1
|
Scimeca M, Bischof J, Bonfiglio R, Nale E, Iacovelli V, Carilli M, Vittori M, Agostini M, Rovella V, Servadei F, Giacobbi E, Candi E, Shi Y, Melino G, Mauriello A, Bove P. Molecular profiling of a bladder cancer with very high tumour mutational burden. Cell Death Discov 2024; 10:202. [PMID: 38688924 PMCID: PMC11061316 DOI: 10.1038/s41420-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints. The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elisabetta Nale
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valerio Iacovelli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Marco Carilli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Matteo Vittori
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Pierluigi Bove
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy.
| |
Collapse
|
2
|
Scimeca M, Rovella V, Caporali S, Shi Y, Bischof J, Woodsmith J, Tisone G, Sica G, Amelio I, Melino G, Mauriello A, Bove P. Genetically driven predisposition leads to an unusually genomic unstable renal cell carcinoma. Discov Oncol 2024; 15:80. [PMID: 38512353 PMCID: PMC10957849 DOI: 10.1007/s12672-024-00894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Renal cell carcinoma originates from the lining of the proximal convoluted renal tubule and represents the most common type of kidney cancer. Risk factors and comorbidities might be associated to renal cell carcinoma, while a small fraction of 2-3% emerges from patients with predisposing cancer syndromes, typically associated to hereditary mutations in VHL, folliculin, fumarate hydratase or MET genes. Here, we report a case of renal cell carcinoma in patient with concurrent germline mutations in BRCA1 and RAD51 genes. This case displays an unusual high mutational burden and chromosomal aberrations compared to the typical profile of renal cell carcinoma. Mutational analysis on whole genome sequencing revealed an enrichment of the MMR2 mutational signature, which is indicative of impaired DNA repair capacity. Overall, the tumor displayed a profile of unusual high genomic instability which suggests a possible origin from germline predisposing mutations in the DNA repair genes BRCA1 and RAD51. While BRCA1 and RAD51 germline mutations are well-characterised in breast and ovarian cancer, their role in renal cell carcinoma is still largely unexplored. The genomic instability detected in this case of renal cell carcinoma, along with the presence of unusual mutations, might offer support to clinicians for the development of patient-tailored therapies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Sabrina Caporali
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | | | - Giuseppe Tisone
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giuseppe Sica
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Pierluigi Bove
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
3
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168335. [PMID: 37939965 DOI: 10.1016/j.scitotenv.2023.168335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
We investigated the presence of aluminium (Al) in human colon cancer samples and its potential association with biological processes involved in cancer progression, such as epithelial to mesenchymal transition (EMT) and cell death. 25 consecutive colon samples were collected from patients undergoing colonic resection. Both neoplastic and normal mucosa were collected from each patient and subjected to histological, ultrastructural and immunohistochemical analyses. Moreover, colon samples from two Al-positive patients underwent multi-omic analyses, including whole genome sequencing and RNA sequencing (RNAseq). Morin staining, used to identify in situ aluminium bioaccumulation, showed the presence of Al in tumor areas of 24 % of patients. Transmission electron microscopy and energy-dispersive X-ray microanalysis confirmed the presence of Al specifically in intracytoplasmic electrondense nanodeposits adjacent to mitochondria of colon cancer cells. Immunohistochemical analyses for vimentin and nuclear β-catenin were performed to highlight the occurrence of the EMT phenomenon in association to Al bioaccumulation. Al-positive samples showed a significant increase in both the number of vimentin-positive and nuclear β-catenin-positive cancer cells compared to Al-negative samples. Moreover, Al-positive samples exhibited a significant decrease in the number of apoptotic cells, as well as the expression of the anti-apoptotic molecule BCL-2. Multi-omic analyses revealed a higher tumor mutational burden (TMB) in Al-positive colon cancers (n = 2) compared to a control cohort (n = 100). Additionally, somatic mutations in genes associated with EMT (GATA3) and apoptosis (TP53) were observed in Al-positive colon cancers. In conclusion, this study provides the first evidence of Al bioaccumulation in colon cancer and its potential role in modulating molecular pathways involved in cancer progression, such as EMT and apoptosis. Understanding the molecular mechanisms underlying Al toxicity might contribute to improve strategies for prevention, early detection, and targeted therapies for the management of colon cancer patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
4
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Palumbo A, Trivigno D, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. The impact of toxic metal bioaccumulation on colorectal cancer: Unravelling the unexplored connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167667. [PMID: 37813250 DOI: 10.1016/j.scitotenv.2023.167667] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer is a major public health concern, with increasing incidence and mortality rates worldwide. Environmental factors, including exposure to toxic metals, such as lead, chromium, cadmium, aluminium, copper, arsenic and mercury, have been suggested to play a significant role in the development and progression of this neoplasia. In particular, the bioaccumulation of toxic metals can play a significant role in colorectal cancer by regulating biological phenomenon associated to both cancer occurrence and progression, such as cell death and proliferation. Also, frequently these metals can induce DNA mutations in well-known oncogenes. This review provides a critical analysis of the current evidence, highlighting the need for further research to fully grasp the complex interplay between toxic metal bioaccumulation and colorectal cancer. Understanding the contribution of toxic metals to colorectal cancer occurrence and progression is essential for the development of targeted preventive strategies and social interventions, with the ultimate goal of reducing the burden of this disease.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessia Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
5
|
Novel Biological and Molecular Characterization in Radiopharmaceutical Preclinical Design. J Clin Med 2021; 10:jcm10214850. [PMID: 34768368 PMCID: PMC8584913 DOI: 10.3390/jcm10214850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, the potential of a digital autoradiography system equipped with a super resolution screen has been evaluated to investigate the biodistribution of a 18F-PSMA inhibitor in a prostate cancer mouse model. Twelve double xenograft NOD/SCID mice (LNCAP and PC3 tumours) were divided into three groups according to post-injection time points of an 18F-PSMA inhibitor. Groups of 4 mice were used to evaluate the biodistribution of the radiopharmaceutical after 30-, 60- and 120-min post-injection. Data here reported demonstrated that the digital autoradiography system is suitable to analyse the biodistribution of an 18F-PSMA inhibitor in both whole small-animal bodies and in single organs. The exposure of both whole mouse bodies and organs on the super resolution screen surface allowed the radioactivity of the PSMA inhibitor distributed in the tissues to be detected and quantified. Data obtained by using a digital autoradiography system were in line with the values detected by the activity calibrator. In addition, the image obtained from the super resolution screen allowed a perfect overlap with the tumour images achieved under the optical microscope. In conclusion, biodistribution studies performed by the autoradiography system allow the microscopical modifications induced by therapeutic radiopharmaceuticals to be studied by comparing the molecular imaging and histopathological data at the sub-cellular level.
