1
|
Galoian K, Bilbao D, Denny C, Campos Gallego N, Roberts E, Martinez D, Temple H. Targeting cancer stem cells by TPA leads to inhibition of refractory sarcoma and extended overall survival. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200905. [PMID: 39640862 PMCID: PMC11617462 DOI: 10.1016/j.omton.2024.200905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
Refractory cancer recurrence in patients is a serious challenge in modern medicine. Tumor regrowth in a more aggressive and invasive drug-resistant form is caused by a specific sub-population of tumor cells defined as cancer stem cells (CSCs). While the role of CSCs in cancer relapse is recognized, the signaling pathways of CSCs-driven chemoresistance are less well understood. Moreover, there are no effective therapeutic strategies that involve specific inhibition of CSCs responsible for cancer recurrence and drug resistance. There is a clinical need to develop new therapies for patients with refractory sarcomas, particularly fibrosarcoma. These aggressive tumors, with poor overall survival, do not respond to conventional therapies. Standard systemic chemotherapy for these tumors includes doxorubicin (DOX). A Tyr peptide analog (TPA), developed in our laboratory, specifically targets CSCs by drastically reducing expression of the polycomb group protein enhancer of zester (EZH2) and its downstream targets, specifically ALDH1A1 and Nanog. In vivo experiments demonstrated that TPA inhibited tumor growth in nu/nu mice with relapsed DOX-treated fibrosarcoma 7-fold and led to improved overall (2-fold) survival. In an experimental metastatic model, the combination of TPA with DOX treatment extended overall survival 3-fold, suggesting that targeting CSC can become an effective strategy in the treatment of refractory/relapse fibrosarcoma.
Collapse
Affiliation(s)
- Karina Galoian
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Daniel Bilbao
- Department of Pathology and Laboratory Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Carina Denny
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Evan Roberts
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Daniel Martinez
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - H.T. Temple
- Department of Orthopedic Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Wang MS, Sussman J, Xu JA, Patel R, Elghawy O, Rawla P. Pharmacological Advancements of PRC2 in Cancer Therapy: A Narrative Review. Life (Basel) 2024; 14:1645. [PMID: 39768352 PMCID: PMC11678550 DOI: 10.3390/life14121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Polycomb repressive complex 2 (PRC2) is known to regulate gene expression and chromatin structure as it methylates H3K27, resulting in gene silencing. Studies have shown that PRC2 has dual functions in oncogenesis that allow it to function as both an oncogene and a tumor suppressor. Because of this, nuanced strategies are necessary to promote or inhibit PRC2 activity therapeutically. Given the therapeutic vulnerabilities and associated risks in oncological applications, a structured literature review on PRC2 was conducted to showcase similar cofactor competitor inhibitors of PRC2. Key inhibitors such as Tazemetostat, GSK126, Valemetostat, and UNC1999 have shown promise for clinical use within various studies. Tazemetostat and GSK126 are both highly selective for wild-type and lymphoma-associated EZH2 mutants. Valemetostat and UNC1999 have shown promise as orally bioavailable and SAM-competitive inhibitors of both EZH1 and EZH2, giving them greater efficacy against potential drug resistance. The development of other PRC2 inhibitors, particularly inhibitors targeting the EED or SUZ12 subunit, is also being explored with the development of drugs like EED 226. This review aims to bridge gaps in the current literature and provide a unified perspective on promising PRC2 inhibitors as therapeutic agents in the treatment of lymphomas and solid tumors.
Collapse
Affiliation(s)
- Michael S. Wang
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Jonathan Sussman
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Jessica A. Xu
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Reema Patel
- University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Omar Elghawy
- Hospital of the University of Pennsylvania, HUP 3400 Spruce St., Philadelphia, PA 19104, USA; (M.S.W.)
