachi AH, Labopin M, Esteve J, Kröger N, Cornelissen JJ, Blaise D, Socié G, Maury S, Ganser A, Gedde-Dahl T, von dem Borne P, Bourhis JH, Bulabois CE, Yakoub-Agha I, Pabst C, Nguyen S, Chevallier P, Huynh A, Bazarbachi A, Nagler A, Ciceri F, Mohty M. Isocitrate dehydrogenase (IDH) 1 and 2 mutations predict better outcome in patients with acute myeloid leukemia undergoing allogeneic hematopoietic cell transplantation: a study of the ALWP of the EBMT. Bone Marrow Transplant 2024; 59:1534-1541. [PMID: 39143183 DOI: 10.1038/s41409-024-02384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) mutations have uncertain prognostic implications in AML. We investigate the impact IDH1 and IDH2 mutations in AML patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT) in first complete remission (CR1). In total, 1515 adult patients were included, 15.91% (n = 241) carried IDH1 mutation (mIDH1), and 26.27% (n = 398) IDH2 mutation (mIDH2) and 57.82% (n = 876) had no-IDH mutation. NPM1 was frequently encountered with IDH1 mutation (no-IDH group, n = 217, 24.8%, mIDH1, n = 103, 42.7%, mIDH2, n = 111, 27.9%, p < 0.0001). At day 180, the cumulative incidence (CI) of grade II-IV acute graft-versus-host disease (GVHD) was significantly lower in mIDH1 and mIDH2 compared to no-IDH groups (Hazard ratio [HR] = 0.66 (95% CI 0.47-0.91), p = 0.011; HR = 0.73 (95% CI 0.56-0.96), p = 0.025, respectively). In the mIDH1 group, overall survival (OS) was improved compared to no-IDH (HR = 0.68 (95% CI 0.48-0.94), p = 0.021), whereas mIDH2 was associated with lower incidence of relapse (HR = 0.49 (95% CI 0.34-0.7), p < 0.001), improved leukemia free survival (LFS) (HR = 0.7 (95% CI 0.55-0.9), p = 0.004) and OS (HR = 0.74 (95% CI 0.56-0.97), p = 0.027). In the subgroup of NPM1 wild type, only IDH2 was associated with improved outcomes. In conclusion, our data suggest that IDH1 and IDH2 mutations are associated with improved outcomes in patients with AML undergoing allo-HCT in CR1.
Collapse
Affiliation(s)
- Razan Mohty
- Division of Hematology and Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, University of Alabama at Birmingham, Birmingham, AL, USA.
- Service d'Hematologie Clinique, Hopital Saint-Antoine, and INSERM UMRs 938, Paris, France.
| | - Abdul Hamid Bazarbachi
- Service d'Hematologie Clinique, Hopital Saint-Antoine, and INSERM UMRs 938, Paris, France
- Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Myriam Labopin
- Service d'Hematologie Clinique, Hopital Saint-Antoine, and INSERM UMRs 938, Paris, France
- EBMT Paris Study Office, Saint Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
| | - Jordi Esteve
- Institute of Hematology and Oncology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplantation Centre, Hamburg, Germany
| | - Jan J Cornelissen
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, The Netherlands
| | - Didier Blaise
- Transplantation and Cellular Immunotherapy Program, Department of Hematology, Instititut Paoli Calmettes, MSC Lab, Aix Marseille University, Marseille, France
| | - Gerard Socié
- Hopital St. Louis, Dept.of Hematology-BMT, Paris, France
| | - Sébastien Maury
- Hôpital Henri Mondor, Service d'Hematologie, Creteil, France
| | - Arnold Ganser
- Hannover Medical School Department of Haematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover, Germany
| | - Tobias Gedde-Dahl
- Oslo University Hospital, Hematology and Institute of Clinical Medicine University of Oslo, Oslo, Norway
| | - Peter von dem Borne
- Dept. of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean Henri Bourhis
- Gustave Roussy Cancer Campus BMT Service, Department of Hematology, Villejuif, France
| | - Claude Eric Bulabois
- CHU Grenoble Alpes - Université Grenoble Alpes, Service d'Hématologie, Grenoble, France
| | | | - Caroline Pabst
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stéphanie Nguyen
- Universite Paris IV, Hopital la Pitié-Salpêtrière, Hématologie Clinique, Paris, France
| | | | - Anne Huynh
- Clinical Hematology Unit, Oncopôle, Toulouse, France
| | - Ali Bazarbachi
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Arnon Nagler
- Tel Aviv University, BMT and Cord Blood Bank, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Fabio Ciceri
- Hematology & Bone Marrow Transplant, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mohamad Mohty
- Service d'Hematologie Clinique, Hopital Saint-Antoine, and INSERM UMRs 938, Paris, France
- EBMT Paris Study Office, Saint Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
| |
Collapse
|
3
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
4
|
Li JJ, Yu T, Zeng P, Tian J, Liu P, Qiao S, Wen S, Hu Y, Liu Q, Lu W, Zhang H, Huang P. Wild-type IDH2 is a therapeutic target for triple-negative breast cancer. Nat Commun 2024; 15:3445. [PMID: 38658533 PMCID: PMC11043430 DOI: 10.1038/s41467-024-47536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in isocitrate dehydrogenases (IDH) are oncogenic events due to the generation of oncogenic metabolite 2-hydroxyglutarate. However, the role of wild-type IDH in cancer development remains elusive. Here we show that wild-type IDH2 is highly expressed in triple negative breast cancer (TNBC) cells and promotes their proliferation in vitro and tumor growth in vivo. Genetic silencing or pharmacological inhibition of wt-IDH2 causes a significant increase in α-ketoglutarate (α-KG), indicating a suppression of reductive tricarboxylic acid (TCA) cycle. The aberrant accumulation of α-KG due to IDH2 abrogation inhibits mitochondrial ATP synthesis and promotes HIF-1α degradation, leading to suppression of glycolysis. Such metabolic double-hit results in ATP depletion and suppression of tumor growth, and renders TNBC cells more sensitive to doxorubicin treatment. Our study reveals a metabolic property of TNBC cells with active utilization of glutamine via reductive TCA metabolism, and suggests that wild-type IDH2 plays an important role in this metabolic process and could be a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jiang-Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Tiantian Yu
- Metabolic Innovation Center, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Peiting Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Jingyu Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Qiao Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Hui Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
- Metabolic Innovation Center, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.
- Metabolic Innovation Center, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Chaudhary S, Chaudhary P, Ahmad F, Arora N. Acute Myeloid Leukemia and Next-Generation Sequencing Panels for Diagnosis: A Comprehensive Review. J Pediatr Hematol Oncol 2024; 46:125-137. [PMID: 38447075 PMCID: PMC10956683 DOI: 10.1097/mph.0000000000002840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of acquired somatic genetic alterations in hematopoietic progenitor cells, which alter the normal mechanisms of self-renewal, proliferation, and differentiation. Due to significant technological advancements in sequencing technologies in the last 2 decades, classification and prognostic scoring of AML has been refined, and multiple guidelines are now available for the same. The authors have tried to summarize, latest guidelines for AML diagnosis, important markers associated, epigenetics markers, various AML fusions and their importance, etc. Review of literature suggests lack of study or comprehensive information about current NGS panels for AML diagnosis, genes and fusions covered, their technical know-how, etc. To solve this issue, the authors have tried to present detailed review about currently in use next-generation sequencing myeloid panels and their offerings.
Collapse
|
6
|
Scholl JN, Weber AF, Dias CK, Lima VP, Grun LK, Zambonin D, Anzolin E, Dos Santos Dias WW, Kus WP, Barbé-Tuana F, Battastini AMO, Worm PV, Figueiró F. Characterization of purinergic signaling in tumor-infiltrating lymphocytes from lower- and high-grade gliomas. Purinergic Signal 2024; 20:47-64. [PMID: 36964277 PMCID: PMC10828327 DOI: 10.1007/s11302-023-09931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/06/2023] [Indexed: 03/26/2023] Open
Abstract
Malignant gliomas are highly heterogeneous glia-derived tumors that present an aggressive and invasive nature, with a dismal prognosis. The multi-dimensional interactions between glioma cells and other tumor microenvironment (TME) non-tumoral components constitute a challenge to finding successful treatment strategies. Several molecules, such as extracellular purines, participate in signaling events and support the immunosuppressive TME of glioma patients. The purinergic signaling and the ectoenzymes network involved in the metabolism of these extracellular nucleotides are still unexplored in the glioma TME, especially in lower-grade gliomas (LGG). Also, differences between IDH-mutant (IDH-Mut) versus wild-type (IDH-WT) gliomas are still unknown in this context. For the first time, to our knowledge, this study characterizes the TME of LGG, high-grade gliomas (HGG) IDH-Mut, and HGG IDH-WT patients regarding purinergic ectoenzymes and P1 receptors, focusing on tumor-infiltrating lymphocytes. Here, we show that ectoenzymes from both canonical and non-canonical pathways are increased in the TME when compared to the peripheral blood. We hypothesize this enhancement supports extracellular adenosine generation, hence increasing TME immunosuppression.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Augusto Ferreira Weber
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Camila Kehl Dias
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Vinícius Pierdoná Lima
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Lucas Kich Grun
- Programa de Pós-Graduação Em Pediatria E Saúde da Criança, Escola de Medicina, PUCRS, Porto Alegre, RS, Brazil
| | - Diego Zambonin
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
| | - Eduardo Anzolin
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
| | | | | | - Florencia Barbé-Tuana
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Escola de Ciências da Saúde E da Vida, PUCRS, Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo Valdeci Worm
- Departamento de Neurocirurgia, Hospital Cristo Redentor, Porto Alegre, Brazil
- Departmento de Cirurgia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande Do Sul, Porto Alegre, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Roma A, Goodridge LD, Spagnuolo PA. Reductive carboxylation of glutamine as a potential target in acute myeloid leukemia. Oncotarget 2023; 14:947-948. [PMID: 38039409 PMCID: PMC10691817 DOI: 10.18632/oncotarget.28474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 12/03/2023] Open
Affiliation(s)
| | | | - Paul A. Spagnuolo
- Correspondence to:Paul A. Spagnuolo, Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada email
| |
Collapse
|
8
|
Nisticò C, Chiarella E. An Overview on Lipid Droplets Accumulation as Novel Target for Acute Myeloid Leukemia Therapy. Biomedicines 2023; 11:3186. [PMID: 38137407 PMCID: PMC10741140 DOI: 10.3390/biomedicines11123186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic reprogramming is a key alteration in tumorigenesis. In cancer cells, changes in metabolic fluxes are required to cope with large demands on ATP, NADPH, and NADH, as well as carbon skeletons. In particular, dysregulation in lipid metabolism ensures a great energy source for the cells and sustains cell membrane biogenesis and signaling molecules, which are necessary for tumor progression. Increased lipid uptake and synthesis results in intracellular lipid accumulation as lipid droplets (LDs), which in recent years have been considered hallmarks of malignancies. Here, we review current evidence implicating the biogenesis, composition, and functions of lipid droplets in acute myeloid leukemia (AML). This is an aggressive hematological neoplasm originating from the abnormal expansion of myeloid progenitor cells in bone marrow and blood and can be fatal within a few months without treatment. LD accumulation positively correlates with a poor prognosis in AML since it involves the activation of oncogenic signaling pathways and cross-talk between the tumor microenvironment and leukemic cells. Targeting altered LD production could represent a potential therapeutic strategy in AML. From this perspective, we discuss the main inhibitors tested in in vitro AML cell models to block LD formation, which is often associated with leukemia aggressiveness and which may find clinical application in the future.
