1
|
Espinosa-Bustos C, Bertrand J, Villegas-Menares A, Guerrero S, Di Marcotullio L, Navacci S, Schulte G, Kozielewicz P, Bloch N, Villela V, Paulino M, Kogan MJ, Cantero J, Salas CO. New Smoothened ligands based on the purine scaffold as potential agents for treating pancreatic cancer. Bioorg Chem 2024; 151:107681. [PMID: 39106711 DOI: 10.1016/j.bioorg.2024.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 μM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 μM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Alondra Villegas-Menares
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Simón Guerrero
- Facultad de Medicina, Universidad de Atacama, 153601 Copiapó, Chile
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Faculty Pharmacy and Medicine, Sapienza University, 00161 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, 00161 Rome, Italy
| | - Shirin Navacci
- Department of Molecular Medicine, Faculty Pharmacy and Medicine, Sapienza University, 00161 Rome, Italy
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Solna, Stockholm, Sweden
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Solna, Stockholm, Sweden
| | - Nicolas Bloch
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Valentina Villela
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Margot Paulino
- Departamento DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380492 Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, 8380492 Santiago, Chile
| | - Jorge Cantero
- Departamento DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile.
| |
Collapse
|
2
|
Dirks ML, McDougal OM. Pharmacology of Veratrum californicum Alkaloids as Hedgehog Pathway Antagonists. Pharmaceuticals (Basel) 2024; 17:123. [PMID: 38256956 PMCID: PMC10821092 DOI: 10.3390/ph17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Veratrum californicum contains steroidal alkaloids that function as inhibitors of hedgehog (Hh) signaling, a pathway involved in the growth and differentiation of cells and normal tissue development. This same Hh pathway is abnormally active for cell proliferation in more than 20 types of cancer. In this current study, alkaloids have been extracted from the root and rhizome of V. californicum, followed by their separation into five fractions using high performance liquid chromatography. Mass spectrometry was used to identify the presence of twenty-five alkaloids, nine more than are commonly cited in literature reports, and the Bruker Compass Data Analysis software was used to predict the molecular formula for every detected alkaloid. The Gli activity of the raw extract and each fraction were compared to 0.1 µM cyclopamine, and fractions 1, 2, and 4 showed increased bioactivity through suppression of the Hh signaling pathway. Fractions 2 and 4 had enhanced bioactivity, but fraction 1 was most effective in inhibiting Hh signaling. The composition of fraction 1 consisted of veratrosine, cycloposine, and potential isomers of each.
Collapse
Affiliation(s)
- Madison L. Dirks
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA;
| | - Owen M. McDougal
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
3
|
Wu J, Deng Y, Zhang X, Ma J, Zheng X, Chen Y. Suchilactone inhibits the growth of acute myeloid leukaemia by inactivating SHP2. PHARMACEUTICAL BIOLOGY 2022; 60:144-153. [PMID: 34962431 PMCID: PMC8725822 DOI: 10.1080/13880209.2021.2017467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/07/2021] [Indexed: 05/12/2023]
Abstract
CONTEXT Suchilactone, a lignan compound extracted from Monsonia angustifolia E.Mey. ex A.Rich. (Geraniaceae), has little research on pharmacological activity; whether suchilactone has inhibitory effect on acute myeloid leukaemia (AML) is unclear. OBJECTIVE To investigate the antitumor effect of suchilactone and its mechanism in AML. MATERIALS AND METHODS The effects of suchilactone on cell growth were detected by CCK-8 and flow cytometry. Network pharmacology was conducted to explore target of suchilactone. Gene expression was detected by western blot and RT-PCR. SHI-1 cells (1 × 106 cell per mouse) were subcutaneously inoculated into the female SCID mice. Suchilactone (15 and 30 mg/kg) was dissolved in PBS with 0.5% carboxymethylcellulose sodium and administered (i.g.) to mice once a day for 19 days, while the control group received PBS with 0.5% carboxymethylcellulose sodium. Tumour tissues were stained with Ki-67 and TUNEL. RESULTS Suchilactone exerted an effective inhibition on the growth of SHI-1 cells with IC50 of 17.01 μM. Then, we found that suchilactone binds to the SHP2 protein and inhibits its activation, and suchilactone interacted with SHP2 to inhibit cell proliferation and promote cell apoptosis via blocking the activation of SHP2. Moreover, Suchilaction inhibited tumour growth of AML xenografts in mice, as the tumour weight decreased from 0.618 g (control) to 0.35 g (15 mg/kg) and 0.258 g (30 mg/kg). Suchilactone inhibited Ki-67 expression and increased TUNEL expression in tumour tissue. DISCUSSION AND CONCLUSIONS Our study is the first to demonstrate suchilactone inhibits AML growth, suggesting that suchilactone is a candidate drug for the treatment of AML.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Geraniaceae/chemistry