| | - Prashanth Rawla
- Parrish Healthcare, 951 North Washington Ave., Titusville, FL 32796, USA
| |
Collapse
|
3
|
Huang K, Liu WW, Chen XW, Hao YH, Luo SY, Yuan LL, Huang YG, Tang XB. Case report: A rare case of malignant solitary fibrous tumor in an adult with an epithelioid pattern in the occipital region. Front Oncol 2024; 14:1339582. [PMID: 39220647 PMCID: PMC11361973 DOI: 10.3389/fonc.2024.1339582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
We illustrated a rare case of malignant solitary fibrous tumor (MSFT) with epithelioid morphology in the occipital region of a 59-year-old female, in which a rare NAB2ex7-STAT6 exon15/16 double fusion subtype was detected by the Next-generation sequencing (NGS) and STAT6 immunohistochemistry (IHC) was diffusely and strongly positively expressed, without recurrence after 20 months of postoperative follow-up. The morphological and molecular genetic aspects and the differential diagnosis are described, and the relevant literature was assessed in order to broaden our understanding and diagnostic capability of this malignancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu-gang Huang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xian-bin Tang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
4
|
Rajput N, Jadav T, Sengupta P. Identification and characterization of the rat in-vivo and in-vitro metabolites of tazemetostat using LC-QTOF-MS. Food Chem Toxicol 2024; 190:114785. [PMID: 38849047 DOI: 10.1016/j.fct.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
In drug discovery, metabolite profiling unveils biotransformation pathways and potential toxicant formation, guiding selection of candidates with optimal pharmacokinetics and safety profiles. Tazemetostat (TAZ) is employed in treating locally advanced or metastatic epithelioid sarcoma. Identification of drug metabolites are of significant importance in improving safety, efficacy and reduced toxicity of drugs. The current study aimed to investigate the comprehensive metabolic fate of TAZ using different in vivo (rat) and in vitro (RLM, HLM, HS9) models. For in vivo studies, drug was orally administered to Sprague-Dawley rats with subsequent analysis of plasma, feces and urine samples. A total of 21 new metabolites were detected across various matrices and were separated on Phenomenex kinetex C18 (2.5 μm; 150 × 4.6 mm) column using acetonitrile and 0.1% formic acid in water as mobile phase. LC-QTOF-MS/MS and NMR techniques were employed to identify and characterize the metabolites from extracted samples. The major metabolic routes found in biotransformation of TAZ were hydroxylation, N-dealkylation, N-oxidation, hydrogenation, hydrolysis and N-acetylation. In silico toxicity revealed potential immunotoxicity for TAZ and few of its metabolites. This research article is the first time to discuss the complete metabolite profiling including identification and characterization of TAZ metabolites as well as its biotransformation mechanism.
Collapse
Affiliation(s)
- Niraj Rajput
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Tarang Jadav
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Pinaki Sengupta
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
5
|
Jin J, Barnett JD, Mironchik Y, Gross J, Kobayashi H, Levin A, Bhujwalla ZM. Photoimmunotheranostics of epithelioid sarcoma by targeting CD44 or EGFR. Transl Oncol 2024; 45:101966. [PMID: 38663219 PMCID: PMC11063645 DOI: 10.1016/j.tranon.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Epithelioid sarcoma (ES) is a rare soft tissue neoplasm with high recurrence rates. Wide surgical resection remains the only potential curative treatment. ES presents most commonly on the fingers, hands and forearm, making light-based cancer cell-targeted therapies such as near-infrared photoimmunotherapy (NIR-PIT) that is target-specific, but with limited penetration depth, suitable for ES treatment. We established that CD44 and EGFR were overexpressed in ES patient samples and in the VA-ES-BJ human ES cell line. NIR-PIT of VA-ES-BJ cells using antibody photosensitizer conjugates, prepared by conjugating a CD44 or EGFR monoclonal antibody to the photosensitizer IR700, confirmed that NIR-PIT with both conjugates resulted in cell death. Neither treatment with NIR light alone nor treatment with the conjugates but without NIR light were effective. CD44-IR700-PIT resulted in greater cell death than EGFR-IR700-PIT, consistent with the increased expression of CD44 by VA-ES-BJ cells. In tumors, EGFR-IR700 exhibited a higher tumor-to-normal ratio, as determined by in vivo fluorescence imaging, and a higher anti-tumor growth effect, compared to CD44-IR700. No antitumor effect of the EGFR antibody or the photosensitizer conjugate alone was observed in vivo. Our data support evaluating the use of EGFR-IR700-PIT in the management of ES for detecting and eliminating ES cells in surgical margins, and in the treatment of superficial recurrent tumors.
