1
|
Cao XC, Mao XL, Lu SS, Zhu W, Huang W, Yi H, Yuan L, Zhou JH, Xiao ZQ. A PD-L1-Targeted Probe Cy5.5-A11 for In Vivo Imaging of Multiple Tumors. ACS OMEGA 2024; 9:43826-43833. [PMID: 39494025 PMCID: PMC11525735 DOI: 10.1021/acsomega.4c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
PD-L1 is an immune checkpoint molecule mediating cancer immune escape, and its expression level in the tumor has been used as a biomarker to predict response to immune checkpoint inhibitor (ICI) therapy. Our previous study reveals that an 11 amino acid-long ANXA1-derived peptide (named A11) binds and degrades the PD-L1 protein in multiple cancers and is a potential peptide for cancer diagnosis and treatment. Near-infrared fluorescence (NIF) optical imaging of tumors offers a noninvasive method for detecting cancer and monitoring therapeutic responses. In this study, an NIF dye Cy5.5 was conjugated with A11 peptide to develop a novel PD-L1-targeted probe for molecular imaging of tumors and monitor the dynamic changes in PD-L1 expression in tumors. In vitro imaging studies showed that intense fluorescence was observed in triple-negative breast cancer MDA-MB-231, nonsmall cell lung cancer H460, and melanoma A375 cells incubated with Cy5.5-A11, and the cellular uptake of Cy5.5-A11 was efficiently inhibited by coincubation with unlabeled A11 or knockdown of cellular PD-L1 by shRNA. In vivo imaging studies showed accumulation of Cy5.5-A11 in the MDA-MB-231, H460, and A375 xenografts with good contrast from 0.5 to 24 h after intravenous injection, indicating that Cy5.5-A11 possesses the strong ability for in vivo tumor imaging. Moreover, the fluorescent signal of A11-Cy5.5 in the xenografts was successfully blocked by coinjection of unlabeled A11 peptide or knockdown of cellular PD-L1 by shRNA, indicating the specificity of Cy5.5-A11 targeting PD-L1 in tumor imaging. Our data demonstrate that Cy5.5-A11 is a novel tool for tumor imaging of PD-L1, which has the potential for detecting cancer and predicting ICI therapeutic responses.
Collapse
Affiliation(s)
- Xiao-Cheng Cao
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xue-Li Mao
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shan-Shan Lu
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Zhu
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wei Huang
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong Yi
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Yuan
- Department
of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Hua Zhou
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhi-Qiang Xiao
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
2
|
White HW, Naveed AB, Campbell BR, Lee YJ, Baik FM, Topf M, Rosenthal EL, Hom ME. Infrared Fluorescence-guided Surgery for Tumor and Metastatic Lymph Node Detection in Head and Neck Cancer. Radiol Imaging Cancer 2024; 6:e230178. [PMID: 38940689 PMCID: PMC11287229 DOI: 10.1148/rycan.230178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024]
Abstract
In patients with head and neck cancer (HNC), surgical removal of cancerous tissue presents the best overall survival rate. However, failure to obtain negative margins during resection has remained a steady concern over the past 3 decades. The need for improved tumor removal and margin assessment presents an ongoing concern for the field. While near-infrared agents have long been used in imaging, investigation of these agents for use in HNC imaging has dramatically expanded in the past decade. Targeted tracers for use in primary and metastatic lymph node detection are of particular interest, with panitumumab-IRDye800 as a major candidate in current studies. This review aims to provide an overview of intraoperative near-infrared fluorescence-guided surgery techniques used in the clinical detection of malignant tissue and sentinel lymph nodes in HNC, highlighting current applications, limitations, and future directions for use of this technology within the field. Keywords: Molecular Imaging-Cancer, Fluorescence © RSNA, 2024.