Collapse
Affiliation(s)
- Clelia Nisticò
- Candiolo Cancer Institute, FPO-IRCCS, Department of Oncology, University of Torino, 10124 Candiolo, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University “Magna Græcia”, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Tigu AB, Bancos A. The Role of Epigenetic Modifier Mutations in Peripheral T-Cell Lymphomas. Curr Issues Mol Biol 2023; 45:8974-8988. [PMID: 37998740 PMCID: PMC10670124 DOI: 10.3390/cimb45110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a group of diseases with a low incidence, high degree of heterogeneity, and a dismal prognosis in most cases. Because of the low incidence of these diseases, there have been few therapeutic novelties developed over time. Nevertheless, this fact is changing presently as epigenetic modifiers have been shown to be recurrently mutated in some types of PTCLs, especially in the cases of PTCLs not otherwise specified (PTCL-NOS), T follicular helper (TFH), and angioimmunoblastic T-cell lymphoma (AITL). These have brought about more insight into PTCL biology, especially in the case of PTCLs arising from TFH lymphocytes. From a biological perspective, it has been observed that ten-eleven translocators (TET2) mutated T lymphocytes tend to polarize to TFH, while Tregs lose their inhibitory properties. IDH2 R172 was shown to have inhibitory effects on TET2, mimicking the effects of TET2 mutations, as well as having effects on histone methylation. DNA methyltransferase 3A (DNMT3A) loss-of-function, although it was shown to have opposite effects to TET2 from an inflammatory perspective, was also shown to increase the number of T lymphocyte progenitors. Aside from bringing about more knowledge of PTCL biology, these mutations were shown to increase the sensitivity of PTCLs to certain epigenetic therapies, like hypomethylating agents (HMAs) and histone deacetylase inhibitors (HDACis). Thus, to answer the question from the title of this review: We found the Achilles heel, but only for one of the Achilles.
Collapse
Affiliation(s)
- Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania
| | - Anamaria Bancos
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Babakhanlou R, DiNardo C, Borthakur G. IDH2 mutations in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1733-1741. [PMID: 37462435 DOI: 10.1080/10428194.2023.2237153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 11/07/2023]
Abstract
Advances in the treatment of acute myeloid leukemia (AML) over the last 40 years have been limited. With an improved understanding of the pathophysiology of the disease, the advent of new treatment options has enriched the armamentarium of the physician to combat the disease. Mutations of the isocitrate dehydrogenase (IDHs) genes are common in AML and occur in 20-30% of cases. These mutations lead to DNA hypermethylation, aberrant gene expression, cell proliferation, and abnormal differentiation. Targeting mutant IDH, either as monotherapy or in combination with hypomethylating agents (HMAs) or BCL-2 inhibitors, has opened new avenues of therapy for these patients.This review will outline the function of IDHs and focus on the biological effects of IDH2 mutations in AML, their prognosis and treatment options.
Collapse
Affiliation(s)
- Rodrick Babakhanlou
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
11
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
12
|
Alqahtani A, Wang M, Lou M, Alachkar H. Genomics and transcriptomic alterations of the glutamate receptors in acute myeloid leukemia. Clin Transl Sci 2023; 16:1828-1841. [PMID: 37670476 PMCID: PMC10582680 DOI: 10.1111/cts.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 09/07/2023] Open
Abstract
Glutamine and glutamate have been widely explored as potential therapeutic targets in acute myeloid leukemia (AML). In addition to its bioenergetic role in leukemia cell proliferation, L-glutamate is a neurotransmitter that acts on glutamate receptors. However, the role of glutamate receptors in AML is largely understudied. Here, we comprehensively analyze the genomic and transcriptomic alterations of glutamate receptor genes in AML using publicly available data. We investigated the frequency of mutations in the glutamate receptor genes and whether an association exist between the presence of these mutations and clinical and molecular characteristics or patient's clinical outcome. We also assessed the dysregulation of glutamate receptor gene expression in AML with and without mutations and whether gene dysregulation is associated with clinical outcomes. We found that 29 (14.5%) of 200 patients with AML had a mutation in at least one glutamate receptor gene. The DNMT3A mutations were significantly more frequent in patients with mutations in at least one glutamate receptor gene compared with patients without mutations (13 of 29 [44.8%] vs. 41 of 171 [23.9%], p value: 0.02). Notably, patients with mutations in at least one glutamate receptor gene survived shorter than patients without mutations; however, the results did not reach statistical significance (overall survival: 15.5 vs. 19.0 months; p value: 0.10). Mutations in the glutamate receptor genes were not associated with changes in gene expression and the transcriptomic levels of glutamate receptor genes were not associated with clinical outcome.
Collapse
Affiliation(s)
- Amani Alqahtani
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Clinical Pharmacy, School of PharmacyNajran UniversityNajranSaudi Arabia
| | - Mengxi Wang
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mimi Lou
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Houda Alachkar
- USC Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- USC Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Tangella AV, Gajre A, Kantheti VV. Isocitrate Dehydrogenase 1 Mutation and Ivosidenib in Patients With Acute Myeloid Leukemia: A Comprehensive Review. Cureus 2023; 15:e44802. [PMID: 37692182 PMCID: PMC10483130 DOI: 10.7759/cureus.44802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from immature myeloid progenitors, resulting in a stem-cell-like proliferative state. This leads to excessive pools of immature cells that cannot function, which usually happens at the cost of the production of mature functional cells, leading to deleterious consequences. The management of AML has intensified as newer targeted therapies have come into existence owing to deeper genetic analysis of the disease and patients. Isocitrate dehydrogenase (IDH) is a cytosolic enzyme that is a part of the Krebs cycle and is extremely important in maintaining the homeostasis of the cell. It is produced by two different genes: IDH1 and IDH2. Ivosidenib has been associated with IDH1 inhibition and has been studied in numerous cancers. This review highlights the studies that have dealt with ivosidenib, an IDH1 inhibitor, in AML, the side effect profile, and the possible future course of the drug. After a scoping review of the available literature, we have identified that studies have consistently shown positive outcomes and that ivosidenib is a promising avenue for the management of AML. But it also has to be kept in mind that resistance to IDH inhibitors is on the rise, and the need to identify ways to circumvent this is to be addressed.
Collapse
Affiliation(s)
| | - Ashwin Gajre
- Internal Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, IND
| | | |
Collapse
|
14
|
Lee TD, Aisner DL, David MP, Eno CC, Gagan J, Gocke CD, Guseva NV, Haley L, Jajosky AN, Jones D, Mansukhani MM, Mroz P, Murray SS, Newsom KJ, Paulson V, Roy S, Rushton C, Segal JP, Senaratne TN, Siddon AJ, Starostik P, Van Ziffle JAG, Wu D, Xian RR, Yohe S, Kim AS. Current clinical practices and challenges in molecular testing: a GOAL Consortium Hematopathology Working Group report. Blood Adv 2023; 7:4599-4607. [PMID: 37236162 PMCID: PMC10425685 DOI: 10.1182/bloodadvances.2023010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
While molecular testing of hematologic malignancies is now standard of care, there is variability in practice and testing capabilities between different academic laboratories, with common questions arising on how to best meet clinical expectations. A survey was sent to hematopathology subgroup members of the Genomics Organization for Academic Laboratories consortium to assess current and future practice and potentially establish a reference for peer institutions. Responses were received from 18 academic tertiary-care laboratories regarding next-generation sequencing (NGS) panel design, sequencing protocols and metrics, assay characteristics, laboratory operations, case reimbursement, and development plans. Differences in NGS panel size, use, and gene content were reported. Gene content for myeloid processes was reported to be generally excellent, while genes for lymphoid processes were less well covered. The turnaround time (TAT) for acute cases, including acute myeloid leukemia, was reported to range from 2 to 7 calendar days to 15 to 21 calendar days, with different approaches to achieving rapid TAT described. To help guide NGS panel design and standardize gene content, consensus gene lists based on current and future NGS panels in development were generated. Most survey respondents expected molecular testing at academic laboratories to continue to be viable in the future, with rapid TAT for acute cases likely to remain an important factor. Molecular testing reimbursement was reported to be a major concern. The results of this survey and subsequent discussions improve the shared understanding of differences in testing practices for hematologic malignancies between institutions and will help provide a more consistent level of patient care.