Collapse
Affiliation(s)
- Jiefu Jin
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - James D Barnett
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yelena Mironchik
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Gross
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hisataka Kobayashi
- Laboratory of Molecular Theranostics, Molecular Imaging Branch, NCI/NIH, Bethesda, MD, USA
| | - Adam Levin
- Orthopaedic Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Hwang C, Agulnik M, Schulte B. Prices and Trends in FDA-Approved Medications for Sarcomas. Cancers (Basel) 2024; 16:1545. [PMID: 38672627 PMCID: PMC11048328 DOI: 10.3390/cancers16081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcomas represent a diverse set of both malignant and benign subtypes consisting of often rare and ultra-rare conditions. Over the course of the last decade, there have been numerous FDA approvals for agents treating various sarcoma subtypes. Given this burgeoning landscape of sarcoma treatments, we seek to review current FDA-approved agents with respect to their rates of incidence, approval rates, and financial costs. We gathered clinical trial data by searching FDA approval announcements from 2013 to 2023. We determined the 30 day and one year cost of therapy for patients of FDA-approved sarcoma treatments in the aforementioned timeframe. From 2013 to 2023, 14 medications have been FDA-approved for sarcoma subtypes. The 30-day dosing prices for these medications range from $11,162.86 to $46,926.00. Since 2013, the rates of approval for sarcoma medications have been higher than in prior decades. Nonetheless, there remains the potential for significant financial toxicity for patients living with sarcoma.
Collapse
Affiliation(s)
- Caleb Hwang
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Mark Agulnik
- Division of Oncology, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Brian Schulte
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Xie L, Sun X, Xu J, Liang X, Liu K, Sun K, Yang R, Tang X, Guo W. The efficacy and safety of vincristine, irinotecan and anlotinib in Epithelioid Sarcoma. BMC Cancer 2024; 24:172. [PMID: 38310286 PMCID: PMC10838420 DOI: 10.1186/s12885-024-11921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Epithelioid sarcoma is a rare soft tissue sarcoma characterized by SMARCB1/INI1 deficiency. Much attention has been paid to the selective EZH2 inhibitor tazemetostat, where other systemic treatments are generally ignored. To explore alternative treatment options, we studied the effects of irinotecan-based chemotherapy in a series of epithelioid sarcoma patients. METHODS We retrospectively reviewed data from patients with metastatic or unresectable epithelioid sarcoma at the Peking University People's Hospital treated with irinotecan (50 mg/m2/d d1-5 Q3W) in combination with Anlotinib (12 mg Qd, 2 weeks on and 1 week off) from July 2015 to November 2021. RESULTS A total of 54 courses were administered. With a median follow up of 21.2 months (95% CI, 12.2, 68.1), the 5-year overall survival rate was 83.3%. Five of eight (62.5%) patients presented with unresectable localized lesions, including local tumor thrombosis and lymphatic metastasis. The other patients had unresectable pulmonary metastases. Six of eight (75%) patients had progressed following two lines of systemic therapy. The objective response rate reached 37.5% (three of eight patients) while stabilized disease was observed in 62.5% (five of eight) of patients. No patient had progressed at initial evaluation. At the last follow up, two patients were still using the combination and three patients had ceased the therapy due to toxicities such as diarrhea, nausea, and emesis. One patient changed to tazemetostat for maintenance and one patient stopped treatment due to coronavirus disease 2019 (COVID-19). Another patient stopped therapy as residual lesions had been radiated. CONCLUSIONS The combination of irinotecan and Anlotinib as a salvage regimen may be considered another effective treatment option for refractory epithelioid sarcoma. TRIAL REGISTRATION This study was approved in the Medical Ethics Committee of Peking University People's Hospital on October 28, 2022 (No.: 2022PHD015-002). The study was registered in Clinicaltrials.gov with identifier no. NCT05656222.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China
| | - Kunkun Sun
- Pathology Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China
| | - Rongli Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, P. R. China
| |
Collapse
|
8
|
Falkenstern L, Georgi V, Bunse S, Badock V, Husemann M, Roehn U, Stellfeld T, Fitzgerald M, Ferrara S, Stöckigt D, Stresemann C, Hartung IV, Fernández-Montalván A. A miniaturized mode-of-action profiling platform enables high throughput characterization of the molecular and cellular dynamics of EZH2 inhibition. Sci Rep 2024; 14:1739. [PMID: 38242973 PMCID: PMC10799085 DOI: 10.1038/s41598-023-50964-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024] Open