Collapse
Affiliation(s)
- Haley W. White
- From the University of Michigan School of Medicine, Ann Arbor, Mich
(H.W.W.); Department of Otolaryngology-Head and Neck Surgery, Vanderbilt
University Medical Center, 2220 Pierce Ave, PRB 754, Nashville, TN 37232
(A.B.N., B.R.C., M.T., E.L.R., M.E.H.); and Department of Otolaryngology-Head
and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
(Y.J.L., F.M.B.)
| | - Abdullah Bin Naveed
- From the University of Michigan School of Medicine, Ann Arbor, Mich
(H.W.W.); Department of Otolaryngology-Head and Neck Surgery, Vanderbilt
University Medical Center, 2220 Pierce Ave, PRB 754, Nashville, TN 37232
(A.B.N., B.R.C., M.T., E.L.R., M.E.H.); and Department of Otolaryngology-Head
and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
(Y.J.L., F.M.B.)
| | - Benjamin R. Campbell
- From the University of Michigan School of Medicine, Ann Arbor, Mich
(H.W.W.); Department of Otolaryngology-Head and Neck Surgery, Vanderbilt
University Medical Center, 2220 Pierce Ave, PRB 754, Nashville, TN 37232
(A.B.N., B.R.C., M.T., E.L.R., M.E.H.); and Department of Otolaryngology-Head
and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
(Y.J.L., F.M.B.)
| | - Yu-Jin Lee
- From the University of Michigan School of Medicine, Ann Arbor, Mich
(H.W.W.); Department of Otolaryngology-Head and Neck Surgery, Vanderbilt
University Medical Center, 2220 Pierce Ave, PRB 754, Nashville, TN 37232
(A.B.N., B.R.C., M.T., E.L.R., M.E.H.); and Department of Otolaryngology-Head
and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
(Y.J.L., F.M.B.)
| | - Fred M. Baik
- From the University of Michigan School of Medicine, Ann Arbor, Mich
(H.W.W.); Department of Otolaryngology-Head and Neck Surgery, Vanderbilt
University Medical Center, 2220 Pierce Ave, PRB 754, Nashville, TN 37232
(A.B.N., B.R.C., M.T., E.L.R., M.E.H.); and Department of Otolaryngology-Head
and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
(Y.J.L., F.M.B.)
| | - Michael Topf
- From the University of Michigan School of Medicine, Ann Arbor, Mich
(H.W.W.); Department of Otolaryngology-Head and Neck Surgery, Vanderbilt
University Medical Center, 2220 Pierce Ave, PRB 754, Nashville, TN 37232
(A.B.N., B.R.C., M.T., E.L.R., M.E.H.); and Department of Otolaryngology-Head
and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
(Y.J.L., F.M.B.)
| | - Eben L. Rosenthal
- From the University of Michigan School of Medicine, Ann Arbor, Mich
(H.W.W.); Department of Otolaryngology-Head and Neck Surgery, Vanderbilt
University Medical Center, 2220 Pierce Ave, PRB 754, Nashville, TN 37232
(A.B.N., B.R.C., M.T., E.L.R., M.E.H.); and Department of Otolaryngology-Head
and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
(Y.J.L., F.M.B.)
| | - Marisa E. Hom
- From the University of Michigan School of Medicine, Ann Arbor, Mich
(H.W.W.); Department of Otolaryngology-Head and Neck Surgery, Vanderbilt
University Medical Center, 2220 Pierce Ave, PRB 754, Nashville, TN 37232
(A.B.N., B.R.C., M.T., E.L.R., M.E.H.); and Department of Otolaryngology-Head
and Neck Surgery, Stanford University School of Medicine, Stanford, Calif
(Y.J.L., F.M.B.)
| |
Collapse
|
3
|
Cressoni C, Malandra S, Milan E, Boschi F, Nicolato E, Negri A, Veccia A, Bontempi P, Mangiameli D, Pietrobono S, Melisi D, Marzola P, Antonelli A, Speghini A. Injectable Thermogelling Nanostructured Ink as Simultaneous Optical and Magnetic Resonance Imaging Contrast Agent for Image-Guided Surgery. Biomacromolecules 2024; 25:3741-3755. [PMID: 38783486 DOI: 10.1021/acs.biomac.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of efficient and biocompatible contrast agents is particularly urgent for modern clinical surgery. Nanostructured materials raised great interest as contrast agents for different imaging techniques, for which essential features are high contrasts, and in the case of precise clinical surgery, minimization of the signal spatial dispersion when embedded in biological tissues. This study deals with the development of a multimodal contrast agent based on an injectable hydrogel nanocomposite containing a lanthanide-activated layered double hydroxide coupled to a biocompatible dye (indocyanine green), emitting in the first biological window. This novel nanostructured thermogelling hydrogel behaves as an efficient tissue marker for optical and magnetic resonance imaging because the particular formulation strongly limits its spatial diffusion in biological tissue by exploiting a simple injection. The synergistic combination of these properties permits to employ the hydrogel ink simultaneously for both optical and magnetic resonance imaging, easy monitoring of the biological target, and, at the same time, increasing the spatial resolution during a clinical surgery. The biocompatibility and excellent performance as contrast agents are very promising for possible use in image-guided surgery, which is currently one of the most challenging topics in clinical research.