Collapse
Affiliation(s)
- Thomas D. Lee
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Dara L. Aisner
- Department of Pathology, University of Colorado, Aurora, CO
| | - Marjorie P. David
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Celeste C. Eno
- Department of Pathology and Lab Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern, Dallas, TX
| | - Christopher D. Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Lisa Haley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Audrey N. Jajosky
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY
| | - Daniel Jones
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH
| | - Mahesh M. Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Pawel Mroz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Sarah S. Murray
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Kimberly J. Newsom
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Vera Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Somak Roy
- Department of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Chase Rushton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | | | - T. Niroshini Senaratne
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Alexa J. Siddon
- Departments of Laboratory Medicine & Pathology, Yale School of Medicine, New Haven, CT
| | - Petr Starostik
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Rena R. Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sophia Yohe
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Sharma P, Borthakur G. Targeting metabolic vulnerabilities to overcome resistance to therapy in acute myeloid leukemia. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:567-589. [PMID: 37842232 PMCID: PMC10571063 DOI: 10.20517/cdr.2023.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 10/17/2023]
Abstract
Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Collapse
Affiliation(s)
| | - Gautam Borthakur
- Department of Leukemia, Section of Molecular Hematology and Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
17
|
Al-Khatib SM, Ababneh O, Abushukair H, Abdo N, Al-Eitan LN. The impact of IDH and NAT2 gene polymorphisms in acute myeloid leukemia risk and overall survival in an Arab population: A case-control study. PLoS One 2023; 18:e0289014. [PMID: 37478088 PMCID: PMC10361469 DOI: 10.1371/journal.pone.0289014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy of the myeloid cells due to the clonal and malignant proliferation of blast cells. The etiology of AML is complex and involves environmental and genetic factors. Such genetic aberrations include FLT3, DNMT3, IDH1, IDH2, NAT2, and WT. In this study, we analyzed the relationship between five, not previously studied in any Arab population, single nucleotide polymorphisms (SNPs) and the risk and overall survival of AML in Jordanian patients. The SNPs are NAT2 (rs1799930 and rs1799931), IDH1 (rs121913500), and IDH2 (rs121913502 and rs1057519736). A total number of 30 AML patients and 225 healthy controls were included in this study. Females comprised 50% (n = 15) and 65.3% (n = 147) of patients and controls, respectively. For AML patients (case group) Genomic DNA was extracted from formalin-fixed paraffin-embedded tissues and from peripheral blood samples for the control subjects group. Genotyping of the genetic polymorphisms was conducted using a sequencing protocol. Our study indicates that NAT2 rs1799930 SNP had a statistically significant difference in genotype frequency between cases and controls (p = 0.023) while IDH mutations did not correlate with the risk and survival of AML in the Jordanian population. These results were also similar in the TCGA-LAML cohorts with the notable exception of the rare NAT2 mutation. A larger cohort study is needed to further investigate our results.
Collapse
Affiliation(s)
- Sohaib M. Al-Khatib
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Obada Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hassann Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour Abdo
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Laith N. Al-Eitan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
18
|
Casado P, Cutillas PR. Proteomic Characterization of Acute Myeloid Leukemia for Precision Medicine. Mol Cell Proteomics 2023; 22:100517. [PMID: 36805445 PMCID: PMC10152134 DOI: 10.1016/j.mcpro.2023.100517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous cancer of the hematopoietic system with no cure for most patients. In addition to chemotherapy, treatment options for AML include recently approved therapies that target proteins with roles in AML pathobiology, such as FLT3, BLC2, and IDH1/2. However, due to disease complexity, these therapies produce very diverse responses, and survival rates are still low. Thus, despite considerable advances, there remains a need for therapies that target different aspects of leukemic biology and for associated biomarkers that define patient populations likely to respond to each available therapy. To meet this need, drugs that target different AML vulnerabilities are currently in advanced stages of clinical development. Here, we review proteomics and phosphoproteomics studies that aimed to provide insights into AML biology and clinical disease heterogeneity not attainable with genomic approaches. To place the discussion in context, we first provide an overview of genetic and clinical aspects of the disease, followed by a summary of proteins targeted by compounds that have been approved or are under clinical trials for AML treatment and, if available, the biomarkers that predict responses. We then discuss proteomics and phosphoproteomics studies that provided insights into AML pathogenesis, from which potential biomarkers and drug targets were identified, and studies that aimed to rationalize the use of synergistic drug combinations. When considered as a whole, the evidence summarized here suggests that proteomics and phosphoproteomics approaches can play a crucial role in the development and implementation of precision medicine for AML patients.
Collapse
Affiliation(s)
- Pedro Casado
- Cell Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Pedro R Cutillas
- Cell Signalling & Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; The Alan Turing Institute, The British Library, London, United Kingdom; Digital Environment Research Institute (DERI), Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
19
|
Xu X, Wang H, Han H, Yao Y, Li X, Qi J, Cai C, Zhou M, Tang Y, Pan T, Zhang Z, Yang J, Wu D, Han Y. Clinical characteristics and prognostic significance of DNA methylation regulatory gene mutations in acute myeloid leukemia. Clin Epigenetics 2023; 15:54. [PMID: 36991512 PMCID: PMC10061765 DOI: 10.1186/s13148-023-01474-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND DNA methylation is a form of epigenetic modification that regulates gene expression. However, there are limited data on the comprehensive analysis of DNA methylation regulated gene mutations (DMRGM) in acute myeloid leukemia (AML) mainly referring to DNA methyltransferase 3α (DNMT3A), isocitrate dehydrogenase 1 (IDH1), isocitrate dehydrogenase 2 (IDH2), and Tet methylcytidine dioxygenase 2 (TET2). RESULTS A retrospective study of the clinical characteristics and gene mutations in 843 newly diagnosed non-M3 AML patients was conducted between January 2016 and August 2019. 29.7% (250/843) of patients presented with DMRGM. It was characterized by older age, higher white blood cell count, and higher platelet count (P < 0.05). DMRGM frequently coexisted with FLT3-ITD, NPM1, FLT3-TKD, and RUNX1 mutations (P < 0.05). The CR/CRi rate was only 60.3% in DMRGM patients, significantly lower than in non-DMRGM patients (71.0%, P = 0.014). In addition to being associated with poor overall survival (OS), DMRGM was also an independent risk factor for relapse-free survival (RFS) (HR: 1.467, 95% CI: 1.030-2.090, P = 0.034). Furthermore, OS worsened with an increasing burden of DMRGM. Patients with DMRGM may be benefit from hypomethylating drugs, and the unfavorable prognosis of DMRGM can be overcome by hematopoietic stem cell transplantation (HSCT). For external validation, the BeatAML database was downloaded, and a significant association between DMRGM and OS was confirmed (P < 0.05). CONCLUSION Our study provides an overview of DMRGM in AML patients, which was identified as a risk factor for poor prognosis.
Collapse
Affiliation(s)
- Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Hong Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Haohao Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yifang Yao
- Soochow Hopes Hematonosis Hospital, Suzhou, People's Republic of China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Chengsen Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Jingyi Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Suzhou, 215000, Jiangsu Province, People's Republic of China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, People's Republic of China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
20
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
21
|
Babakhanlou R, Ravandi-Kashani F. Non-intensive acute myeloid leukemia therapies for older patients. Expert Rev Hematol 2023; 16:171-180. [PMID: 36864772 DOI: 10.1080/17474086.2023.2184342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive disease predominantly affecting the elderly population. The elderly population represents a challenging group to treat and the prognosis is generally poor with significantly worse treatment outcomes compared to the younger population. While the goal of treatment for younger fit patients is cure and includes intensive chemotherapy and stem cell transplantation, these strategies are not always feasible for elderly unfit patients due to increased frailty, co-morbidities, and, subsequently, an increased risk of treatment-related toxicity and mortality. AREAS COVERED This review will discuss both patient- and disease-related factors, outline prognostication models and summarize current treatment options, including intensive and less intensive treatment strategies and novel agents. EXPERT OPINION Although recent years have seen major advances in the development of low-intensity therapies, there is still a lack of consensus on the optimal treatment for this patient group. Because of the heterogeneity of the disease, personalizing the treatment strategy is important and curative-oriented approaches should be selected wisely, rather than following a rigid hierarchical algorithm.