Abstract
The market approval of Tazemetostat (TAZVERIK) for the treatment of follicular lymphoma and epithelioid sarcoma has established "enhancer of zeste homolog 2" (EZH2) as therapeutic target in oncology. Despite their structural similarities and common mode of inhibition, Tazemetostat and other EZH2 inhibitors display differentiated pharmacological profiles based on their target residence time. Here we established high throughput screening methods based on time-resolved fluorescence energy transfer, scintillation proximity and high content analysis microscopy to quantify the biochemical and cellular binding of a chemically diverse collection of EZH2 inhibitors. These assays allowed to further characterize the interplay between EZH2 allosteric modulation by methylated histone tails (H3K27me3) and inhibitor binding, and to evaluate the impact of EZH2's clinically relevant mutant Y641N on drug target residence times. While all compounds in this study exhibited slower off-rates, those with clinical candidate status display significantly slower target residence times in wild type EZH2 and disease-related mutants. These inhibitors interact in a more entropy-driven fashion and show the most persistent effects in cellular washout and antiproliferative efficacy experiments. Our work provides mechanistic insights for the largest cohort of EZH2 inhibitors reported to date, demonstrating that-among several other binding parameters-target residence time is the best predictor of cellular efficacy.
Collapse
Affiliation(s)
- Lilia Falkenstern
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Rentschler Biopharma SE, Erwin-Rentschler-Straße 21, 88471, Laupheim, Germany
| | - Victoria Georgi
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Stefanie Bunse
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Volker Badock
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | | | - Ulrike Roehn
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Timo Stellfeld
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Mark Fitzgerald
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nested Therapeutics, 1030 Massachusetts Avenue, Suite 410, Cambridge, MA, 02138, USA
| | - Steven Ferrara
- Broad Institute, Merkin Building, 415 Main St, Cambridge, MA, 02142, USA
| | - Detlef Stöckigt
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Carlo Stresemann
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Nuvisan Innovation Campus Berlin, Müllerstrasse 178, 13353, Berlin, Germany
| | - Ingo V Hartung
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany
- Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Amaury Fernández-Montalván
- Bayer AG, Müllerstrasse 178, 13353, Berlin, Germany.
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400, Biberach an der Riß, Germany.
| |
Collapse
|
9
|
Guefack MGF, Bhatnagar S. Advances in Epigenetic Therapeutics for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:89-97. [PMID: 39586995 DOI: 10.1007/978-3-031-66686-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The epigenetic deregulations correlate with tumorigenesis, resistance to therapy, and metastasis of breast cancer cells. Given the predominance of aberrant epigenomic mechanisms, there is a growing emphasis on targeting epigenetic mechanisms for breast cancer therapeutic development. Selective inhibitors of epigenetic enzymes and the combined approach of epigenetic therapies with chemotherapies or hormone therapies in the treatment of breast cancer represent promising therapeutic strategies. In this chapter, we review the targeting of epigenetic mechanisms and highlight current epigenetic research in the development of breast cancer therapy.
Collapse
Affiliation(s)
- Michel-Gael F Guefack
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
| |
Collapse
|
10
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
11
|
Han MM, Dermarkarian CR, Camacho MB, Estopinal MDV, Tao JP. Metastatic Epithelioid Sarcoma of the Eyelid in a 47-Year-Old Man: A Case Report. Ophthalmic Plast Reconstr Surg 2023; 39:e112-e115. [PMID: 36893069 DOI: 10.1097/iop.0000000000002370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Epithelioid sarcoma is a rare soft tissue neoplasm of uncertain differentiation that typically affects the distal extremities. Primary orbital epithelioid sarcoma is rare, and no reports exist characterizing metastases of this tumor to the orbit and ocular adnexa. In this article, the authors describe a rare case of eyelid metastasis in a 47-year-old man with epithelioid sarcoma of the right fibula diagnosed 16 months earlier who was otherwise doing well on the adjuvant tazemetostat therapy. In addition, the authors perform a retrospective review of cases of primary orbital epithelioid sarcoma reported in the literature, of which 4 patients responded favorably to surgical excision whereas 2 others eventually died as a direct result of their disease.