Collapse
|
6
|
Urbano N, Scimeca M, Tavolozza M, Bonanno E, Mauriello A, Schillaci O. 18F-FDG-PET/CT analysis in hospitalized patients affected by pulmonary disease: The experience of the Nuclear Medicine Unit of "Policlinico Tor Vegata". Nucl Med Commun 2021; 42:1104-1111. [PMID: 34528930 DOI: 10.1097/mnm.0000000000001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The main aim of this study was to retrospectively evaluate the clinical data and outcomes of a cohort of 492 hospitalized patients who underwent fluorine-18-fluorodeoxyglucose (F-FDG)-PET/CT analysis at the nuclear medicine unit of 'Policlinico Tor Vergata' in Rome during the years 2017 and 2018 with particular emphasis for patients affected by pulmonary diseases. METHODS Anamnestic data (age and gender), main pathologic conditions, results of F-FDG-PET/CT examination, appropriateness of the request, and medical records of 492 consecutive hospitalized patients who underwent F-FDG-PET/CT analysis (55.38 ± 3.78 years; range 33-81 years) from January 2017 to December 2018 were obtained. RESULTS Considering all examinations, positive results were observed in 66.9% of cases whereas it was not possible to perform a diagnosis in 12.7% of cases (doubt results). About 20-fold increase in the percentage of doubt results was observed in F-FDG-PET/CT analysis with no appropriateness as compared to those with double appropriateness (both the request and clinical). Noteworthy, our data showed a 95% higher concordance between the positive results of the F-FDG-PET/CT examination and the histologic diagnosis. Conversely, the concordance between the analysis of the bronchoalveolar lavages and the PET analysis was very low. CONCLUSION Data here reported showed the high accuracy of the F-FDG-PET/CT performed in our department, mainly for pulmonary diseases, also highlighting the importance of continuously updating the selection criteria for patients who need PET examinations.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico "Tor Vergata"
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1
- San Raffaele University, Via di Val Cannuta 247
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro
| | - Mario Tavolozza
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico "Tor Vergata"
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1
| | - Alessandro Mauriello
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico "Tor Vergata"
- Tor Vergata Oncoscience Research (TOR)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", IRCCS Neuromed, Via Atinense, 18, 8607 Pozzilli, Italy
| |
Collapse
|
7
|
Urbano N, Scimeca M, Bonfiglio R, Mauriello A, Bonanno E, Schillaci O. [99mTc]Tc-Sestamibi Bioaccumulation Can Induce Apoptosis in Breast Cancer Cells: Molecular and Clinical Perspectives. APPLIED SCIENCES 2021; 11:2733. [DOI: 10.3390/app11062733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The aim of this study was to investigate the possible role of [99mTc]Tc-Sestamibi in the regulation of cancer cell proliferation and apoptosis. To this end, the in vivo values of [99mTc]Tc-Sestamibi uptake have been associated with the in-situ expression of both Ki67 and caspase-3. For in vitro investigations, BT-474 cells were incubated with three different concentrations of [99mTc]Tc-Sestamibi: 10 µg/mL, 1 µg/mL, and 0.1 µg/mL. Expression of caspase-3 and Ki67, as well as the ultrastructure of cancer cells, was evaluated at T0 and after 24, 48, 72, and 120 h after [99mTc]Tc-Sestamibi incubation. Ex vivo data strengthened the known association between sestamibi uptake and Ki67 expression. Linear regression analysis showed a significant association between sestamibi uptake and the number of apoptotic cells evaluated as caspase-3-positive breast cancer cells. As concerning the in vitro data, a significant decrease of the proliferation index was observed in breast cancer cells incubated with a high concentration of [99mTc]Tc-Sestamibi (10 µg/mL). Amazingly, a significant increase in caspase-3-positive cells in cultures incubated with 10 µg/mL [99mTc]Tc-Sestamibi was observed. This study suggested the possible role of sestamibi in the regulation of pathophysiological processes involved in breast cancer.
Collapse
|
8
|
Scimeca M, Urbano N, Bonfiglio R, Montanaro M, Bonanno E, Schillaci O, Mauriello A. Imaging Diagnostics and Pathology in SARS-CoV-2-Related Diseases. Int J Mol Sci 2020; 21:E6960. [PMID: 32971906 PMCID: PMC7554796 DOI: 10.3390/ijms21186960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 01/18/2023] Open
Abstract
In December 2019, physicians reported numerous patients showing pneumonia of unknown origin in the Chinese region of Wuhan. Following the spreading of the infection over the world, The World Health Organization (WHO) on 11 March 2020 declared the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak a global pandemic. The scientific community is exerting an extraordinary effort to elucidate all aspects related to SARS-CoV-2, such as the structure, ultrastructure, invasion mechanisms, replication mechanisms, or drugs for treatment, mainly through in vitro studies. Thus, the clinical in vivo data can provide a test bench for new discoveries in the field of SARS-CoV-2, finding new solutions to fight the current pandemic. During this dramatic situation, the normal scientific protocols for the development of new diagnostic procedures or drugs are frequently not completely applied in order to speed up these processes. In this context, interdisciplinarity is fundamental. Specifically, a great contribution can be provided by the association and interpretation of data derived from medical disciplines based on the study of images, such as radiology, nuclear medicine, and pathology. Therefore, here, we highlighted the most recent histopathological and imaging data concerning the SARS-CoV-2 infection in lung and other human organs such as the kidney, heart, and vascular system. In addition, we evaluated the possible matches among data of radiology, nuclear medicine, and pathology departments in order to support the intense scientific work to address the SARS-CoV-2 pandemic. In this regard, the development of artificial intelligence algorithms that are capable of correlating these clinical data with the new scientific discoveries concerning SARS-CoV-2 might be the keystone to get out of the pandemic.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico “Tor Vergata”, viale oxford 81, 00133 Rome, Italy;
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (E.B.); (A.M.)