Collapse
Affiliation(s)
- Chiara Cressoni
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Sarah Malandra
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Emil Milan
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Elena Nicolato
- Centre of Tecnological Platforms, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Alessandro Negri
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Alessandro Veccia
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Pietro Bontempi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Domenico Mangiameli
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Silvia Pietrobono
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Davide Melisi
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Alessandro Antonelli
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
4
|
Mavileti SK, Bila G, Utka V, Bila E, Kato T, Bilyy R, Pandey SS. Photophysical Characterization and Biointeractions of NIR Squaraine Dyes for in Vitro and in Vivo Bioimaging. ACS APPLIED BIO MATERIALS 2024; 7:416-428. [PMID: 38112180 DOI: 10.1021/acsabm.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The increasing demand for reliable near-infrared (NIR) probes exhibiting enduring fluorescence in living systems and facile compatibility with biomolecules such as peptides, antibodies or proteins is driven by the increasing use of NIR imaging in clinical diagnostics. To address this demand, a series of carboxy-functionalized unsymmetrical squaraine dyes (SQ-27, SQ-212, and SQ-215) along with non-carboxy-functionalized SQ-218 absorbing and emitting in the NIR wavelength range were designed and synthesized followed by photophysical characterization. This study focused on the impact of structural variations in the alkyl chain length, carboxy functionality positioning, and spacer chain length on dye aggregation and interaction with bovine serum albumin (BSA) as a model protein. In phosphate buffer (PB), the absorption intensity of the dyes markedly decreased accompanied by pronounced shoulders indicative of dye aggregation, and complete fluorescence quenching was seen in contrast to organic solvents. However, in the presence of BSA in PB, there was a enhancement in absorption intensity while regaining the fluorescence coupled with a remarkable increase in the intensity with increasing BSA concentrations, signifying the impact of dye-BSA interactions on preventing aggregation. Further analysis of Job's plot unveiled a 2:1 interaction ratio between BSA and all dyes, while the binding studies revealed a robust binding affinity (Ka) in the order of 107/mol. SQ-212 and SQ-215 were further tested for their in vitro and in vivo imaging capabilities. Notably, SQ-212 demonstrated nonpermeability to cells, while SQ-215 exhibited easy penetration and prominent cytoplasmic localization in in vitro studies. Injection of the dyes into laboratory mice showcased their efficacy in visualization, displaying stable and intense fluorescence in tissues without toxicity, organ damage, or behavioral changes. Thus, SQ-212 and SQ-215 are promising candidates for imaging applications, holding potential for noninvasive cellular and diagnostic imaging as well as biomarker detection when coupled with specific vectors in living systems.