- Leukemia, Myeloid, Acute/drug therapy
- Mice, Inbred BALB C
- Mice, SCID
- Network Pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Yuan Deng
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Xin Zhang
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Jingjing Ma
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Xinqi Zheng
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| | - Yue Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai’an, China
| |
Collapse
|
4
|
Peklar B, Perdih F, Makuc D, Plavec J, Cluzeau J, Kitanovski Z, Časar Z. Glasdegib Dimaleate: Synthesis, Characterization and Comparison of Its Properties with Monomaleate Analogue. Pharmaceutics 2022; 14:1641. [PMID: 36015269 PMCID: PMC9415664 DOI: 10.3390/pharmaceutics14081641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Glasdegib is a recently approved drug for the treatment of acute myeloid leukemia. It is formulated and marketed in monomaleate salt form. In our investigation, we were able to prepare a glasdegib dimaleate form, which could, in theory, exist in double-salt form or as a mixture of salt and co-crystal species. Therefore, the obtained crystals of glasdegib dimaleate were characterized via 15N ssNMR and single-crystal X-ray diffraction, which revealed that the obtained glasdegib dimaleate exists in double-salt form. This is a surprising finding based on the pKa values for glasdegib and maleic acid. Furthermore, we fully characterized the new dimaleate form using thermal analyses (DSC and TGA) and spectroscopy (IR and Raman). Finally, the physicochemical properties, such as solubility and chemical stability, of both forms were determined and compared.
Collapse
Affiliation(s)
- Boris Peklar
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia, Kolodvorska 27, 1234 Mengeš, Slovenia
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Damjan Makuc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000 Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000 Ljubljana, Slovenia
| | - Jérôme Cluzeau
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia, Kolodvorska 27, 1234 Mengeš, Slovenia
| | - Zoran Kitanovski
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia, Kolodvorska 27, 1234 Mengeš, Slovenia
| | - Zdenko Časar
- Lek Pharmaceuticals d.d., Sandoz Development Center Slovenia, Kolodvorska 27, 1234 Mengeš, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Molecular Mechanisms and Therapies of Myeloid Leukaemia. Int J Mol Sci 2022; 23:ijms23116251. [PMID: 35682932 PMCID: PMC9181128 DOI: 10.3390/ijms23116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukaemia (AML) is defined as a malignant disorder of the bone marrow (BM) that is characterised by the clonal expansion and differentiation arrest of myeloid progenitor cells [...].
Collapse
|
6
|
Update on glasdegib in acute myeloid leukemia - broadening horizons of Hedgehog pathway inhibitors. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:9-34. [PMID: 36651529 DOI: 10.2478/acph-2022-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/20/2023]
Abstract
Numerous new emerging therapies, including oral targeted chemotherapies, have recently entered the therapeutic arsenal against acute myeloid leukemia (AML). The significant shift toward the use of these novel therapeutics, administered either alone or in combination with intensive or low-intensity chemotherapy, changes the prospects for the control of this disease, especially for elderly patients. Glasdegib, an oral Hedgehog pathway inhibitor, showed satisfactory response rates associated with moderate toxicity and less early mortality than standard induction regimens in this population. It was approved in November 2018 by the FDA and in June 2020 by the EMA for use in combination with low-dose cytarabine as a treatment of newly-diagnosed AML in patients aged ≥ 75 and/or unfit for intensive induction chemotherapy. The current paper proposes an extensive, up-to-date review of the preclinical and clinical development of glasdegib. Elements of its routine clinical use and the landscape of ongoing clinical trials are also stated.