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (E.B.); (A.M.)
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (E.B.); (A.M.)
- Diagnostica Medica’ & ‘Villa dei Platani’, Neuromed Group, 83100 Avellino, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- IRCCS Neuromed, Via Atinense, 18, 8607 Pozzilli, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.M.); (E.B.); (A.M.)
- Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
9
|
Urbano N, Scimeca M, Di Russo C, Mauriello A, Bonanno E, Schillaci O. [ 99mTc]Sestamibi SPECT Can Predict Proliferation Index, Angiogenesis, and Vascular Invasion in Parathyroid Patients: A Retrospective Study. J Clin Med 2020; 9:jcm9072213. [PMID: 32668651 PMCID: PMC7408803 DOI: 10.3390/jcm9072213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to evaluate the possible association among sestamibi uptake and the main histopathological characteristics of parathyroid lesions related to aggressiveness such as the proliferation index (Ki67 expression and mitosis), angiogenesis (number of vessels), and vascular invasion in hyperparathyroidism patients. To this end, 26 patients affected by primary hyperparathyroidism subjected to both scintigraphy with [99mTc]Sestamibi and surgery/bioptic procedure were retrospectively enrolled. Hyperfunctioning of the parathyroid was detected in 19 patients. Our data showed a significant positive association among the sestamibi uptake and the proliferation index histologically evaluated both in terms of the number of Ki67 positive cells and mitosis. According to these data, lesions with a higher valuer of L/N (lesion to nonlesion ratio) frequently showed several vessels in tumor areas and histological evidence of vascular invasion. It is noteworthy that among patients with negative scintigraphy, 2 patients showed a neoplastic lesion after surgery (histological analysis). However, it is important to highlight that these lesions displayed very low proliferation indexes, which was evaluated in terms of number of both mitosis and Ki67-positive cells, some/rare vessels in the main lesion, and no evidence of vascular invasion. In conclusion, data obtained on patients with positive or negative scintigraphy support the hypothesis that sestamibi can be a tracer that is capable of predicting some biological characteristics of parathyroid tumors such as angiogenesis, proliferation indexes, and the invasion of surrounding tissues or vessels.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico “Tor Vergata”, 00133 Rome, Italy; (N.U.); (C.D.R.)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Carmela Di Russo
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico “Tor Vergata”, 00133 Rome, Italy; (N.U.); (C.D.R.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.M.); (E.B.)
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.M.); (E.B.)
- Diagnostica Medica’ & ‘Villa dei Platani’, Neuromed Group, 83100 Avellino, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- IRCCS Neuromed, Via Atinense, 18, 8607 Pozzilli, Italy
- Correspondence: ; Tel.: +39-06-2090-2419
| |
Collapse
|
10
|
Breast-Specific Gamma Imaging with [ 99mTc]Tc-Sestamibi: An In Vivo Analysis for Early Identification of Breast Cancer Lesions Expressing Bone Biomarkers. J Clin Med 2020; 9:jcm9030747. [PMID: 32164267 PMCID: PMC7141303 DOI: 10.3390/jcm9030747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this pilot investigation was to evaluate the possible relationship among [99mTc]Tc-Sestamibi uptake, the presence of breast osteoblast-like cells, and the expression of molecules involved in bone metabolism, such as estrogen receptor, bone morphogenetic proteins-2, and PTX3. To this end, forty consecutive breast cancer patients who underwent both breast-specific gamma imaging with [99mTc]Tc-Sestamibi and breast bioptic procedure were retrospectively enrolled. From each diagnostic paraffin block collected in the study, histological diagnosis, immunohistochemical investigations, and energy dispersive X-ray microanalysis were performed. Our data highlight the possible use of breast-specific gamma imaging with [99mTc]Tc-Sestamibi for the early detection of breast cancer lesions expressing bone biomarkers in the presence of breast osteoblast-like cells. Specifically, we show a linear association among sestamibi uptake, the presence of breast osteoblast-like cells, and the expression of estrogen receptor, bone morphogenetics proteins-2, and PTX3. Notably, we also observed an increase of [99mTc]Tc-Sestamibi in breast cancer lesions with magnesium-substituted hydroxyapatite. In conclusion, in this pilot study we evaluated data from the nuclear medicine unit and anatomic pathology department on breast cancer osteotropism, identifying a new possible interpretation of Breast Specific Gamma Imaging with [99mTc]Tc-Sestamibi analysis.
Collapse
|
11
|
Duggento A, Guerrisi M, Toschi N, Scimeca M, Urbano N, Bonanno E, Aiello M, Cavaliere C, Cascella GL, Cascella D, Conte G. A random initialization deep neural network for discriminating malignant breast cancer lesions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:912-915. [PMID: 31946042 DOI: 10.1109/embc.2019.8856740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Breast cancer is one of the most common cancer in women, with more than 1,300,000 cases and 450,000 deaths each year worldwide. Recent studies show that early breast cancer detection, along with suitable treatment, could significantly reduce breast cancer death rates in the long-term. While the consequences of a false positive diagnosis can be psychologically and socioeconomically burdensome, the result of a false negative diagnosis can be devastating, especially in terms of health detriment. In this context, the false positive and false negative rates commonly achieved by radiologists are extremely arduous to estimate and control, and some authors have estimated figures of up to 20% of total diagnoses or more. Novel ideas in computer-assisted diagnosis have been prompted by the introduction of deep learning techniques in general and of convolutional neural networks (CNN) in particular. In this paper, we design and validate an ad-hoc CNN architecture specialized in breast lesion classification and heuristically explore possible parameter combinations and architecture styles in order to propose a model selection criterion which can pose the emphasis on reducing false negatives while still retaining acceptable accuracy. We achieve good classification performance on the validation and test set, demonstrating how an ad-hoc, random initialization CNN architecture can provide practical aid in the classification and staging of breast cancer.