Collapse
Affiliation(s)
- Sai Kiran Mavileti
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196Kitakyushu ,Japan
| | - Galyna Bila
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
| | - Valentyn Utka
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
| | - Evgenia Bila
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Organic Chemistry, Ivan Franko National University of Lviv, Kyrylo and Mefodiy Street 6, 79005 Lviv, Ukraine
| | - Tamaki Kato
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196Kitakyushu ,Japan
| | - Rostyslav Bilyy
- Lectinotest R&D, Mechanichna Str 2, 79000 Lviv, Ukraine
- Department of Histology, Cytology & Embryology, Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, 79010 Lviv, Ukraine
| | - Shyam S Pandey
- Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, 808-0196Kitakyushu ,Japan
| |
Collapse
|
5
|
Arachchige DL, Dwivedi SK, Waters M, Jaeger S, Peters J, Tucker DR, Geborkoff M, Werner T, Luck RL, Godugu B, Liu H. Sensitive monitoring of NAD(P)H levels within cancer cells using mitochondria-targeted near-infrared cyanine dyes with optimized electron-withdrawing acceptors. J Mater Chem B 2024; 12:448-465. [PMID: 38063074 PMCID: PMC10918806 DOI: 10.1039/d3tb02124f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A series of near-infrared fluorescent probes, labeled A to E, were developed by combining electron-rich thiophene and 3,4-ethylenedioxythiophene bridges with 3-quinolinium and various electron deficient groups, enabling the sensing of NAD(P)H. Probes A and B exhibit absorptions and emissions in the near-infrared range, offering advantages such as minimal interference from autofluorescence, negligible photo impairment in cells and tissues, and exceptional tissue penetration. These probes show negligible fluorescence when NADH is not present, and their absorption maxima are at 438 nm and 470 nm, respectively. In contrast, probes C-E feature absorption maxima at 450, 334 and 581 nm, respectively. Added NADH triggers the transformation of the electron-deficient 3-quinolinium units into electron-rich 1,4-dihydroquinoline units resulting in fluorescence responses which were established at 748, 730, 575, 625 and 661 for probes AH-EH, respectively, at detection limits of 0.15 μM and 0.07 μM for probes A and B, respectively. Optimized geometries based on theoretical calculations reveal non-planar geometries for probes A-E due to twisting of the 3-quinolinium and benzothiazolium units bonded to the central thiophene group, which all attain planarity upon addition of hydride resulting in absorption and fluorescence in the near-IR region for probes AH and BH in contrast to probes CH-EH which depict fluorescence in the visible range. Probe A has been successfully employed to monitor NAD(P)H levels in glycolysis and specific mitochondrial targeting. Furthermore, it has been used to assess the influence of lactate and pyruvate on the levels of NAD(P)H, to explore how hypoxia in cancer cells can elevate levels of NAD(P)H, and to visualize changes in levels of NAD(P)H under hypoxic conditions with CoCl2 treatment. Additionally, probe A has facilitated the examination of the potential impact of chemotherapy drugs, namely gemcitabine, camptothecin, and cisplatin, on metabolic processes and energy generation within cancer cells by affecting NAD(P)H levels. Treatment of A549 cancer cells with these drugs has been shown to increase NAD(P)H levels, which may contribute to their anticancer effects ultimately leading to programmed cell death or apoptosis. Moreover, probe A has been successfully employed in monitoring NAD(P)H level changes in D. melanogaster larvae treated with cisplatin.
Collapse
Affiliation(s)
- Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Joe Peters
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| | - Daniel R Tucker
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Micaela Geborkoff
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Chevron Science Center, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
6
|
Yuan L, Su Y, Zhang R, Gao J, Yu B, Cong H, Shen Y. NIR-II organic small molecule probe for labeling lymph nodes and guiding tumor imaging. Talanta 2024; 266:125123. [PMID: 37639868 DOI: 10.1016/j.talanta.2023.125123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Organic small molecule fluorescent groups have injected new material support into the field of medical imaging due to their unique luminescence mechanism and easy tuning of structure. The great potential of NIR-II window imaging forces us to continuously optimize the structure of organic fluorophores to design better fluorescent molecules for fluorescence imaging-guided surgery. An ideal organic small molecule fluorescent group: it can penetrate into the inside of the organism, clearly present the internal structure and the edge contour of different tissues, so as to perfectly achieve internal imaging and accurately guide external surgery. In vivo, fluorescent groups do not damage normal tissues and organs. However, problems such as low quantum yield and poor biocompatibility greatly limit the clinical transformation of NIR-II fluorescent small molecules. To avoid the shortcomings of NIR-II fluorescent probes as much as possible and better realize image-guided surgery, in this experiment, the biplane donor unit was incorporated into the twisted D-π-A-π-D structure to expand the conjugated structure of the fluorescent group, which not only realized NIR-II emission, but also had high quantum yield and biosafety.