Collapse
Affiliation(s)
- Rodrick Babakhanlou
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi-Kashani
- Department of Leukemia, the University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
22
|
Sabri A, Omran MM, Azim SA, Abdelfattah R, Allam RM, Shouman SA. A Study to Explore the Role of IDH1 (R132) Mutation on Imatinib Toxicity and Effect of ABCG2/OCT1 Expression on N-Desmethyl Imatinib Plasma Level in Egyptian Chronic Myeloid Leukemia Patients. Drug Res (Stuttg) 2023; 73:146-155. [PMID: 36630991 DOI: 10.1055/a-1924-7746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Imatinib mesylate (IM) is the gold standard for treatment of Chronic Myeloid Leukemia (CML). This study aimed to gain more knowledge of the altered PK, pharmacogenetic factors, and gene expression leading to variable IM levels. Fifty patients with chronic phase-CML were enrolled in this study and divided as 25 responders and 25 non-responders (patients are directly recruited after response assessment). HPLC/MS/MS was used to determine trough and peak concentration of imatinib and N-desmethyl imatinib in the blood. PCR-RFLP technique was used to detect IDH1 gene mutation (R132). The median value of IM trough level was significantly higher, the P/T ratio was significantly lower and the α-1-acid glycoprotein (AGP) was significantly higher among responders compared to non-responders (P=0.007, 0.009 and 0.048, respectively). Higher N-desmethyl imatinib peak plasma concentration was observed with low mRNA expression of ABCG2 and OCT1 (P=0.01 and 0.037, respectively). IDH1 R132 gene mutation was associated with a significant increase in toxicities (P=0.028). In conclusion, IM trough level, P/T ratio and AGP was significantly higher in responders. In addition, ABCG2 and OCT1 gene expression may affect the interindividual PK variation. Although a prospective study with a larger patient population is necessary to validate these findings. IDH1 mutation is a predictor of increased toxicity with IM treatment.
Collapse
Affiliation(s)
- Alaa Sabri
- Egyptian Pharmaceutical Vigilance Center, Egyptian Drug Authority
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - S Abdel Azim
- Biochemistry Department, Faculty of Pharmacy, Cairo University
| | - Raafat Abdelfattah
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rasha Mahmoud Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
23
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
24
|
Wang J, Wu J, Wang Y, Wang Y, Jiang C, Zou M, Jin X, Sun X, Zhang Y, Ma S, Wang G, Zhu X, Lu H, Xu C, Wang W, Li L, Han Y, Cai S, Li H. A DNA Damage Response Related Signature to Predict Prognosis in Patients with Acute Myeloid Leukemia. Cancer Invest 2023; 41:1-13. [PMID: 36629468 DOI: 10.1080/07357907.2023.2167209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/26/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
The prognosis of acute myeloid leukemia (AML) is disappointing in most subtypes and varies widely. DNA damage response (DDR) is associated with prognosis and immunotherapy in multiple cancers. Here, we identify a signature of eight DDR-related genes associated with overall survival, which stratifies AML patients into high- and low-risk groups. Patients in low-risk group were more likely to respond to sorafenib. The signature could be an independent prognostic predictor for patients treated with ADE and ADE plus gemtuzumab ozogamicin. Therefore, this DDR prognostic signature might be applied to prognostic stratification and treatment selection in AML patients, which warrants further studies.
Collapse
Affiliation(s)
- Jun Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jiafei Wu
- School of Clinical Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yijing Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yu Wang
- Department of Hematology, Dong Li Hospital, Chengdu, China
| | - Chuanyan Jiang
- Department of Hematology, Chengdu Second People's Hospital, Chengdu, China
| | - Mengying Zou
- Department of Hematology, Chengdu BOE Hospital, Chengdu, China
| | | | | | - Yu Zhang
- Burning Rock Biotech, Guangzhou, China
| | - Sijia Ma
- Burning Rock Biotech, Guangzhou, China
| | | | - Xin Zhu
- Burning Rock Biotech, Guangzhou, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Wenxian Wang
- Department of Clinical Trial, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Leo Li
- Burning Rock Biotech, Guangzhou, China
| | | | | | - Hui Li
- Department of Hematology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Steinhäuser S, Silva P, Lenk L, Beder T, Hartmann A, Hänzelmann S, Fransecky L, Neumann M, Bastian L, Lipinski S, Richter K, Bultmann M, Hübner E, Xia S, Röllig C, Vogiatzi F, Schewe DM, Yumiceba V, Schultz K, Spielmann M, Baldus CD. Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia 2023; 37:134-142. [PMID: 36411356 PMCID: PMC9883162 DOI: 10.1038/s41375-022-01751-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 11/22/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by complex molecular alterations and driver mutations. Elderly patients show increased frequencies of IDH mutations with high chemoresistance and relapse rates despite recent therapeutic advances. Besides being associated with global promoter hypermethylation, IDH1 mutation facilitated changes in 3D DNA-conformation by CTCF-anchor methylation and upregulated oncogene expression in glioma, correlating with poor prognosis. Here, we investigated the role of IDH1 p.R132H mutation in altering 3D DNA-architecture and subsequent oncogene activation in AML. Using public RNA-Seq data, we identified upregulation of tyrosine kinase PDGFRA in IDH1-mutant patients, correlating with poor prognosis. DNA methylation analysis identified CpG hypermethylation within a CTCF-anchor upstream of PDGFRA in IDH1-mutant patients. Increased PDGFRA expression, PDGFRA-CTCF methylation and decreased CTCF binding were confirmed in AML CRISPR cells with heterozygous IDH1 p.R132H mutation and upon exogenous 2-HG treatment. IDH1-mutant cells showed higher sensitivity to tyrosine kinase inhibitor dasatinib, which was supported by reduced blast count in a patient with refractory IDH1-mutant AML after dasatinib treatment. Our data illustrate that IDH1 p.R132H mutation leads to CTCF hypermethylation, disrupting DNA-looping and insulation of PDGFRA, resulting in PDGFRA upregulation in IDH1-mutant AML. Treatment with dasatinib may offer a novel treatment strategy for IDH1-mutant AML.
Collapse
Affiliation(s)
- Sophie Steinhäuser
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Patricia Silva
- Department of Hematology and Oncology, Charité University Hospital, Berlin, Germany
| | - Lennart Lenk
- Department of Pediatrics I, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Beder
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alina Hartmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sonja Hänzelmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Fransecky
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Martin Neumann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lorenz Bastian
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simone Lipinski
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Kathrin Richter
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Miriam Bultmann
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Emely Hübner
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Shuli Xia
- Kennedy Krieger Institute, Baltimore, MD, USA
- School of Medicine, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Christoph Röllig
- Department of Internal Medicine I, University Hospital Carl-Gustav-Carus, Dresden, Germany
| | - Fotini Vogiatzi
- Department of Pediatrics I, ALL-BFM Study Group, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Veronica Yumiceba
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kristin Schultz
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Malte Spielmann
- Institute for Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Claudia Dorothea Baldus
- Department of Inner Medicine II (Hematology/Oncology), University Hospital Schleswig-Holstein, Kiel, Germany.
- University Cancer Center Schleswig-Holstein (UCCSH), University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
26
|
Zhou Q, Zhao D, Eladl E, Capo-Chichi JM, Kim DDH, Chang H. Molecular genetic characterization of Philadelphia chromosome-positive acute myeloid leukemia. Leuk Res 2023; 124:107002. [PMID: 36563650 DOI: 10.1016/j.leukres.2022.107002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Philadelphia chromosome-positive acute myeloid leukemia (Ph+ AML) is a provisional disease entity in the 2016 WHO classification, while its genetic profile of Ph+ AML remains poorly defined. In addition, the differentiating features of Ph+ AML and chronic myeloid leukemia in myeloid blast crisis (CML-MBC) remain controversial. METHODS We conducted a retrospective study of 15 Ph+ AML patients to compare their clinical and laboratory profiles with 27 CML-MBC patients. RESULTS Compared to CML-MBC, Ph+ AML patients presented with significantly higher peripheral WBC count and bone marrow blast percentage. The immunophenotypic profiles were largely similar between Ph+ AML and CML-MBC, except for CD4 expression, which was significantly enriched in CML-MBC. Ph+ AML patients less frequently harboured co-occurring additional cytogenetic abnormalities (ACA) compared to CML-MBC, and trisomy 19 (23%) and IDH1/2 (46%) were the most common ACA and mutated genes in Ph+ AML, respectively. Overall survival (OS) did not significantly differ between Ph+ AML and CML-MBC. Ph+ AML without CML-like features appeared to have a better outcome compared to Ph+ AML with CML-like features; ACA in Ph+ AML may confer an even worse prognosis. CONCLUSIONS Our results indicate that patients with Ph+ AML share similar genetic profiles and clinical outcomes with those with CML-MBC, thus should be classified as a high-risk entity.
Collapse
Affiliation(s)
- Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Haematology, University Health Network, Toronto, Ontario, Canada
| | - Davidson Zhao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Entsar Eladl
- Department of Laboratory Haematology, University Health Network, Toronto, Ontario, Canada; Pathology Department, Mansoura University, Egypt
| | - Jose-Mario Capo-Chichi
- Clinical Laboratory Genetics, Genome Diagnostics Laboratory Medicine Program, University of Toronto, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- Department of Medical Oncology and Haematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Hong Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Haematology, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Yuan J, Song J, Chen C, Lv X, Bai J, Yang J, Zhou Y. Combination of ruxolitinib with ABT-737 exhibits synergistic effects in cells carrying concurrent JAK2 V617F and ASXL1 mutations. Invest New Drugs 2022; 40:1194-1205. [PMID: 36044173 DOI: 10.1007/s10637-022-01297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
The V617F mutation in Janus kinase 2 is considered one of the driver mutations leading to Philadelphia-negative myeloproliferative neoplasms (MPNs). Concurrent JAK2V617F and ASXL1 mutations accelerate the progression of myelofibrosis in patients with MPNs. Few therapies are currently available for patients with these two mutations. In our study, the combination of ruxolitinib with ABT-737 was evaluated in cells carrying JAK2V617F and ASXL1 double mutations. RNA sequencing indicated overactivated oxidative phosphorylation in JAK2V617F;Asxl1+/- cKit+ cells. The cell line model with JAK2V617F and ASXL1 double mutations (HEL-AKO cells) also exhibited dysregulated mitochondrial function with an increase in the reactive oxygen species levels and a decrease in the ATP levels. The colony growth inhibition rates of cells with JAK2V617F and ASXL1 double mutations were significantly lower than those of cells with only the JAK2V617F mutation. Combined treatment with ruxolitinib and ABT-737 promoted apoptosis and inhibited the proliferation of HEL-AKO cells. Cotreatment with the two drugs also inhibited the growth of bone marrow mononuclear cells isolated from patients with concurrent JAK2V617F and ASXL1 mutations. In conclusion, we provide preclinical evidence showing that the combination of ruxolitinib and ABT-737 is a promising therapeutic strategy for MPN patients with concurrent JAK2V617F and ASXL1 mutations.