Collapse
Affiliation(s)
| | | | | | - Maria Del Valle Estopinal
- Department of Ophthalmology
- Department of Pathology. University of California, Irvine. Irvine, California, U.S.A
| | | |
Collapse
|
12
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
13
|
Guo Y, Tian C, Cheng Z, Chen R, Li Y, Su F, Shi Y, Tan H. Molecular and Functional Heterogeneity of Primary Pancreatic Neuroendocrine Tumors and Metastases. Neuroendocrinology 2023; 113:943-956. [PMID: 37232011 PMCID: PMC10614458 DOI: 10.1159/000530968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Treatment response to the standard therapy is low for metastatic pancreatic neuroendocrine tumors (PanNETs) mainly due to the tumor heterogeneity. We investigated the heterogeneity between primary PanNETs and metastases to improve the precise treatment. METHODS The genomic and transcriptomic data of PanNETs were retrieved from the Genomics, Evidence, Neoplasia, Information, Exchange (GENIE), and Gene Expression Omnibus (GEO) database, respectively. Potential prognostic effects of gene mutations enriched in metastases were investigated. Gene set enrichment analysis was performed to investigate the functional difference. Oncology Knowledge Base was interrogated for identifying the targetable gene alterations. RESULTS Twenty-one genes had significantly higher mutation rates in metastases which included TP53 (10.3% vs. 16.9%, p = 0.035) and KRAS (3.7% vs. 9.1%, p = 0.016). Signaling pathways related to cell proliferation and metabolism were enriched in metastases, whereas epithelial-mesenchymal transition (EMT) and TGF-β signaling were enriched in primaries. Gene mutations were highly enriched in metastases that had significant unfavorable prognostic effects included mutation of TP53 (p < 0.001), KRAS (p = 0.001), ATM (p = 0.032), KMT2D (p = 0.001), RB1 (p < 0.001), and FAT1 (p < 0.001). Targetable alterations enriched in metastases included mutation of TSC2 (15.5%), ARID1A (9.7%), KRAS (9.1%), PTEN (8.7%), ATM (6.4%), amplification of EGFR (6.0%), MET (5.5%), CDK4 (5.5%), MDM2 (5.0%), and deletion of SMARCB1 (5.0%). CONCLUSION Metastases exhibited a certain extent of genomic and transcriptomic diversity from primary PanNETs. TP53 and KRAS mutation in primary samples might associate with metastasis and contribute to a poorer prognosis. A high fraction of novel targetable alterations enriched in metastases deserves to be validated in advanced PanNETs.
Collapse
Affiliation(s)
- Yiying Guo
- Department of Integrative Oncology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chao Tian
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zixuan Cheng
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruao Chen
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanliang Li
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Su
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Huangying Tan
- Department of Integrative Oncology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
de Mello DC, Saito KC, Cristovão MM, Kimura ET, Fuziwara CS. Modulation of EZH2 Activity Induces an Antitumoral Effect and Cell Redifferentiation in Anaplastic Thyroid Cancer. Int J Mol Sci 2023; 24:ijms24097872. [PMID: 37175580 PMCID: PMC10178714 DOI: 10.3390/ijms24097872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare and lethal form of thyroid cancer that requires urgent investigation of new molecular targets involved in its aggressive biology. In this context, the overactivation of Polycomb Repressive Complex 2/EZH2, which induces chromatin compaction, is frequently observed in aggressive solid tumors, making the EZH2 methyltransferase a potential target for treatment. However, the deregulation of chromatin accessibility is yet not fully investigated in thyroid cancer. In this study, EZH2 expression was modulated by CRISPR/Cas9-mediated gene editing and pharmacologically inhibited with EZH2 inhibitor EPZ6438 alone or in combination with the MAPK inhibitor U0126. The results showed that CRISPR/Cas9-induced EZH2 gene editing reduced cell growth, migration and invasion in vitro and resulted in a 90% reduction in tumor growth when EZH2-edited cells were injected into an immunocompromised mouse model. Immunohistochemistry analysis of the tumors revealed reduced tumor cell proliferation and less recruitment of cancer-associated fibroblasts in the EZH2-edited tumors compared to the control tumors. Moreover, EZH2 inhibition induced thyroid-differentiation genes' expression and mesenchymal-to-epithelial transition (MET) in ATC cells. Thus, this study shows that targeting EZH2 could be a promising neoadjuvant treatment for ATC, as it promotes antitumoral effects in vitro and in vivo and induces cell differentiation.