Collapse
|
7
|
Kontandreopoulou CN, Diamantopoulos PT, Tiblalexi D, Giannakopoulou N, Viniou NA. PARP1 as a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood Adv 2021; 5:4794-4805. [PMID: 34529761 PMCID: PMC8759124 DOI: 10.1182/bloodadvances.2021004638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is a key mediator of various forms of DNA damage repair and plays an important role in the progression of several cancer types. The enzyme is activated by binding to DNA single-strand and double-strand breaks. Its contribution to chromatin remodeling makes PARP1 crucial for gene expression regulation. Inhibition of its activity with small molecules leads to the synthetic lethal effect by impeding DNA repair in the treatment of cancer cells. At first, PARP1 inhibitors (PARPis) were developed to target breast cancer mutated cancer cells. Currently, PARPis are being studied to be used in a broader variety of patients either as single agents or in combination with chemotherapy, antiangiogenic agents, ionizing radiation, and immune checkpoint inhibitors. Ongoing clinical trials on olaparib, rucaparib, niraparib, veliparib, and the recent talazoparib show the advantage of these agents in overcoming PARPi resistance and underline their efficacy in targeted treatment of several hematologic malignancies. In this review, focusing on the crucial role of PARP1 in physiological and pathological effects in myelodysplastic syndrome and acute myeloid leukemia, we give an outline of the enzyme's mechanisms of action and its role in the pathophysiology and prognosis of myelodysplastic syndrome/acute myeloid leukemia and we analyze the available data on the use of PARPis, highlighting their promising advances in clinical application.
Collapse
Affiliation(s)
- Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T. Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Tiblalexi
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Freisleben F, Modemann F, Muschhammer J, Stamm H, Brauneck F, Krispien A, Bokemeyer C, Kirschner KN, Wellbrock J, Fiedler W. Mebendazole Mediates Proteasomal Degradation of GLI Transcription Factors in Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:10670. [PMID: 34639011 PMCID: PMC8508953 DOI: 10.3390/ijms221910670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/31/2023] Open
Abstract
The prognosis of elderly AML patients is still poor due to chemotherapy resistance. The Hedgehog (HH) pathway is important for leukemic transformation because of aberrant activation of GLI transcription factors. MBZ is a well-tolerated anthelmintic that exhibits strong antitumor effects. Herein, we show that MBZ induced strong, dose-dependent anti-leukemic effects on AML cells, including the sensitization of AML cells to chemotherapy with cytarabine. MBZ strongly reduced intracellular protein levels of GLI1/GLI2 transcription factors. Consequently, MBZ reduced the GLI promoter activity as observed in luciferase-based reporter assays in AML cell lines. Further analysis revealed that MBZ mediates its anti-leukemic effects by promoting the proteasomal degradation of GLI transcription factors via inhibition of HSP70/90 chaperone activity. Extensive molecular dynamics simulations were performed on the MBZ-HSP90 complex, showing a stable binding interaction at the ATP binding site. Importantly, two patients with refractory AML were treated with MBZ in an off-label setting and MBZ effectively reduced the GLI signaling activity in a modified plasma inhibitory assay, resulting in a decrease in peripheral blood blast counts in one patient. Our data prove that MBZ is an effective GLI inhibitor that should be evaluated in combination to conventional chemotherapy in the clinical setting.
Collapse
Affiliation(s)
- Fabian Freisleben
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Franziska Modemann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
- Mildred Scheel Cancer Career Center, University Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Jana Muschhammer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Hauke Stamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Alexander Krispien
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Karl N. Kirschner
- Department of Computer Science, University of Applied Sciences Bonn-Rhein-Sieg, 53757 Sankt Augustin, Germany;
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.F.); (F.M.); (J.M.); (H.S.); (F.B.); (A.K.); (C.B.); (J.W.)
| |
Collapse
|
9
|
Zárate AM, Espinosa-Bustos C, Guerrero S, Fierro A, Oyarzún-Ampuero F, Quest AFG, Di Marcotullio L, Loricchio E, Caimano M, Calcaterra A, González-Quiroz M, Aguirre A, Meléndez J, Salas CO. A New Smoothened Antagonist Bearing the Purine Scaffold Shows Antitumour Activity In Vitro and In Vivo. Int J Mol Sci 2021; 22:8372. [PMID: 34445078 PMCID: PMC8395040 DOI: 10.3390/ijms22168372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.