Collapse
Affiliation(s)
- Jiajia Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Junzhe Song
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Chao Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xue Lv
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Bai
- Department of Hematology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- International Cooperation Laboratory of Stem Cell Research, Hebei Medical University, Shijiazhuang, 050000, China.
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
28
|
Maffini E, Ursi M, Barbato F, Dicataldo M, Roberto M, Campanini E, Dan E, De Felice F, De Matteis S, Storci G, Bonafè M, Arpinati M, Bonifazi F. The prevention of disease relapse after allogeneic hematopoietic cell transplantation in acute myeloid leukemia. Front Oncol 2022; 12:1066285. [DOI: 10.3389/fonc.2022.1066285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
Disease relapse represents by far the most frequent cause of hematopoietic cell transplantation (HCT) failure. Patients with acute leukemia suffering relapse after HCT have limited conventional treatment options with little possibility of cure and represent, de facto, suitable candidates for the evaluation of novel cellular and biological-based therapies. Donor lymphocyte infusions (DLI) has been one of the first cellular therapies adopted to treat post HCT relapse of acute leukemia patients and still now, it is widely adopted in preemptive and prophylactic settings, with renewed interest for manipulated cellular products such as NK-DLI. The acquisition of novel biological insights into pathobiology of leukemia relapse are translating into the clinic, with novel combinations of target therapies and novel agents, helping delineate new therapeutical landscapes. Hypomethylating agents alone or in combination with novel drugs demonstrated their efficacy in pre-clinical models and controlled trials. FLT3 inhibitors represent an essential therapeutical instrument incorporated in post-transplant maintenance strategies. The Holy grail of allogeneic transplantation lies in the separation of graft-vs.-host disease from graft vs. tumor effects and after more than five decades, is still the most ambitious goal to reach and many ways to accomplish are on their way.
Collapse
|
29
|
Molica M, Perrone S. Molecular targets for the treatment of AML in the forthcoming 5th World Health Organization Classification of Haematolymphoid Tumours. Expert Rev Hematol 2022; 15:973-986. [PMID: 36271671 DOI: 10.1080/17474086.2022.2140137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a genetically heterogeneous disease for which the treatment armamentarium has been historically restricted to chemotherapy. However, genomic and epigenomic alterations that contribute to AML initiation, maintenance, and relapse have disclosed new insights to the 5th update in WHO Classification of Haematolymphoid Tumours. AREAS COVERED After four decades of intensive chemotherapy as a 'one-size-fits-all' concept, several targeted agents have been approved for the treatment of AML. Several compounds, directed against regulators of apoptotic, epigenetic, or micro-environmental pathways, and immune-system modulators, are currently in development and investigation in clinical trials. We review advances in target-based therapy for AML focusing on their mechanism of action, examining the intracellular events and pathways, and the results from published clinical trials. EXPERT OPINION To improve patient clinical outcomes, find new biomarkers for therapeutic response, and pinpoint patients who might benefit from novel targeted medicines, next-generation sequencing is being used to evaluate AML-associated mutations. In fact, the new 5th edition of WHO classification has reaffirmed the importance of genetically defined entities that have a prognostic impact, but not all have a specific treatment available. New class of target drugs are in clinical development and could be beneficial to improve the therapeutic armamentarium available.
Collapse
Affiliation(s)
| | - Salvatore Perrone
- Hematology, Polo Universitario Pontino, S.M. Goretti Hospital, Latina, Italy.,Division of Hematology, University Hospital Paolo Giaccone, Palermo, Italy
| |
Collapse
|
30
|
Development and validation of an LC-MS/MS method for D- and L-2-hydroxyglutaric acid measurement in cerebrospinal fluid, urine and plasma: application to glioma. Bioanalysis 2022; 14:1271-1280. [PMID: 36453751 DOI: 10.4155/bio-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: IDH mutations have been identified as frequent molecular lesions in several tumor types, particularly in gliomas. As a putative marker of IDH mutations, elevated D-2-HG has been reported in glioma, acute myeloid leukemia and intrahepatic cholangiocarcinoma. Excessive production of L-2-HG has also been described in renal cell carcinoma and 2-hydroxyaciduria. Materials & methods: The authors present a fully optimized stable isotope dilution multiple reaction monitoring method for quantification of D-/L-2-HG using LC-MS/MS. This is the first method validation study performed on cerebrospinal fluid, plasma and urine demonstrating clinical applicability with samples from glioma patients. Results & conclusion: This method validation study showed high accuracy and precision with low limit of detection and limit of quantification values. The authors believe that the presented approach is highly applicable for basic and clinical research on related pathologies.
Collapse
|
31
|
Li D, Liang J, Yang W, Guo W, Song W, Zhang W, Wu X, He B. A distinct lipid metabolism signature of acute myeloid leukemia with prognostic value. Front Oncol 2022; 12:876981. [PMID: 35957912 PMCID: PMC9359125 DOI: 10.3389/fonc.2022.876981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy characterized by extensive genetic abnormalities that might affect the prognosis and provide potential drug targets for treatment. Reprogramming of lipid metabolism plays important roles in tumorigenesis and progression and has been newly recognized a new hallmark of malignancy, and some related molecules in the signal pathways could be prognostic biomarkers and potential therapeutic targets for cancer treatment. However, the clinical value of lipid metabolism reprogramming in AML has not been systematically explored. In this study, we aim to explore the clinical value of lipid metabolism reprogramming and develop a prognostic risk signature for AML. Methods We implemented univariate Cox regression analysis to identify the prognosis-related lipid metabolism genes, and then performed LASSO analysis to develop the risk signature with six lipid metabolism-related genes (LDLRAP1, PNPLA6, DGKA, PLA2G4A, CBR1, and EBP). The risk scores of samples were calculated and divided into low- and high-risk groups by the median risk score. Results Survival analysis showed the high-risk group hold the significantly poorer outcomes than the low-risk group. The signature was validated in the GEO datasets and displayed a robust prognostic value in the stratification analysis. Multivariate analysis revealed the signature was an independent prognostic factor for AML patients and could serve as a potential prognostic biomarker in clinical evaluation. Furthermore, the risk signature was also found to be closely related to immune landscape and immunotherapy response in AML. Conclusions Overall, we conducted a comprehensive analysis of lipid metabolism in AML and constructed a risk signature with six genes related to lipid metabolism for the malignancy, prognosis, and immune landscape of AML, and our study might contribute to better understanding in the use of metabolites and metabolic pathways as the potential prognostic biomarkers and therapeutic targets for AML.
Collapse
Affiliation(s)
- Ding Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jiaming Liang
- Department of Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Yang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenbin Guo
- Department of Pathology, Pingtan Comprehensive Experimental Area Hospital, Fuzhou, China
| | - Wenping Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People’s Hospital, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- *Correspondence: Baoxia He, ; Xuan Wu,
| | - Baoxia He
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Baoxia He, ; Xuan Wu,
| |
Collapse
|
32
|
Zhou B, Yang F, Qin L, Kuai J, Yang L, Zhang L, Sun P, Li G, Wang X. Computational study on novel natural compound inhibitor targeting IDH1_R132H. Aging (Albany NY) 2022; 14:5478-5492. [PMID: 35802554 PMCID: PMC9320544 DOI: 10.18632/aging.204162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/27/2022] [Indexed: 12/14/2022]
Abstract
Isocitrate dehydrogenases (IDH) catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate. IDH1 mutation has been reported in various tumors especially Cholangiocarcinoma, while the IDH1_R132H is reported to be the most common mutation of IDH1. IDH1_R132H inhibitors are effective anti-cancer drugs and have shown significant therapeutic effects in clinical. In this study, two novel natural compounds were identified to combine respectively with IDH1_R132H with a stronger binding force with conductive to interaction energy. They also showed low toxicity potential. Molecular dynamics simulation analysis demonstrated that the candidate ligands-IDH1_R132H complexes is stable in natural circumstances with favorable potential energy. Thus, Styraxlignolide F and Tremulacin were screened as promising IDH1_R132H inhibitors. We provide a solid foundation for the design and development of IDH1_R132H targeted drugs.