Collapse
Affiliation(s)
- Diego Claro de Mello
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Kelly Cristina Saito
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Marcella Maringolo Cristovão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
15
|
Zhu Y, Zhang L, Song X, Zhang Q, Wang T, Xiao H, Yu L. Pharmacological inhibition of EZH2 by ZLD1039 suppresses tumor growth and pulmonary metastasis in melanoma cells in vitro and in vivo. Biochem Pharmacol 2023; 210:115493. [PMID: 36898415 DOI: 10.1016/j.bcp.2023.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
The incidence and mortality rate of malignant melanoma are increasing worldwide. Metastasis reduces the efficacy of current melanoma therapies and leads to poor prognosis for patients. EZH2 is a methyltransferase that promotes the proliferation, metastasis, and drug resistance of tumor cells by regulating transcriptional activity. EZH2 inhibitors could be effective in melanoma therapies. Herein, we aimed to investigate whether the pharmacological inhibition of EZH2 by ZLD1039, a potent and selective S-adenosyl-l-methionine-EZH2 inhibitor, suppresses tumor growth and pulmonary metastasis in melanoma cells. Results showed that ZLD1039 selectively reduced H3K27 methylation in melanoma cells by inhibiting EZH2 methyltransferase activity. Additionally, ZLD1039 exerted excellent antiproliferative effects on melanoma cells in 2D and 3D culture systems. Administration of ZLD1039 (100 mg/kg) by oral gavage caused antitumor effects in the A375 subcutaneous xenograft mouse model. RNA sequencing and GSEA revealed that the ZLD1039-treated tumors exhibited changes in the gene sets enriched from the "Cell Cycle" and "Oxidative Phosphorylation", whereas the "ECM receptor interaction" gene set had a negative enrichment score. Mechanistically, ZLD1039 induced G0/G1 phase arrest by upregulating p16 and p27 and inhibiting the functions of the cyclin D1/CDK6 and cyclin E/CDK2 complexes. Moreover, ZLD1039 induced apoptosis in melanoma cells via the mitochondrial reactive oxygen species apoptotic pathway, consistent with the changes in transcriptional signatures. ZLD1039 also exhibited excellent antimetastatic effects on melanoma cells in vitro and in vivo. Our data highlight that ZLD1039 may be effective against melanoma growth and pulmonary metastasis and thus could serve as a therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lidan Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuejiao Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ting Wang
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Evaluation of Tazemetostat as a Therapeutically Relevant Substance in Biliary Tract Cancer. Cancers (Basel) 2023; 15:cancers15051569. [PMID: 36900361 PMCID: PMC10000745 DOI: 10.3390/cancers15051569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Biliary tract cancer (BTC) is a gastrointestinal malignancy associated with a poor survival rate. Current therapies encompass palliative and chemotherapeutic treatment as well as radiation therapy, which results in a median survival of only one year due to standard therapeutic ineffectiveness or resistance. Tazemetostat is an FDA-approved inhibitor of enhancer of Zeste homolog 2 (EZH2), a methyltransferase involved in BTC tumorigenesis via trimethylation of histone 3 at lysine 27 (H3K27me3), an epigenetic mark associated with silencing of tumor suppressor genes. Up to now, there are no data available regarding tazemetostat as a possible treatment option against BTC. Therefore, the aim of our study is a first-time investigation of tazemetostat as a potential anti-BTC substance in vitro. In this study, we demonstrate that tazemetostat affects cell viability and the clonogenic growth of BTC cells in a cell line-dependent manner. Furthermore, we found a strong epigenetic effect at low concentrations of tazemetostat, which was independent of the cytotoxic effect. We also observed in one BTC cell line that tazemetostat increases the mRNA levels and protein expression of the tumor suppressor gene Fructose-1,6-bisphosphatase 1 (FBP1). Interestingly, the observed cytotoxic and epigenetic effects were independent of the mutation status of EZH2. To conclude, our study shows that tazemetostat is a potential anti-tumorigenic substance in BTC with a strong epigenetic effect.