Collapse
|
12
|
Urbano N, Scimeca M, Crocco A, Mauriello A, Bonanno E, Schillaci O. 18F-Choline PET/CT Identifies High-Grade Prostate Cancer Lesions Expressing Bone Biomarkers. J Clin Med 2019; 8:jcm8101657. [PMID: 31614564 PMCID: PMC6832450 DOI: 10.3390/jcm8101657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
The main aim of this study was to investigate the possible association between 18F–choline uptake and histopathological features of prostate biopsies such as the Gleason Group and the expression of both epithelial to mesenchymal transition (vimentin) and bone mineralization (bone morphogenetics protein (BMP)-2, runt-related transcription factor 2 (RUNX2), receptor activator of nuclear factor-κB ligand (RANKL), vitamin D receptor (VDR), and pentraxin 3 (PTX3) in situ biomarkers. To this end, we enrolled 79 consecutive prostate cancer patients that underwent both the 18F–choline PET/CT analysis and the prostate bioptic procedure. The standardized uptake value (SUV) average values were collected from 18F–choline PET/CT analysis whereas Gleason Group and immunostaining data were collected from paraffin-embedded sections. Histological classification showed a heterogenous population including both low/intermediate and high-grade prostate cancers. A significant increase of 18F–choline uptake in high-grade prostate lesions (Gleason Score ≥8) was found. Also, linear regression analysis showed a significant correlation between 18F–choline uptake and the number of vimentin, RANKL, VDR, or PTX3 positive prostate cancer cells. Conversely, we observed no significant association between 18F–choline uptake and the expression of bone biomarkers involved in the early phases of osteoblast differentiation (BMP-2, RUNX2). In conclusion, results here reported can lay the foundation for the use of 18F–choline positron emission tomography (PET)/computed tomography (CT) as a diagnostic tool capable of identifying high-grade prostate cancer lesions expressing bone biomarkers.
Collapse
Affiliation(s)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Fondazione Umberto Veronesi (FUV), 20122 Milano, Italy.
| | - Antonio Crocco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, University "Tor Vergata", 00133 Rome, Italy.
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", 00133 Rome, Italy.
- Neuromed Group, 'Diagnostica Medica' & 'Villa dei Platani', 83100 Avellino, Italy.
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| |
Collapse
|
13
|
Urbano N, Scimeca M, Bonfiglio R, Bonanno E, Schillaci O. New advance in breast cancer pathology and imaging. Future Oncol 2019; 15:2707-2722. [DOI: 10.2217/fon-2019-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The improvement of knowledge concerning the pathology of breast cancer could provide the rationale for the development of new imaging diagnostic protocols. Indeed, as for the microcalcifications, new histopathological markers can be used as target for in vivo early detection of breast cancer lesions by using molecular imaging techniques such as positron emission tomography. Specifically, the mutual contribution of these medical specialties can ‘nourish’ the dream of a personalized medicine that takes into account the intrinsic variability of breast cancer. In this review, we report the main discoveries concerning breast cancer pathology highlighting the possible cooperation between the departments of anatomic pathology and imaging diagnostics.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine, Policlinico ‘Tor Vergata,’ viale Oxford, 81, Rome, 00133, Italy
| | - Manuel Scimeca
- Department of Biomedicine & Prevention, University of Rome ‘Tor Vergata’, Via Montpellier 1, Rome 00133, Italy
- IRCCS San Raffaele, Via di Val Cannuta 247, 00166, Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano (Mi), Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University ‘Tor Vergata’, Via Montpellier 1, Rome 00133, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University ‘Tor Vergata’, Via Montpellier 1, Rome 00133, Italy
- Neuromed Group, ‘Diagnostica Medica’ & ‘Villa dei Platani', Via Errico Carmelo, 2, 83100 Avellino AV, Italy
| | - Orazio Schillaci
- Department of Biomedicine & Prevention, University of Rome ‘Tor Vergata’, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
14
|
Scimeca M, Urbano N, Bonfiglio R, Duggento A, Toschi N, Schillaci O, Bonanno E. Novel insights into breast cancer progression and metastasis: A multidisciplinary opportunity to transition from biology to clinical oncology. Biochim Biophys Acta Rev Cancer 2019; 1872:138-148. [PMID: 31348975 DOI: 10.1016/j.bbcan.2019.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
According to the most recent epidemiological studies, breast cancer shows the highest incidence and the second leading cause of death in women. Cancer progression and metastasis are the main events related to poor survival of breast cancer patients. This can be explained by the presence of highly resistant to chemo- and radiotherapy stem cells in many breast tumor tissues. In this context, numerous studies highlighted the possible involvement of epithelial to mesenchymal transition phenomenon as biological program to generate cancer stem cells, and thus participate to both metastatic and drug resistance process. Therefore, the comprehension of mechanisms (both cellular and molecular) involved in breast cancer occurrence and progression can lay the foundation for the development of new diagnostic and therapeutical protocols. In this review, we reported the most important findings in the field of breast cancer highlighting the most recent data concerning breast tumor biology, diagnosis and therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano (Mi), Italy.
| | | | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; Neuromed Group, "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
15
|
Schillaci O, Scimeca M, Toschi N, Bonfiglio R, Urbano N, Bonanno E. Combining Diagnostic Imaging and Pathology for Improving Diagnosis and Prognosis of Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9429761. [PMID: 31354394 PMCID: PMC6636452 DOI: 10.1155/2019/9429761] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
In the era of personalized medicine, the management of oncological patients requires a translational and multidisciplinary approach. During early phases of cancer development, biochemical alterations of cell metabolism occur much before the formation of detectable tumour masses. Current molecular imaging techniques, targeted to the study of molecular kinetics, employ molecular tracers capable of detecting cancer lesions with both high sensitivity and specificity while also providing essential information for both prognosis and therapy. On the contrary, complementary and crucial information is provided by histopathological examination and ancillary techniques such as immunohistochemistry. Thus, the successful collaboration between diagnostic imaging and anatomic pathology can represent a fundamental step in the "tortuous" but decisive path towards personalized medicine.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- Martinos Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
| | | | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed Lab, “Diagnostica Medica”, “Villa dei Platani”, Avellino, Italy
| |
Collapse
|
16
|
An Ad Hoc Random Initialization Deep Neural Network Architecture for Discriminating Malignant Breast Cancer Lesions in Mammographic Images. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5982834. [PMID: 31249497 PMCID: PMC6556299 DOI: 10.1155/2019/5982834] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
Breast cancer is one of the most common cancers in women, with more than 1,300,000 cases and 450,000 deaths each year worldwide. In this context, recent studies showed that early breast cancer detection, along with suitable treatment, could significantly reduce breast cancer death rates in the long term. X-ray mammography is still the instrument of choice in breast cancer screening. In this context, the false-positive and false-negative rates commonly achieved by radiologists are extremely arduous to estimate and control although some authors have estimated figures of up to 20% of total diagnoses or more. The introduction of novel artificial intelligence (AI) technologies applied to the diagnosis and, possibly, prognosis of breast cancer could revolutionize the current status of the management of the breast cancer patient by assisting the radiologist in clinical image interpretation. Lately, a breakthrough in the AI field has been brought about by the introduction of deep learning techniques in general and of convolutional neural networks in particular. Such techniques require no a priori feature space definition from the operator and are able to achieve classification performances which can even surpass human experts. In this paper, we design and validate an ad hoc CNN architecture specialized in breast lesion classification from imaging data only. We explore a total of 260 model architectures in a train-validation-test split in order to propose a model selection criterion which can pose the emphasis on reducing false negatives while still retaining acceptable accuracy. We achieve an area under the receiver operatic characteristics curve of 0.785 (accuracy 71.19%) on the test set, demonstrating how an ad hoc random initialization architecture can and should be fine tuned to a specific problem, especially in biomedical applications.
Collapse
|
17
|
Scimeca M, Bonfiglio R, Urbano N, Cerroni C, Anemona L, Montanaro M, Fazi S, Schillaci O, Mauriello A, Bonanno E. Programmed death ligand 1 expression in prostate cancer cells is associated with deep changes of the tumor inflammatory infiltrate composition. Urol Oncol 2019; 37:297.e19-297.e31. [PMID: 30827759 DOI: 10.1016/j.urolonc.2019.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The main aim of this study was to investigate the putative correlation between the composition of intratumoral inflammatory infiltrate and the expression of programmed death ligand 1 (PD-L1) by prostate cancer cells. In addition, we evaluated the correlation between the expression of PD-L1 and PTX3. METHODS We enrolled 100 patients from which we collected one surgical sample each. Paraffin serial sections were obtained to perform histological classifications and tissues microarray construction. Serial tissues microarray paraffin sections were also used for PD-L1 analysis and intratumoral inflammatory infiltrate characterization (CD4, CD8, CD57, CD3, PD1, PSGL-1, TIGIT, CD20, CD38, CD68, CD163, and PTX3) by immunohistochemistry . RESULTS Our result showed a significant increase of the number of both PD-L1 and PTX3 positive cells in prostate tumors respect to benign lesions. Inflammatory infiltrate of PD-L1 positive prostate cancer lesions was characterized by a decrease of both PD1 positive lymphocytes and tumor-infiltrated macrophages, mainly M2 subpopulation. Also, PTX3 expression showed an inverse correlation with the number of PD-L1 positive prostate cancer cells. CONCLUSIONS If confirmed, our data could be useful to predict the variations of the inflammatory population related to PD-L1 expression in prostate cancer. This can lay the foundation to establish therapeutic protocols able to inhibit the PD-L1 activity and, at the same time, to reactivate the antitumor inflammatory process.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; San Raffaele University, Rome, Italy; OrchideaLab S.r.l., Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy
| | | | - Chiara Cerroni
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Lucia Anemona
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Manuela Montanaro
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Fazi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Orazio Schillaci
- San Raffaele University, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Mauriello
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy.