Collapse
Affiliation(s)
- Lin Yuan
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yingbin Su
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Runfeng Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, And Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
7
|
Gupta U, Maity D, Sharma VK. Recent advances of polymeric nanoplatforms for cancer treatment: smart delivery systems (SDS), nanotheranostics and multidrug resistance (MDR) inhibition. Biomed Mater 2023; 19:012003. [PMID: 37944188 DOI: 10.1088/1748-605x/ad0b23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Nanotheranostics is a promising field that combines the benefits of diagnostic and treatment into a single nano-platform that not only administers treatment but also allows for real-time monitoring of therapeutic response, decreasing the possibility of under/over-drug dosing. Furthermore, developing smart delivery systems (SDSs) for cancer theranostics that can take advantage of various tumour microenvironment (TME) conditions (such as deformed tumour vasculature, various over-expressed receptor proteins, reduced pH, oxidative stress, and resulting elevated glutathione levels) can aid in achieving improved pharmacokinetics, higher tumour accumulation, enhanced antitumour efficacy, and/or decreased side effects and multidrug resistance (MDR) inhibition. Polymeric nanoparticles (PNPs) are being widely investigated in this regard due to their unique features such as small size, passive/active targeting possibility, better pharmaceutical kinetics and biological distribution, decreased adverse reactions of the established drugs, inherent inhibitory properties to MDR efflux pump proteins, as well as the feasibility of delivering numerous therapeutic substances in just one design. Hence in this review, we have primarily discussed PNPs based targeted and/or controlled SDSs in which we have elaborated upon different TME mediated nanotheranostic platforms (NTPs) including active/passive/magnetic targeting platforms along with pH/ROS/redox-responsive platforms. Besides, we have elucidated different imaging guided cancer therapeutic platforms based on four major cancer imaging techniques i.e., fluorescence/photo-acoustic/radionuclide/magnetic resonance imaging, Furthermore, we have deliberated some of the most recently developed PNPs based multimodal NTPs (by combining two or more imaging or therapy techniques on a single nanoplatform) in cancer theranostics. Moreover, we have provided a brief update on PNPs based NTP which are recently developed to overcome MDR for effective cancer treatment. Additionally, we have briefly discussed about the tissue biodistribution/tumour targeting efficiency of these nanoplatforms along with recent preclinical/clinical studies. Finally, we have elaborated on various limitations associated with PNPs based nanoplatforms.
Collapse
Affiliation(s)
- Urvashi Gupta
- Department of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Dipak Maity
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, United States of America
| |
Collapse
|
8
|
Rainu SK, Ramachandran RG, Parameswaran S, Krishnakumar S, Singh N. Advancements in Intraoperative Near-Infrared Fluorescence Imaging for Accurate Tumor Resection: A Promising Technique for Improved Surgical Outcomes and Patient Survival. ACS Biomater Sci Eng 2023; 9:5504-5526. [PMID: 37661342 DOI: 10.1021/acsbiomaterials.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Clear surgical margins for solid tumor resection are essential for preventing cancer recurrence and improving overall patient survival. Complete resection of tumors is often limited by a surgeon's ability to accurately locate malignant tissues and differentiate them from healthy tissue. Therefore, techniques or imaging modalities are required that would ease the identification and resection of tumors by real-time intraoperative visualization of tumors. Although conventional imaging techniques such as positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), or radiography play an essential role in preoperative diagnostics, these cannot be utilized in intraoperative tumor detection due to their large size, high cost, long imaging time, and lack of cancer specificity. The inception of several imaging techniques has paved the way to intraoperative tumor margin detection with a high degree of sensitivity and specificity. Particularly, molecular imaging using near-infrared fluorescence (NIRF) based nanoprobes provides superior imaging quality due to high signal-to-noise ratio, deep penetration to tissues, and low autofluorescence, enabling accurate tumor resection and improved survival rates. In this review, we discuss the recent developments in imaging technologies, specifically focusing on NIRF nanoprobes that aid in highly specific intraoperative surgeries with real-time recognition of tumor margins.