Collapse
Affiliation(s)
- Ana María Zárate
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Simón Guerrero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad SEK (I3CBSEK), Fernando Manterola 0789, Providencia, Santiago 7520317, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Felipe Oyarzún-Ampuero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Andrew F. G. Quest
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Program of Cellular and Molecular Biology, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Lucia Di Marcotullio
- Laboratory Affiliated to Insituto Pasteur Italia, Fondazione Cenci Bognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Elena Loricchio
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Miriam Caimano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Matías González-Quiroz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Adam Aguirre
- Laboratorio de Medicina Traslacional, Fundación Arturo López Pérez, Rancagua 878, Lower Fifth Floor, Providencia, Santiago 8320000, Chile;
| | - Jaime Meléndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| |
Collapse
|
10
|
Gao LJ, Zhang MZ, Li XY, Huang WK, Xu SF, Ye YP. Steroidal alkaloids isolated from Veratrum grandiflorum Loes. as novel Smoothened inhibitors with anti-proliferation effects on DAOY medulloblastoma cells. Bioorg Med Chem 2021; 39:116166. [PMID: 33910157 DOI: 10.1016/j.bmc.2021.116166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/11/2023]
Abstract
Constitutive activation of Hedgehog (Hh) pathway is intimately related with the occurrence and development of several malignancies, such as medulloblastoma (MB) and other tumors. Therefore, small molecular inhibitors of Hh pathway are urgently needed. In this study, three new steroidal alkaloids, ⊿5 (20R, 24R) 23-oxo-24-methylsolacongetidine, ⊿5 (20S, 24R) 23-oxo-24-methylsolacongetidine and veralinine 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-D-glucopyranoside, together with six known alkaloids, 20-epi-verazine, verazine, protoverine 15-(l)-2'-methylbutyrate, jervine, veramarine and β1-chaconine, were isolated and determined from Veratrum grandiflorum Loes. The dual-luciferase bioassay indicated that all compounds exhibited significant inhibitions of Hh pathway with IC50 values of 0.72-14.31 μM against Shh-LIGHT 2 cells. To determine whether these Hh pathway inhibitors act with the Smoothened (Smo) protein, which is an important oncoprotein and target for this pathway, BODIPY-cyclopamine (BC) competitive binding assay was preferentially performed. Compared with BC alone, all compounds obviously reduced the fluorescence intensities of BC binding with Smo in Smo-overexpression HEK293T cells through fluorescence microscope and flow cytometer. By directly interacting with Smo, it revealed that they were actually novel natural Smo inhibitors. Then, their anti-tumor effects were investigated against the human MB cell line DAOY, which is a typical pediatric brain tumor cells line with highly expressed Hh pathway. Interestingly, most of compounds had slight proliferation inhibitions on DAOY cells after treatment for 24 h same as vismodegib, while β1-chaconine showed the strongest inhibitory effect on the growth of DAOY with IC50 value of 5.35 μM. In conclusion, our studies valuably provide several novel natural Smo inhibitors for potential targeting treatment of Hh-dependent tumors.
Collapse
Affiliation(s)
- Li Juan Gao
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Meng Zhen Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Xiao Yu Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Wen Kang Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Shi Fang Xu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Yi Ping Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China.