Collapse
Affiliation(s)
- Baolin Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Fang Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lei Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Jun Kuai
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Lanfang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Peisheng Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Guangpeng Li
- Department of Emergency, The First Affiliated Hospital of Xinxiang Medical College, Xin Xiang 453100, China
| | - Xinhui Wang
- Department of Oncology, First People's Hospital of Xinxiang, Xin Xiang 453100, China
| |
Collapse
|
33
|
Pollyea DA, DiNardo CD, Arellano ML, Pigneux A, Fiedler W, Konopleva M, Rizzieri DA, Smith BD, Shinagawa A, Lemoli RM, Dail M, Duan Y, Chyla B, Potluri J, Miller CL, Kantarjian HM. Impact of Venetoclax and Azacitidine in Treatment-Naïve Patients with Acute Myeloid Leukemia and IDH1/2 Mutations. Clin Cancer Res 2022; 28:2753-2761. [PMID: 35046058 PMCID: PMC9365354 DOI: 10.1158/1078-0432.ccr-21-3467] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate efficacy and safety of venetoclax + azacitidine among treatment-naïve patients with IDH1/2-mutant (mut) acute myeloid leukemia (AML). PATIENTS AND METHODS Data were pooled from patients enrolled in a phase III study (NCT02993523) that compared patients treated with venetoclax + azacitidine or placebo + azacitidine and a prior phase Ib study (NCT02203773) where patients were treated with venetoclax + azacitidine. Enrolled patients were ineligible for intensive therapy due to age ≥75 years and/or comorbidities. Patients on venetoclax + azacitidine received venetoclax 400 mg orally (days 1-28) and azacitidine (75 mg/m2; days 1-7/28-day cycle). RESULTS In the biomarker-evaluable population, IDH1/2mut was detected in 81 (26%) and 28 (22%) patients in the venetoclax + azacitidine and azacitidine groups. Composite complete remission [CRc, complete remission (CR)+CR with incomplete hematologic recovery (CRi)] rates (venetoclax + azacitidine/azacitidine) among patients with IDH1/2mut were 79%/11%, median duration of remission (mDoR) was 29.5/9.5 months, and median overall survival (mOS) was 24.5/6.2 months. CRc rates among patients with IDH1/2 wild-type (WT) were 63%/31%, mDoR 17.5/10.3 months, and mOS 12.3/10.1 months. In patients with IDH1mut, CRc rates (venetoclax + azacitidine/azacitidine) were 66.7%/9.1% and mOS 15.2/2.2 months. In patients with IDH2mut, CRc rates were 86.0%/11.1% and mOS not reached (NR)/13.0 months. Patients with IDH1/2 WT AML treated with venetoclax + azacitidine with poor-risk cytogenetics had inferior outcomes compared with patients with IDH1/2mut, who had superior outcomes regardless of cytogenetic risk (mOS, IDH1/2mut: intermediate-risk, 24.5 months; poor-risk, NR; IDH1/2 WT: intermediate, 19.2 and poor, 7.4 months). There were no unexpected toxicities in the venetoclax + azacitidine group. CONCLUSIONS Patients with IDH1/2mut who received venetoclax + azacitidine had high response rates, durable remissions, and significant OS; cytogenetic risk did not mitigate the favorable outcomes seen from this regimen for IDH1/2mut. See related commentary by Perl and Vyas, p. 2719.
Collapse
Affiliation(s)
- Daniel A. Pollyea
- Division of Hematology, School of Medicine, University of Colorado, Aurora, Colorado.,Corresponding Author: Daniel A. Pollyea, School of Medicine Division of Hematology, University of Colorado, 1665 Aurora Court, Mail Stop F754, Aurora, CO 80045. E-mail:
| | - Courtney D. DiNardo
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martha L. Arellano
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Arnaud Pigneux
- Department of Hematology, CHU de Bordeaux, Bordeaux, France
| | - Walter Fiedler
- Department of Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - B. Douglas Smith
- Department of Oncology, Johns Hopkins Medicine, Baltimore, Maryland
| | - Atsushi Shinagawa
- Department of Hematology, Hitachi General Hospital, Hitachi-shi, Japan
| | - Roberto M. Lemoli
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy.,San Martino Hospital IRCCS, Genoa, Italy
| | | | | | | | | | | | - Hagop M. Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
34
|
Gong Y, Wei S, Wei Y, Chen Y, Cui J, Yu Y, Lin X, Yan H, Qin H, Yi L. IDH2: A novel biomarker for environmental exposure in blood circulatory system disorders (Review). Oncol Lett 2022; 24:278. [PMID: 35814829 PMCID: PMC9260733 DOI: 10.3892/ol.2022.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
As the risk of harmful environmental exposure is increasing, it is important to find suitable targets for the diagnosis and treatment of the diseases caused. Isocitrate dehydrogenase 2 (IDH2) is an enzyme located in the mitochondria; it plays an important role in numerous cell processes, including maintaining redox homeostasis, participating in the tricarboxylic acid cycle and indirectly taking part in the transmission of the oxidative respiratory chain. IDH2 mutations promote progression in acute myeloid leukemia, glioma and other diseases. The present review mainly summarizes the role and mechanism of IDH2 with regard to the biological effects, such as the mitophagy and apoptosis of animal or human cells, caused by environmental pollution such as radiation, heavy metals and other environmental exposure factors. The possible mechanisms of these biological effects are described in terms of IDH2 expression, reduced nicotine adenine dinucleotide phosphate content and reactive oxygen species level, among other variables. The impact of environmental pollution on human health is increasingly attracting attention. IDH2 may therefore become useful as a potential diagnostic and therapeutic target for environmental exposure-induced diseases.
Collapse
Affiliation(s)
- Ya Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong Chen
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Cui
- Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong Yan
- Pediatric Intensive Care Unit, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
35
|
Genthon A, Dragoi D, Memoli M, Hirsch P, Favale F, Suner L, Chaquin M, Boncoeur P, Marjanovic Z, Bonnin A, Sestili S, Dulery R, Malard F, Brissot E, Banet A, van de Wyngaert Z, Vekhoff A, Delhommeau F, Mohty M, Legrand O. Isocitrate dehydrogenase inhibitors as a bridge to allogeneic stem cell transplant in relapsed or refractory acute myeloid leukaemia. Br J Haematol 2022; 198:780-784. [PMID: 35615877 DOI: 10.1111/bjh.18290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Alexis Genthon
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Diana Dragoi
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Mara Memoli
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Pierre Hirsch
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Fabrizia Favale
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Ludovic Suner
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Michael Chaquin
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Pierre Boncoeur
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Zora Marjanovic
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Agnès Bonnin
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Simona Sestili
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Remy Dulery
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Florent Malard
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Eolia Brissot
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Anne Banet
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Zoe van de Wyngaert
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Anne Vekhoff
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Francois Delhommeau
- Service d'Hématologie Biologique, Hôpital Saint Antoine, AP-HP, Centre de Recherche Saint-Antoine (CRSA), INSERM UMR938, Sorbonne Université, Paris, France
| | - Mohamad Mohty
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| | - Ollivier Legrand
- Service d'hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, INSERM UMRs 938, Sorbonne Université, Paris, France
| |
Collapse
|
36
|
Yang J, Gupta E, Horton JR, Blumenthal RM, Zhang X, Cheng X. Differential ETS1 binding to T:G mismatches within a CpG dinucleotide contributes to C-to-T somatic mutation rate of the IDH2 hotspot at codon Arg140. DNA Repair (Amst) 2022; 113:103306. [PMID: 35255310 PMCID: PMC9411267 DOI: 10.1016/j.dnarep.2022.103306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
Cytosine to thymine (C>T) somatic mutation is highly enriched in certain types of cancer, and most commonly occurs via deamination of a 5-methylcytosine (5mC) to thymine, in the context of a CpG dinucleotide. In theory, deamination should occur at equal rates to both 5mC nucleotides on opposite strands. In most cases, the resulting T:G or G:T mismatch can be repaired by thymine DNA glycosylase activities. However, while some hotspot-associated CpG mutations have approximately equal numbers of mutations that resulted either from C>T or G>A in a CpG dinucleotide, many showed strand bias, being skewed toward C>T of the first base pair or G>A of the second base pair. Using the IDH2 Arg140 codon as a case study, we show that the two possible T:G mismatches at the codon-specific CpG site have differing effects on transcription factor ETS1 binding affinity, differentially affecting access of a repair enzyme (MBD4) to the deamination-caused T:G mismatch. Our study thus provides a plausible mechanism for exclusion of repair enzymes by the differential binding of transcription factors affecting the rate at which the antecedent opposite-strand mutations occur.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Esha Gupta
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Masui K, Cavenee WK, Mischel PS, Shibata N. The metabolomic landscape plays a critical role in glioma oncogenesis. Cancer Sci 2022; 113:1555-1563. [PMID: 35271755 PMCID: PMC9128185 DOI: 10.1111/cas.15325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022] Open
Abstract
Cancer cells depend on metabolic reprogramming for survival, undergoing profound shifts in nutrient sensing, nutrient uptake and flux through anabolic pathways, in order to drive nucleotide, lipid, and protein synthesis and provide key intermediates needed for those pathways. Although metabolic enzymes themselves can be mutated, including to generate oncometabolites, this is a relatively rare event in cancer. Usually, gene amplification, overexpression, and/or downstream signal transduction upregulate rate‐limiting metabolic enzymes and limit feedback loops, to drive persistent tumor growth. Recent molecular‐genetic advances have revealed discrete links between oncogenotypes and the resultant metabolic phenotypes. However, more comprehensive approaches are needed to unravel the dynamic spatio‐temporal regulatory map of enzymes and metabolites that enable cancer cells to adapt to their microenvironment to maximize tumor growth. Proteomic and metabolomic analyses are powerful tools for analyzing a repertoire of metabolic enzymes as well as intermediary metabolites, and in conjunction with other omics approaches could provide critical information in this regard. Here, we provide an overview of cancer metabolism, especially from an omics perspective and with a particular focus on the genomically well characterized malignant brain tumor, glioblastoma. We further discuss how metabolomics could be leveraged to improve the management of patients, by linking cancer cell genotype, epigenotype, and phenotype through metabolic reprogramming.
Collapse
Affiliation(s)
- Kenta Masui
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.,ChEM-H, Stanford University, Stanford, CA, 94305, USA
| | - Noriyuki Shibata
- Department of Pathology, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
38
|
Byun JM, Yoo SJ, Kim HJ, Ahn JS, Koh Y, Jang JH, Yoon SS. IDH1/2 mutations in acute myeloid leukemia. Blood Res 2022; 57:13-19. [PMID: 35197370 PMCID: PMC8958365 DOI: 10.5045/br.2021.2021152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
The mutational and epigenetic landscape of acute myeloid leukemia (AML) has become increasingly well understood in recent years, informing on biological targets for precision medicine. Among the most notable findings was the recognition of mutational hot-spots in the isocitrate dehydrogenase (IDH) genes. In this review, we provide an overview on the IDH1/2 mutation landscape in Korean AML patients, and compare it with available public data. We also discuss the role of IDH1/2 mutations as biomarkers and drug targets. Taken together, occurrence of IDH1/2 mutations is becoming increasingly important in AML treatment, thus requiring thorough examination and follow-up throughout the clinical course of the disease.