| |
Collapse
|
18
|
Scimeca M, Montanaro M, Bonfiglio R, Anemona L, Bonanno E. Electron microscopy in human diseases: diagnostic and research perspectives. Nanomedicine (Lond) 2019; 14:371-373. [DOI: 10.2217/nnm-2018-0407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine & Prevention, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine & Surgery, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine & Surgery, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine & Surgery, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
| | - Elena Bonanno
- Department of Experimental Medicine & Surgery, University of Rome Tor Vergata, Via Montpellier 1, Rome 00133, Italy
- ‘Diagnostica Medica’ & ‘Villa dei Platani’, Neuromed Group, Avellino, 83100, Italy
| |
Collapse
|
19
|
Schillaci O, Scimeca M, Trivigno D, Chiaravalloti A, Facchetti S, Anemona L, Bonfiglio R, Santeusanio G, Tancredi V, Bonanno E, Urbano N, Mauriello A. Prostate cancer and inflammation: A new molecular imaging challenge in the era of personalized medicine. Nucl Med Biol 2019; 68-69:66-79. [PMID: 30770226 DOI: 10.1016/j.nucmedbio.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
The relationship between cancer and inflammation is one of the most important fields for both clinical and translational research. Despite numerous studies reported interesting and solid data about the prognostic value of the presence of inflammatory infiltrate in cancers, the biological role of inflammation in prostate cancer development is not yet fully clarified. The characterization of molecular pathways that connect altered inflammatory response and prostate cancer progression can provide the scientific rationale for the identification of new prognostic and predictive biomarkers. Specifically, the detection of infiltrating immune cells or related-cytokines by histology and/or by molecular imaging techniques could profoundly change the management of prostate cancer patients. In this context, the anatomic pathology and imaging diagnostic teamwork can provide a valuable support for the validation of new targets for diagnosis and therapy of prostate cancer lesions associated to the inflammatory infiltrate. The aim of this review is to summarize the current literature about the role of molecular imaging technique and anatomic pathology in the study of the mutual interaction occurring between prostate cancer and inflammation. Specifically, we reported the more recent advances in molecular imaging and histological methods for the early detection of prostate lesions associated to the inflammatory infiltrate.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Simone Facchetti
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Giuseppe Santeusanio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Virginia Tancredi
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy; Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| |
Collapse
|
20
|
Prostate Osteoblast-Like Cells: A Reliable Prognostic Marker of Bone Metastasis in Prostate Cancer Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:9840962. [PMID: 30627063 PMCID: PMC6305022 DOI: 10.1155/2018/9840962] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022]
Abstract
The main aim of this study was to investigate the putative association among the presence of prostate cancer cells, defined as prostate osteoblast-like cells (POLCs), and showing the expression of typical morphological and molecular characteristics of osteoblasts, the development of bone metastasis within 5 years of diagnosis, and the uptake of 18F-choline evaluated by PET/CT analysis. To this end, prostate biopsies (n = 110) were collected comprising 44 benign lesions and 66 malignant lesions. Malignant lesions were further subdivided into two groups: biopsies from patients that had clinical evidence of bone metastasis (BM+, n = 23) and biopsies from patients that did not have clinical evidence of bone metastasis within 5 years (BM-, n = 43). Paraffin serial sections were obtained from each specimen to perform histological classifications and immunohistochemical (IHC) analysis. Small fragments of tissue were used to perform ultrastructural and microanalytical investigations. IHC demonstrated the expression of markers of epithelial-to-mesenchymal transition (VIM), bone mineralization, and osteoblastic differentiation (BMP-2, PTX-3, RUNX2, RANKL, and VDR) in prostate lesions characterized by the presence of calcium-phosphate microcalcifications and high metastatic potential. Ultrastructural studies revealed the presence of prostate cancer cells with osteoblast phenotype close to microcalcifications. Noteworthy, PET/CT analysis showed higher uptake of 18F-choline in BM+ lesions with high positivity (≥300/500 cells) for RUNX2 and/or RANKL immunostaining. Although these data require further investigations about the molecular mechanisms of POLCs generation and role in bone metastasis, our study can open new and interesting prospective in the management of prostate cancer patients. The presence of POLCs along with prostate microcalcifications may become negative prognostic markers of the occurrence of bone metastases.
Collapse
|
21
|
Wong M, Frye J, Kim S, Marchevsky AM. The Use of Screencasts with Embedded Whole-Slide Scans and Hyperlinks to Teach Anatomic Pathology in a Supervised Digital Environment. J Pathol Inform 2018; 9:39. [PMID: 30607306 PMCID: PMC6289000 DOI: 10.4103/jpi.jpi_44_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/27/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND There is an increasing interest in using digitized whole-slide imaging (WSI) for routine surgical pathology diagnoses. Screencasts are digital recordings of computer screen output with advanced interactive features that allow for the preparation of videos. Screencasts that include hyperlinks to WSIs could help teach pathology residents how to become familiar with technologies that they are likely to use in their future career. MATERIALS AND METHODS Twenty screencasts were prepared with Camtasia 2.0 software (TechSmith, Okemos, MI, USA). They included clinical history, videos of chest X-rays and/or chest computed tomography images, links to WSI digitized with an Aperio Turbo AT scanner (Leica Biosystems, Buffalo Grove, IL, USA), pre- and posttests, and faculty-narrated videos of the WSI in a manner closely resembling a slide seminar and other educational materials. Screencasts were saved in a hospital network, Screencast.com, YouTube.com, and Vimeo.com. The screencasts were viewed by 12 pathology residents and fellows who made diagnoses, answered the quizzes, and took a survey with questions designed to evaluate their perception of the quality of this technology. Quiz results were automatically e-mailed to faculty. Pre- and posttest results were compared using a paired t-test. RESULTS Screencasts can be viewed with Windows PC and Mac operating systems and mobile devices; only videos saved in our network and screencast.com could be used to generate quizzes. Participants' feedback was very favorable with average scores ranging from 4.5 to 4.8 (on a scale of 5). Mean posttest scores (87.0% [±21.6%]) were significantly improved over those in the pretest quizzes (48.5% [±31.2%]) (P < 0.0001). CONCLUSION Screencasts with WSI that allow residents and fellows to diagnose cases using digital microscopy may prove to be a useful technology to enhance the pathology education. Future studies with larger numbers of screencasts and participants are needed to optimize various teaching strategies.