| |
Collapse
|
11
|
Jiang X, Jiang L, Cheng J, Chen F, Ni J, Yin C, Wang Q, Wang Z, Fang D, Yi Z, Yu G, Zhong Q, Carter BZ, Meng F. Inhibition of EZH2 by chidamide exerts antileukemia activity and increases chemosensitivity through Smo/Gli-1 pathway in acute myeloid leukemia. J Transl Med 2021; 19:117. [PMID: 33743723 PMCID: PMC7981995 DOI: 10.1186/s12967-021-02789-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetic dysregulation plays important roles in leukemogenesis and the progression of acute myeloid leukemia (AML). Histone acetyltransferases (HATs) and histone deacetylases (HDACs) reciprocally regulate the acetylation and deacetylation of nuclear histones. Aberrant activation of HDACs results in uncontrolled proliferation and blockade of differentiation, and HDAC inhibition has been investigated as epigenetic therapeutic strategy against AML. Methods Cell growth was assessed with CCK-8 assay, and apoptosis was evaluated by flow cytometry in AML cell lines and CD45 + and CD34 + CD38- cells from patient samples after staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI). EZH2 was silenced with short hairpin RNA (shRNA) or overexpressed by lentiviral transfection. Changes in signaling pathways were detected by western blotting. The effect of chidamide or EZH2-specific shRNA (shEZH2) in combination with adriamycin was studied in vivo in leukemia-bearing nude mouse models. Results In this study, we investigated the antileukemia effects of HDAC inhibitor chidamide and its combinatorial activity with cytotoxic agent adriamycin in AML cells. We demonstrated that chidamide suppressed the levels of EZH2, H3K27me3 and DNMT3A, exerted potential antileukemia activity and increased the sensitivity to adriamycin through disruption of Smo/Gli-1 pathway and downstream signaling target p-AKT in AML cells and stem/progenitor cells. In addition to decreasing the levels of H3K27me3 and DNMT3A, inhibition of EZH2 either pharmacologically by chidamide or genetically by shEZH2 suppressed the activity of Smo/Gli-1 pathway and increased the antileukemia activity of adriamycin against AML in vitro and in vivo. Conclusions Inhibition of EZH2 by chidamide has antileukemia activity and increases the chemosensitivity to adriamycin through Smo/Gli-1 pathway in AML cells (Fig. 5). These findings support the rational combination of HDAC inhibitors and chemotherapy for the treatment of AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02789-3.
Collapse
Affiliation(s)
- Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaying Cheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fang Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jinle Ni
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Fang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhengshan Yi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingxiu Zhong
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China.
| |
Collapse
|
12
|
Abruzzese E, Niscola P. Current clinical strategies and emergent treatment landscapes in leukemic transformation of Philadelphia-negative myeloproliferative neoplasms. Expert Rev Hematol 2020; 13:1349-1359. [PMID: 33226274 DOI: 10.1080/17474086.2020.1850251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Transformation to acute myeloid leukemia (AML) of Philadelphia chromosome-negative (Ph-) chronic myeloproliferative neoplasms (MPN) represents a challenging medical concern and an unmet clinical need, since it charts a very poor outcome and a low rate of response to standard treatments with the exception of allogeneic hematopoietic stem cell transplantation (HSCT). Recent novel insights into the molecular disease pathways and the genomic features characterizing the transformation of Ph-MPN have led to new therapeutic individualized approaches with the potential to modify the clinical management of these difficult-to-treat patients. Areas covered: Literature review (MeSH headings/PubMed) of risk factors of MPNs progression and treatment options for transformed disease with traditional standard approaches, and novel and investigational agents was performed. One or combinations of related subject headings like transformed MPN, epigenetics, molecular alterations, HSCT, ruxolitinib, azacytidine, decitabine, gliterinib, novel agents, personalized therapy was screened. Informative papers were selected by the appropriate actual evidence and suggesting strategies for improving outcomes in the future. Expert opinion: Current and emerging treatments for transformed Ph-MPN, are presented. Novel targeted or experimental agents to be used both before HSCT, to induce blast-free state, or to modify the disease prognosis and improve survival and quality of life are critically reviewed.