Collapse
Affiliation(s)
- Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Joo Yoo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeong-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jun Ho Jang
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Stefancu A, Moisoiu V, Desmirean M, Iancu SD, Tigu AB, Petrushev B, Jurj A, Cozan RG, Budisan L, Fetica B, Roman A, Dobie G, Turcas C, Zdrenghea M, Teodorescu P, Pasca S, Piciu D, Dima D, Bálint Z, Leopold N, Tomuleasa C. SERS-based DNA methylation profiling allows the differential diagnosis of malignant lymphadenopathy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120216. [PMID: 34364036 DOI: 10.1016/j.saa.2021.120216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
This study highlights the potential of surface-enhanced Raman scattering (SERS) to differentiate between B-cell lymphoma (BCL), T-cell lymphoma (TCL), lymph node metastasis of melanoma (Met) and control (Ctr) samples based on the specific SERS signal of DNA extracted from lymph node tissue biopsy. Differences in the methylation profiles as well as the specific interaction of malignant and non-malignant DNA with the metal nanostructure are captured in specific variations of the band at 1005 cm-1, attributed to 5-methylcytosine and the band at 730 cm-1, attributed to adenine. Thus, using the area ratio of these two SERS marker bands as input for univariate classification, an area under the curve (AUC) of 0.70 was achieved in differentiating between malignant and non-malignant DNA. In addition, DNA from the BCL and TCL groups exhibited differences in the area of the SERS band at 730 cm-1, yielding an AUC of 0.84 in differentiating between these two lymphadenopathies. Lastly, using multivariate data analysis techniques, an overall accuracy of 94.7% was achieved in the differential diagnosis between the BCL, TCL, Met and Ctr groups. These results pave the way towards the implementation of SERS as a novel tool in the clinical setting for improving the diagnosis of malignant lymphadenopathy.
Collapse
Affiliation(s)
- Andrei Stefancu
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Vlad Moisoiu
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Minodora Desmirean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Pathology, Constantin Papilian Military Hospital, Cluj-Napoca, Romania
| | - Stefania D Iancu
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Adrian B Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Bobe Petrushev
- Department of Pathology, Octavian Fodor Gastroenterology Institute, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ramona G Cozan
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Fetica
- Department of Pathology, "Prof. Dr. Ion Chiricuță" Institute of Oncology, Cluj-Napoca, Romania
| | - Andrei Roman
- Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Radiology, "Prof. Dr. Ion Chiricuță" Institute of Oncology, Cluj-Napoca, Romania
| | - Gina Dobie
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Turcas
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, "Prof. Dr. Ion Chiricuță" Institute of Oncology, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, "Prof. Dr. Ion Chiricuță" Institute of Oncology, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, "Prof. Dr. Ion Chiricuță" Institute of Oncology, Cluj-Napoca, Romania
| | - Doina Piciu
- Department of Nuclear Medicine, "Prof. Dr. Ion Chiricuță" Institute of Oncology, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, "Prof. Dr. Ion Chiricuță" Institute of Oncology, Cluj-Napoca, Romania
| | - Zoltán Bálint
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Biomed Data Analytics SRL, Cluj-Napoca, Romania.
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, "Prof. Dr. Ion Chiricuță" Institute of Oncology, Cluj-Napoca, Romania
| |
Collapse
|
40
|
Xu H, Wen Y, Jin R, Chen H. Epigenetic modifications and targeted therapy in pediatric acute myeloid leukemia. Front Pediatr 2022; 10:975819. [PMID: 36147798 PMCID: PMC9485478 DOI: 10.3389/fped.2022.975819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy resulting from the genetic alterations and epigenetic dysregulations of the hematopoietic progenitor cells. One-third of children with AML remain at risk of relapse even though outcomes have improved in recent decades. Epigenetic dysregulations have been identified to play a significant role during myeloid leukemogenesis. In contrast to genetic changes, epigenetic modifications are typically reversible, opening the door to the development of epigenetic targeted therapy. In this review, we provide an overview of the landscape of epigenetic alterations and describe the current progress that has been made in epigenetic targeted therapy, and pay close attention to the potential value of epigenetic abnormalities in the precision and combinational therapy of pediatric AML.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Wen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chen
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Gonzalez N, Asad AS, Gómez Escalante J, Peña Agudelo JA, Nicola Candia AJ, García Fallit M, Seilicovich A, Candolfi M. Potential of IDH mutations as immunotherapeutic targets in gliomas: a review and meta-analysis. Expert Opin Ther Targets 2021; 25:1045-1060. [PMID: 34904924 DOI: 10.1080/14728222.2021.2017422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Gliomas are stratified by the presence of a hotspot mutation in the enzyme isocitrate dehydrogenase genes (IDH1/2). While mutated IDH (mIDH) correlates with better prognosis, the role of this mutation in antitumor immunity and the response to immunotherapy is not completely understood. Understanding the relationship between the genetic features of these tumors and the tumor immune microenvironment (TIME) may help to develop appropriate therapeutic strategies. AREAS COVERED In this review we discussed the available literature related to the potential role of IDH mutations as an immunotherapeutic target in gliomas and profiled the immune transcriptome of glioma biopsies. We aimed to shed light on the role of mIDH on the immunological landscape of the different subtypes of gliomas, taking into account the most recent WHO classification of tumors of the central nervous system (CNS). We also discussed different immunotherapeutic approaches to target mIDH tumors and to overcome their immunosuppressive microenvironment. EXPERT OPINION Data presented here indicates that the TIME not only differs in association with IDH mutation status, but also within glioma subtypes, suggesting that the cellular context affects the overall effect of this genetic lesion. Thus, specific therapeutic combinations may help patients diagnosed with different glioma subtypes.
Collapse
Affiliation(s)
- Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela S Asad
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José Gómez Escalante
- Unidad Funcional de Neurooncologia y Banco de Tumores, Instituto de Oncología Ángel H. Roffo, Buenos Aires, Argentina
| | - Jorge A Peña Agudelo
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías García Fallit
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (Inbiomed, Uba-conicet), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
43
|
Böttger F, Vallés-Martí A, Cahn L, Jimenez CR. High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:343. [PMID: 34717701 PMCID: PMC8557029 DOI: 10.1186/s13046-021-02134-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/07/2021] [Indexed: 12/21/2022]
Abstract
Mounting evidence indicates that vitamin C has the potential to be a potent anti-cancer agent when administered intravenously and in high doses (high-dose IVC). Early phase clinical trials have confirmed safety and indicated efficacy of IVC in eradicating tumour cells of various cancer types. In recent years, the multi-targeting effects of vitamin C were unravelled, demonstrating a role as cancer-specific, pro-oxidative cytotoxic agent, anti-cancer epigenetic regulator and immune modulator, reversing epithelial-to-mesenchymal transition, inhibiting hypoxia and oncogenic kinase signalling and boosting immune response. Moreover, high-dose IVC is powerful as an adjuvant treatment for cancer, acting synergistically with many standard (chemo-) therapies, as well as a method for mitigating the toxic side-effects of chemotherapy. Despite the rationale and ample evidence, strong clinical data and phase III studies are lacking. Therefore, there is a need for more extensive awareness of the use of this highly promising, non-toxic cancer treatment in the clinical setting. In this review, we provide an elaborate overview of pre-clinical and clinical studies using high-dose IVC as anti-cancer agent, as well as a detailed evaluation of the main known molecular mechanisms involved. A special focus is put on global molecular profiling studies in this respect. In addition, an outlook on future implications of high-dose vitamin C in cancer treatment is presented and recommendations for further research are discussed.
Collapse
Affiliation(s)
- Franziska Böttger
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Andrea Vallés-Martí
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Loraine Cahn
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Location VU University Medical Center, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
44
|
A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res 2021; 111:106727. [PMID: 34700049 DOI: 10.1016/j.leukres.2021.106727] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults that affects the myeloid lineage. The recent advances have upgraded our understanding of the cytogenetic abnormalities and molecular mutations associated with AML that further aids in prognostication and risk stratification of the disease. Based on the highly heterogeneous nature of the disease and cytogenetic profile, AML patients can be stratified into favourable, intermediate and adverse-risk groups. The recurrent genetic alterations provide novel insights into the pathogenesis, clinical characteristics and also into the overall survival of the patients. In this review we are discussing about the cytogenetics of AML and the recurrent gene alterations such us NPM1, FLT3, CEBPA, TET-2, c-KIT, DNMT3A, IDH, RUNX1, AXSL1, WT1, Ras gene mutations etc. These gene mutations serve as important prognostic markers as well as potential therapeutic targets. AML patients respond to induction chemotherapy initially and subsequently achieve complete remission (CR), eventually most of them get relapsed.