Collapse
Affiliation(s)
- Mary Wong
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joseph Frye
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stacey Kim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alberto M. Marchevsky
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
22
|
Bonfiglio R, Scimeca M, Urbano N, Bonanno E, Schillaci O. Breast microcalcifications: biological and diagnostic perspectives. Future Oncol 2018; 14:3097-3099. [PMID: 30411977 DOI: 10.2217/fon-2018-0624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy
| | - Manuel Scimeca
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,IRCCS San Raffaele, Via di Val Cannuta 247, Rome 00166, Italy
| | - Nicoletta Urbano
- Department of Imaging Diagnostics, Molecular Imaging, Interventional Radiology and Radiotherapy, Unit of Nuclear Medicine, Policlinico 'Tor Vergata', Rome, 00133, Italy
| | - Elena Bonanno
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,'Diagnostica Medica' & 'Villa dei Platani', Neuromed Group, Avellino, 83100, Italy
| | - Orazio Schillaci
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome 00133, Italy.,IRCCS Neuromed, Pozzilli (Is), 86077, Italy
| |
Collapse
|
23
|
Urbano N, Scimeca M, Bonanno E, Schillaci O. Nuclear medicine and anatomic pathology in personalized medicine: a challenging alliance. Per Med 2018; 15:457-459. [PMID: 30398094 DOI: 10.2217/pme-2018-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Manuel Scimeca
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier, 1, Rome 00133, Italy.,San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine & Surgery, University of Rome 'Tor Vergata', Via Montpellier, 1, Rome 00133, Italy.,IRCCS Neuromed Lab. 'Diagnostica Medica' & 'Villa dei Platani', Via Nazionale, Mercogliano (AV) 146-83010, Italy
| | - Orazio Schillaci
- Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier, 1, Rome 00133, Italy.,IRCCS Neuromed, Via Atinense, 18, Pozzilli 86077 (IS), Italy
| |
Collapse
|
24
|
Scimeca M, Bonanno E. New highlight in breast cancer development: the key role of hepcidin and iron metabolism. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S56. [PMID: 30613631 DOI: 10.21037/atm.2018.10.30] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,IRCCS San Raffaele, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Rome, Italy.,"Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
25
|
Is SUVmax Helpful in the Differential Diagnosis of Enlarged Mediastinal Lymph Nodes? A Pilot Study. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3417190. [PMID: 30510493 PMCID: PMC6230427 DOI: 10.1155/2018/3417190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/02/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Objective To explore the diagnostic value of maximum standard uptake value (SUVmax) from 18F-FDG PET/CT images in enlarged mediastinal lymph nodes of unknown etiology. Methods We performed a retrospective study of patients with enlarged mediastinal lymph nodes on 18F-FDG PET/CT scans. SUVmax and the short axis and long axis of lymph nodes were recorded. These parameters were compared among the five commonest causes of mediastinal lymphadenopathy: lymphoma, metastatic disease, sarcoidosis, tuberculosis, and lymphadenitis. Histopathologic diagnosis was recorded as the final golden standard. Results A total of 94 patients (62 men and 32 women; age range 7-85 y) were included with final diagnoses of 42 patients with benign pathology and 52 patients with malignancies. The sensitivity, specificity, and the accuracy of PET/CT in diagnosis of the benign and malignant mediastinal lymph nodes were 94.2%, 73.8%, and 85.1%, respectively. The SUVmax of benign and malignant groups were 13.10 ± 5.21 and 12.59 ± 5.50, respectively, which had no statistical difference (P > 0.05). However, the long axis and the short axis of lymph nodes in the benign and malignant groups were 2.86 ± 1.02 cm, 1.77 ± 0.60 cm and 6.04 ± 3.83 cm, 3.95 ± 2.08 cm, respectively (P < 0.05). The diagnostic values of PET/CT were higher than those of the long or short axis. However, the specificity of PET/CT was lower (73.8%) than that from the long or short axis (90.5% and 92.9%, respectively), although no statistical difference existed. Among the five common causes of mediastinal lymphadenopathy, significant differences could be seen in SUVmax and in the long axis and the short axis of lymph nodes (P < 0.05). Conclusions SUVmax, a commonly used semiquantitative measurement, was not helpful for differentiation between benign and malignant lesions in patients with enlarged mediastinal lymph nodes in this study. Many benign lesions, such as sarcoidosis and tuberculosis, had high FDG uptake, possibly a trend that the size of the lymph nodes seems to have some diagnostic value.
Collapse
|
26
|
Zhang Y, Chen Y, Huang Z, Zhang L, Wan Q, Lei L. Comparison of 18F-NaF PET/CT and 18F-FDG PET/CT for Detection of Skull-Base Invasion and Osseous Metastases in Nasopharyngeal Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:8271313. [PMID: 30254551 PMCID: PMC6145050 DOI: 10.1155/2018/8271313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022]
Abstract
Our study aimed at comparing the diagnostic value of 18F-NaF positron emission tomography-computed tomography (PET/CT) and 18F-fluorodeoxyglucose (FDG) PET/CT for detection of skull-base invasion and osseous metastases in patients with nasopharyngeal carcinoma (NPC). Our study retrospectively analyzed 45 patients with pathologically proven NPC. They all underwent both 18F-NaF PET/CT and 18F-FDG PET/CT within a 7-day interval. Bone metastases were confirmed by follow-up using PET/CT, enhance-contrast computed tomography (CT), and magnetic resonance image (MRI). These two examinations were compared using per-patient-based analysis and per-lesion-based analysis. 18F-NaF PET/CT detected 27 patients with skull-base invasion, whereas 18F-FDG PET/CT detected 17 patients. 18F-NaF PET/CT and 18F-FDG PET/CT differed significantly in diagnosing skull-base invasion (p=0.02) and sensitivity (p=0.008). The sensitivity, specificity, and agreement rate of 18F-NaF PET/CT for detecting bone metastatic lesions were 98.3%, 65.7%, and 92.9%, respectively; these values were 42.9%, 97.1%, and 51.9%, respectively, for 18F-FDG PET/CT. 18F-NaF PET/CT and 18F-FDG PET/CT differed significantly in the number of osseous metastases detected (t=2.45, p=0.18) sensitivity (p < 0.0001) and specificity (p=0.003). In patients with nasopharyngeal carcinoma, 18F-NaF PET/CT assessed invasion of the skull base better and detected more osseous metastases than 18F-FDG PET/CT.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Zhanwen Huang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiang Wan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Lei