Collapse
Affiliation(s)
| | - Pasquale Niscola
- Hematology, S. Eugenio Hospital, Tor Vergata University , Rome, Italy
| |
Collapse
|
13
|
Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther 2020; 11:489. [PMID: 33208173 PMCID: PMC7672862 DOI: 10.1186/s13287-020-02018-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-β. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hunter Noren
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Richard Jove
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Karl-Henrik Grinnemo
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Akademiska sjukhuset, ingång 50, 4 tr, 751 85, Uppsala, Sweden.
| |
Collapse
|
14
|
Park S, Cho BS, Kim HJ. New agents in acute myeloid leukemia (AML). Blood Res 2020; 55:S14-S18. [PMID: 32719171 PMCID: PMC7386889 DOI: 10.5045/br.2020.s003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Despite expanding knowledge in the molecular landscape of acute myeloid leukemia (AML) and an increasing understanding of leukemogenic pathways, little has changed in the treatment of AML in the last 40 years. Since introduction in the 1970s, combination chemotherapy consisting of anthracycline and cytarabine has been the mainstay of treatment, with major therapeutic advances based on improving supportive care rather than the introduction of novel therapeutics. Over the last decades, there have been extensive efforts to identify specific target mutations or pathways with the aim of improving clinical outcomes. Finally, after a prolonged wait, we are witnessing the next wave of AML treatment, characterized by a more “precise” and “personalized” understanding of the unique molecular or genetic mapping of individual patients. This new trend has since been further facilitated, with four new FDA approvals granted in 2017 in AML therapeutics. Currently, a total of eight targeted agents have been approved since 2017 (as of Jan. 2020). In this review, we will briefly discuss these newer agents in the context of their indication and the basis of their approval.
Collapse
Affiliation(s)
- Silvia Park
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Sik Cho
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee-Je Kim
- Department of Hematology, Catholic Hematology Hospital, Seoul St. Mary's Hospital, Seoul, Korea.,Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Liu X, Ding C, Tan W, Zhang A. Medulloblastoma: Molecular understanding, treatment evolution, and new developments. Pharmacol Ther 2020; 210:107516. [PMID: 32105673 DOI: 10.1016/j.pharmthera.2020.107516] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Medulloblastoma (MB) is the most common childhood malignant brain tumor, accounting for approximately 20% of all pediatric central nervous system tumors. Current standard treatments involving surgical interventions followed by craniospinal irradiation and adjuvant chemotherapy have severe motor and cognitive defects. Therefore, individualized treatment regimens with reduced toxicity designed according to the presence of specific oncogenic 'driver' genes are urgently demanded. To this end, recent genetic and epigenetic findings have advanced the classification of MB into the international consensus of four distinct MB molecular subgroups (WNT, SHH, Group 3, and Group 4) based on their respective molecular and histopathological characteristics. More recent studies have indicated that up to seven molecular subgroups exist in childhood MB. Moreover, studies on the inter- and intra-tumoral features of the four subgroups revealed that each subgroup contains variant subtypes. These results have greatly helped risk stratification of MB patients at diagnosis and significantly improved clinical treatment options. Herein, we highlight the recent advances and challenges associated with MB classification, and the development of therapeutic treatments targeting novel subgroup-specific molecular and epigenetic factors, especially those in the SHH-driven MB tumors.
Collapse
Affiliation(s)
- Xiaohua Liu
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyong Ding
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Ao Zhang
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Ferrara F, Picardi A. Is outcome of older people with acute myeloid leukemia improving with new therapeutic approaches and stem cell transplantation? Expert Rev Hematol 2020; 13:99-108. [PMID: 31922453 DOI: 10.1080/17474086.2020.1715207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The clinical outcome of older patients with acute myeloid leukemia (AML) is still poor, especially for those who are unfit to treatments aimed at altering the natural course of the disease. Hypomethylating agents (HMA) offer an important therapeutic opportunity to a consistent number of patients, but long-term results are largely unsatisfactory.Area covered: Recently, a number of new agents have been registered for AML, some of which selectively available for older patient population, with promising results in terms of response rate and survival. Furthermore, the upper age limit for allogeneic stem cell transplantation is constantly increasing, so that this procedure is offered and actually given to an increasing number of older patients with AML. A literature review was conducted of the PubMed database for articles published in English as well as for abstracts from most important and recent hematology meetings on AML in older patients.Expert opinion: Appropriate selection among different options on the basis of clinical fitness and molecular findings at diagnosis as well as at relapse would result in improvement of therapeutic results, sparing unnecessary toxicity and optimizing health systems resources.
Collapse
Affiliation(s)
- Felicetto Ferrara
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy
| | - Alessandra Picardi
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy.,Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| |
Collapse
|