Collapse
|
17
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
18
|
Pei H, Guo W, Peng Y, Xiong H, Chen Y. Targeting key proteins involved in transcriptional regulation for cancer therapy: Current strategies and future prospective. Med Res Rev 2022; 42:1607-1660. [PMID: 35312190 DOI: 10.1002/med.21886] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The key proteins involved in transcriptional regulation play convergent roles in cellular homeostasis, and their dysfunction mediates aberrant gene expressions that underline the hallmarks of tumorigenesis. As tumor progression is dependent on such abnormal regulation of transcription, it is important to discover novel chemical entities as antitumor drugs that target key tumor-associated proteins involved in transcriptional regulation. Despite most key proteins (especially transcription factors) involved in transcriptional regulation are historically recognized as undruggable targets, multiple targeting approaches at diverse levels of transcriptional regulation, such as epigenetic intervention, inhibition of DNA-binding of transcriptional factors, and inhibition of the protein-protein interactions (PPIs), have been established in preclinically or clinically studies. In addition, several new approaches have recently been described, such as targeting proteasomal degradation and eliciting synthetic lethality. This review will emphasize on accentuating these developing therapeutic approaches and provide a thorough conspectus of the drug development to target key proteins involved in transcriptional regulation and their impact on future oncotherapy.
Collapse
Affiliation(s)
- Haixiang Pei
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weikai Guo
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.,Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Science, Henan University, Kaifeng, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University and Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
19
|
Rui W, Du Y. Enigma Portal Case: Pleural Effusion. Cytopathology 2022; 33:550-552. [PMID: 35000245 DOI: 10.1111/cyt.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Wang Rui
- The Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Yun Du
- The Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, PR China
| |
Collapse
|
20
|
Ezh2 promotes TRβ lysine methylation-mediated degradation in hepatocellular carcinoma. Genes Genomics 2021; 44:369-377. [PMID: 34851506 DOI: 10.1007/s13258-021-01196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Post-translational modification (PTM) of proteins controls various cellular functions of transcriptional regulators and participates in diverse signal transduction pathways in cancer. The thyroid hormone (triiodothyronine, T3) plays a critical role in metabolic homeostasis via its direct interaction with the thyroid hormone receptor beta (TRβ). TRβ is involved in physiological processes, such as cell growth, differentiation, apoptosis, and maintenance of metabolic homeostasis through transcriptional regulation of target genes. OBJECTIVE This study was performed to characterize the specific PTM of TRβ is an active control mechanism for the proteasomal degradation of TRβ in transcriptional signaling pathways in hepatocellular carcinoma cells. METHODS Based on a previous study, we predicted that the lysine methyltransferase and methylation sites of TRβ by comparing the amino acid sequences of histone H3 and TRβ. Methyl-acceptor site of TRβ was confirmed by point mutation. TRβ protein stability was evaluated by ubiquitination assay with MG132. For glucose starvation, HepG2 cells were incubated in media without D-glucose. Proliferation-related proteins were detected by western blotting. MicroRNA level and autophagy marker were measured by real-time qPCR. RESULTS The presence of enhancer of zeste homolog 2 (Ezh2), a methyltransferase of H3 lysine 27, as a methyltransferase of TRβ also revealed that direct lysine methylation and consequent stimulated protein degradation of TRβ underlies the negative correlation between Ezh2 and TRβ. Notably, glucose starvation significantly increased lysine methylation, and methylated TRβ showed further protein instability leading to an increase in the proliferation and growth of hepatocellular carcinoma cells. CONCLUSIONS TRβ functions as a tumor suppressor in various cancers; therefore, we evaluated the effect of TRβ degradation on oncogenesis during glucose starvation. These data clearly define a functional model and provide a link between metabolism and cancer by regulating methyl-dependent protein levels of tumor suppressors. Taken together, maintaining TRβ against methyl-dependent degradation is considered a possible therapeutic target for cancer progression.
Collapse
|