Collapse
|
45
|
Genomic Abnormalities as Biomarkers and Therapeutic Targets in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13205055. [PMID: 34680203 PMCID: PMC8533805 DOI: 10.3390/cancers13205055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary AML is a heterogenous malignancy with a variety of underlying genomic abnormalities. Some of the genetic aberrations in AML have led to the development of specific inhibitors which were approved by the Food and Drug Administration (FDA) and are currently used to treat eligible patients. In this review, we describe five gene mutations for which approved inhibitors have been developed, the response of AML patients to these inhibitors, and the known mechanism(s) of resistance. This review also highlights the significance of developing function-based screens for target discovery in the era of personalized medicine. Abstract Acute myeloid leukemia (AML) is a highly heterogeneous malignancy characterized by the clonal expansion of myeloid stem and progenitor cells in the bone marrow, peripheral blood, and other tissues. AML results from the acquisition of gene mutations or chromosomal abnormalities that induce proliferation or block differentiation of hematopoietic progenitors. A combination of cytogenetic profiling and gene mutation analyses are essential for the proper diagnosis, classification, prognosis, and treatment of AML. In the present review, we provide a summary of genomic abnormalities in AML that have emerged as both markers of disease and therapeutic targets. We discuss the abnormalities of RARA, FLT3, BCL2, IDH1, and IDH2, their significance as therapeutic targets in AML, and how various mechanisms cause resistance to the currently FDA-approved inhibitors. We also discuss the limitations of current genomic approaches for producing a comprehensive picture of the activated signaling pathways at diagnosis or at relapse in AML patients, and how innovative technologies combining genomic and functional methods will improve the discovery of novel therapeutic targets in AML. The ultimate goal is to optimize a personalized medicine approach for AML patients and possibly those with other types of cancers.
Collapse
|
46
|
van der Merwe M, van Niekerk G, Fourie C, du Plessis M, Engelbrecht AM. The impact of mitochondria on cancer treatment resistance. Cell Oncol (Dordr) 2021; 44:983-995. [PMID: 34244972 DOI: 10.1007/s13402-021-00623-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The ability of cancer cells to develop treatment resistance is one of the primary factors that prevent successful treatment. Although initially thought to be dysfunctional in cancer, mitochondria are significant players that mediate treatment resistance. Literature indicates that cancer cells reutilize their mitochondria to facilitate cancer progression and treatment resistance. However, the mechanisms by which the mitochondria promote treatment resistance have not yet been fully elucidated. CONCLUSIONS AND PERSPECTIVES Here, we describe various means by which mitochondria can promote treatment resistance. For example, mutations in tricarboxylic acid (TCA) cycle enzymes, i.e., fumarate hydratase and isocitrate dehydrogenase, result in the accumulation of the oncometabolites fumarate and 2-hydroxyglutarate, respectively. These oncometabolites may promote treatment resistance by upregulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, inhibiting the anti-tumor immune response, or promoting angiogenesis. Furthermore, stromal cells can donate intact mitochondria to cancer cells after therapy to restore mitochondrial functionality and facilitate treatment resistance. Targeting mitochondria is, therefore, a feasible strategy that may dampen treatment resistance. Analysis of tumoral DNA may also be used to guide treatment choices. It will indicate whether enzymatic mutations are present in the TCA cycle and, if so, whether the mutations or their downstream signaling pathways can be targeted. This may improve treatment outcomes by inhibiting treatment resistance or promoting the effectiveness of anti-angiogenic agents or immunotherapy.
Collapse
Affiliation(s)
- Michelle van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Gustav van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Carla Fourie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Manisha du Plessis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
47
|
Qiao S, Lu W, Glorieux C, Li J, Zeng P, Meng N, Zhang H, Wen S, Huang P. Wild-type IDH2 protects nuclear DNA from oxidative damage and is a potential therapeutic target in colorectal cancer. Oncogene 2021; 40:5880-5892. [PMID: 34349242 DOI: 10.1038/s41388-021-01968-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Although the role of isocitrate dehydrogenase (IDH) mutation in promoting cancer development has been well-characterized, the impact of wild-type IDH on cancer cells remains unclear. Here we show that the wild-type isocitrate dehydrogenase 2 (IDH2) is highly expressed in colorectal cancer (CRC) cells, and plays an unexpected role in protecting the cancer cells from oxidative damage. Genetic abrogation of IDH2 in CRC cells leads to reactive oxygen species (ROS)-mediated DNA damage and an accumulation of 8-oxoguanine with DNA strand breaks, which activates DNA damage response (DDR) with elevated γH2AX and phosphorylation of ataxia telangiectasia-mutated (ATM) protein, leading to a partial cell cycle arrest and eventually cell senescence. Mechanistically, the suppression of IDH2 results in a reduction of the tricarboxylic acid (TCA) cycle activity due to a decrease in the conversion of isocitrate to α-ketoglutarate (α-KG) with a concurrent decrease in NADPH production, leading to ROS accumulation and oxidative DNA damage. Importantly, abrogation of IDH2 inhibits CRC cell growth in vitro and in vivo, and renders CRC cells more vulnerable to DNA-damaging drugs. Screening of an FDA-approved drug library has identified oxaliplatin as a compound highly effective against CRC cells when IDH2 was suppressed. Our study has uncovered an important role of the wild-type IDH2 in protecting DNA from oxidative damage, and provides a novel biochemical basis for developing metabolic intervention strategy for cancer treatment.
Collapse
Affiliation(s)
- Shuang Qiao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenhua Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiangjiang Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peiting Zeng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ning Meng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Huiqin Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
- Metabolic Innovation Cancer, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
48
|
Mizuno H, Koya J, Masamoto Y, Kagoya Y, Kurokawa M. Evi1 upregulates Fbp1 and supports progression of acute myeloid leukemia through pentose phosphate pathway activation. Cancer Sci 2021; 112:4112-4126. [PMID: 34363719 PMCID: PMC8486204 DOI: 10.1111/cas.15098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 01/14/2023] Open
Abstract
Evi1 is a transcription factor essential for the development as well as progression of acute myeloid leukemia (AML) and high Evi1 AML is associated with extremely poor clinical outcome. Since targeting metabolic vulnerability is the emerging therapeutic strategy of cancer, we herein investigated a novel therapeutic target of Evi1 by analyzing transcriptomic, epigenetic, and metabolomic profiling of mouse high Evi1 leukemia cells. We revealed that Evi1 overexpression and Evi1‐driven leukemic transformation upregulate transcription of gluconeogenesis enzyme Fbp1 and other pentose phosphate enzymes with interaction between Evi1 and the enhancer region of these genes. Metabolome analysis using Evi1‐overexpressing leukemia cells uncovered pentose phosphate pathway upregulation by Evi1 overexpression. Suppression of Fbp1 as well as pentose phosphate pathway enzymes by shRNA‐mediated knockdown selectively decreased Evi1‐driven leukemogenesis in vitro. Moreover, pharmacological or shRNA‐mediated Fbp1 inhibition in secondarily transplanted Evi1‐overexpressing leukemia mouse significantly decreased leukemia cell burden. Collectively, targeting FBP1 is a promising therapeutic strategy of high Evi1 AML.
Collapse
Affiliation(s)
- Hideaki Mizuno
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junji Koya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Kagoya
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021; 18:645-661. [PMID: 34131315 DOI: 10.1038/s41571-021-00521-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Mutations in the genes encoding the cytoplasmic and mitochondrial forms of isocitrate dehydrogenase (IDH1 and IDH2, respectively; collectively referred to as IDH) are frequently detected in cancers of various origins, including but not limited to acute myeloid leukaemia (20%), cholangiocarcinoma (20%), chondrosarcoma (80%) and glioma (80%). In all cases, neomorphic activity of the mutated enzyme leads to production of the oncometabolite D-2-hydroxyglutarate, which has profound cell-autonomous and non-cell-autonomous effects. The broad effects of IDH mutations on epigenetic, differentiation and metabolic programmes, together with their high prevalence across a variety of cancer types, early presence in tumorigenesis and uniform expression in tumour cells, make mutant IDH an ideal therapeutic target. Herein, we describe the current biological understanding of IDH mutations and the roles of mutant IDH in the various associated cancers. We also present the available preclinical and clinical data on various methods of targeting IDH-mutant cancers and discuss, based on the underlying pathogenesis of different IDH-mutated cancer types, whether the treatment approaches will converge or be context dependent.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
50
|
The metabolic reprogramming in acute myeloid leukemia patients depends on their genotype and is a prognostic marker. Blood Adv 2021; 5:156-166. [PMID: 33570627 DOI: 10.1182/bloodadvances.2020002981] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Leukemic cells display some alterations in metabolic pathways, which play a role in leukemogenesis and in patients' prognosis. To evaluate the characteristics and the impact of this metabolic reprogramming, we explore the bone marrow samples from 54 de novo acute myeloid leukemia (AML) patients, using an untargeted metabolomics approach based on proton high-resolution magic angle spinning-nuclear magnetic resonance. The spectra obtained were subjected to multivariate statistical analysis to find specific metabolome alterations and biomarkers correlated to clinical features. We found that patients display a large diversity of metabolic profiles, according to the different AML cytologic subtypes and molecular statuses. The link between metabolism and molecular status was particularly strong for the oncometabolite 2-hydroxyglutarate (2-HG), whose intracellular production is directly linked to the presence of isocitrate dehydrogenase mutations. Moreover, patients' prognosis was strongly impacted by several metabolites, such as 2-HG that appeared as a good prognostic biomarker in our cohort. Conversely, deregulations in phospholipid metabolism had a negative impact on prognosis through 2 main metabolites (phosphocholine and phosphoethanolamine), which could be potential aggressiveness biomarkers. Finally, we highlighted an overexpression of glutathione and alanine in chemoresistant patients. Overall, our results demonstrate that different metabolic pathways could be activated in leukemic cells according to their phenotype and maturation levels. This confirms that metabolic reprogramming strongly influences prognosis of patients and underscores a particular role of certain metabolites and associated pathways in AML prognosis, suggesting common mechanisms developed by leukemic cells to maintain their aggressiveness even after well-conducted induction chemotherapy.
Collapse
|