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Cervical Cancer: Associations between Metabolic Parameters and Whole Lesion Histogram Analysis Derived from Simultaneous 18F-FDG-PET/MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:5063285. [PMID: 30154687 PMCID: PMC6098855 DOI: 10.1155/2018/5063285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 01/16/2023]
Abstract
Multimodal imaging has been increasingly used in oncology, especially in cervical cancer. By using a simultaneous positron emission (PET) and magnetic resonance imaging (MRI, PET/MRI) approach, PET and MRI can be obtained at the same time which minimizes motion artefacts and allows an exact imaging fusion, which is especially important in anatomically complex regions like the pelvis. The associations between functional parameters from MRI and 18F-FDG-PET reflecting different tumor aspects are complex with inconclusive results in cervical cancer. The present study correlates histogram analysis and 18F-FDG-PET parameters derived from simultaneous FDG-PET/MRI in cervical cancer. Overall, 18 female patients (age range: 32–79 years) with histopathologically confirmed squamous cell cervical carcinoma were retrospectively enrolled. All 18 patients underwent a whole-body simultaneous 18F-FDG-PET/MRI, including diffusion-weighted imaging (DWI) using b-values 0 and 1000 s/mm2. Apparent diffusion coefficient (ADC) histogram parameters included several percentiles, mean, min, max, mode, median, skewness, kurtosis, and entropy. Furthermore, mean and maximum standardized uptake values (SUVmean and SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were estimated. No statistically significant correlations were observed between SUVmax or SUVmean and ADC histogram parameters. TLG correlated inversely with p25 (r=−0.486, P=0.041), p75 (r=−0.490, P=0.039), p90 (r=−0.513, P=0.029), ADC median (r=−0.497, P=0.036), and ADC mode (r=−0.546, P=0.019). MTV also showed significant correlations with several ADC parameters: mean (r=−0.546, P=0.019), p10 (r=−0.473, P=0.047), p25 (r=−0.569, P=0.014), p75 (r=−0.576, P=0.012), p90 (r=−0.585, P=0.011), ADC median (r=−0.577, P=0.012), and ADC mode (r=−0.597, P=0.009). ADC histogram analysis and volume-based metabolic 18F-FDG-PET parameters are related to each other in cervical cancer.
Collapse
|
28
|
Liu DN, Li ZW, Wang HY, Zhao M, Zhao W, Hao CY. Use of 18F-FDG-PET/CT for Retroperitoneal/Intra-Abdominal Soft Tissue Sarcomas. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:2601281. [PMID: 30065620 PMCID: PMC6051286 DOI: 10.1155/2018/2601281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/24/2018] [Indexed: 12/16/2022]
Abstract
Rationale To assess the diagnostic value of 18F-FDG-PET/CT for different retroperitoneal soft tissue sarcomas (STS) and other similar tumors. To analyze the predictive value of 18F-FDG-PET/CT for histological grade and main prognostic factors. Methods 195 patients with 44 different diseases have been included. Relationship between SUVmax, Clinical, pathological, and prognostic information has been analyzed. Results Malignant tumors do not show higher SUVmax than benign ones (P=0.443). We divided all 44 different diseases into two groups; SUVmax of group 1 is significantly higher than group 2 (P ≤ 0.001). The ROC curve suggests 4.35 is the cutoff value to distinguish groups 1 and 2 (sensitivity = 0.789; specificity = 0.736). SUVmax correlates with Ki-67 index, mitotic count, vascular resection, histological grade, and recurrent STS without considering pathological diagnosis (P=0.001, P=0.012, P=0.002, P ≤ 0.001, and P=0.037, resp.). Conclusion 18F-FDG-PET/CT cannot simply distinguish malignant and benign tumors in retroperitoneal/intra-abdominal cavity; however, the SUVmax of malignant tumors, inflammatory pseudotumor, and PPGL group is higher than the SUVmax of benign tumors, lymph node metastasis, hematoma, and low malignant STS group. Guidance of "SUVmax location" may be helpful for biopsy and pathology dissection.
Collapse
Affiliation(s)
- Dao-ning Liu
- Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhong-wu Li
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hai-yue Wang
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wei Zhao
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chun-yi Hao
- Sarcoma Center, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
29
|
Standardized Uptake Values Derived from 18F-FDG PET May Predict Lung Cancer Microvessel Density and Expression of KI 67, VEGF, and HIF-1 α but Not Expression of Cyclin D1, PCNA, EGFR, PD L1, and p53. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:9257929. [PMID: 29983647 PMCID: PMC6011144 DOI: 10.1155/2018/9257929] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
Background Our purpose was to provide data regarding relationships between 18F-FDG PET and histopathological parameters in lung cancer. Methods MEDLINE library was screened for associations between PET parameters and histopathological features in lung cancer up to December 2017. Only papers containing correlation coefficients between PET parameters and histopathological findings were acquired for the analysis. Overall, 40 publications were identified. Results Associations between SUV and KI 67 were reported in 23 studies (1362 patients). The pooled correlation coefficient was 0.44. In 2 studies (180 patients), relationships between SUV and expression of cyclin D1 were analyzed (pooled correlation coefficient = 0.05). Correlation between SUV and HIF-1α was investigated in 3 studies (288 patients), and the pooled correlation coefficient was 0.42. In 5 studies (310 patients), associations between SUV and MVD were investigated (pooled correlation coefficient = 0.54). In 6 studies (305 patients), relationships between SUV and p53 were analyzed (pooled correlation coefficient = 0.30). In 6 studies (415 patients), associations between SUV and VEGF expression were investigated (pooled correlation coefficient = 0.44). In 5 studies (202 patients), associations between SUV and PCNA were investigated (pooled correlation coefficient = 0.32). In 3 studies (718 patients), associations between SUV and expression of PD L1 were analyzed (pooled correlation coefficient = 0.36). Finally, in 5 studies (409 patients), associations between SUV and EGFR were investigated (pooled correlation coefficient = 0.38). Conclusion SUV may predict microvessel density and expression of VEGF, KI 67, and HIF-1α in lung cancer.
Collapse
|