Collapse
Affiliation(s)
- Simran Kaur Rainu
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Remya Girija Ramachandran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Sowmya Parameswaran
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Subramanian Krishnakumar
- L&T Ocular Pathology Department, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Chennai 600006, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
9
|
Llaguno-Munive M, Villalba-Abascal W, Avilés-Salas A, Garcia-Lopez P. Near-Infrared Fluorescence Imaging in Preclinical Models of Glioblastoma. J Imaging 2023; 9:212. [PMID: 37888319 PMCID: PMC10607214 DOI: 10.3390/jimaging9100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer is a public health problem requiring ongoing research to improve current treatments and discover novel therapies. More accurate imaging would facilitate such research. Near-infrared fluorescence has been developed as a non-invasive imaging technique capable of visualizing and measuring biological processes at the molecular level in living subjects. In this work, we evaluate the tumor activity in two preclinical glioblastoma models by using fluorochrome (IRDye 800CW) coupled to different molecules: tripeptide Arg-Gly-Asp (RGD), 2-amino-2-deoxy-D-glucose (2-DG), and polyethylene glycol (PEG). These molecules interact with pathological conditions of tumors, including their overexpression of αvβ3 integrins (RGD), elevated glucose uptake (2-DG), and enhanced permeability and retention effect (PEG). IRDye 800CW RGD gave the best in vivo fluorescence signal from the tumor area, which contrasted well with the low fluorescence intensity of healthy tissue. In the ex vivo imaging (dissected tumor), the accumulation of IRDye 800CW RGD could be appreciated at the tumor site. Glioblastoma tumors were presently detected with specificity and sensitivity by utilizing IRDye 800CW RGD, a near-infrared fluorophore combined with a marker of αvβ3 integrin expression. Further research is needed on its capacity to monitor tumor growth in glioblastoma after chemotherapy.
Collapse
Affiliation(s)
- Monserrat Llaguno-Munive
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
- Laboratorio de Física Médica, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Wilberto Villalba-Abascal
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
| | - Alejandro Avilés-Salas
- Departamento de Patología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico;
| | - Patricia Garcia-Lopez
- Laboratorio de Fármaco-Oncología, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (M.L.-M.); (W.V.-A.)
| |
Collapse
|
10
|
Robertus CM, Snyder SM, Curley SM, Murundi SD, Whitman MA, Fischbach C, Putnam D. Selective Accumulation of Near Infrared-Labeled Multivalent Quinidine Copolymers in Tumors Overexpressing P-Glycoprotein: Potential for Noninvasive Diagnostic Imaging. ACS APPLIED BIO MATERIALS 2023; 6:3117-3130. [PMID: 37498226 DOI: 10.1021/acsabm.3c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
P-glycoprotein (P-gp) is a promiscuous small molecule transporter whose overexpression in cancer is associated with multidrug resistance (MDR). In these instances, anticancer drugs can select for P-gp-overexpressing cells, leading to cancer recurrence with an MDR phenotype. To avoid selection for MDR cancers and inform individual patient treatment plans, it is critical to noninvasively identify P-gp-overexpressing tumors prior to administration of chemotherapy. We report the facile free radical copolymerization of quinidine, a competitive inhibitor of P-gp, and acrylic acid to generate multiplexed polymeric P-gp-targeted imaging agents with tunable quinidine content. Copolymer targeting was demonstrated in a nude mouse xenograft model. In xenografts overexpressing P-gp, copolymer distribution was enhanced over two-fold compared to the negative control of poly(acrylic acid) regardless of quinidine content. In contrast, accumulation of the copolymers in xenografts lacking P-gp was equivalent to poly(acrylic acid). This work forms the foundation for a unique approach toward the phenotype-specific noninvasive imaging of MDR tumors and is the first in vivo demonstration of copolymer accumulation through the active targeting of P-gp.
Collapse
Affiliation(s)
- Cara M Robertus
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Sarah M Snyder
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Stephanie M Curley
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Shamanth D Murundi
- Department of Biological and Environmental Engineering, Cornell University, 111 Wing Drive, Ithaca, New York 14853-0001, United States
| | - Matthew A Whitman
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, 245 Feeney Way, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, 237 Tower Road, Ithaca, New York 14853-0001, United States
- Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14853, United States
| |
Collapse
|
11
|
Jolugbo P, Willott T, Lin WH, Maisey T, O'Callaghan D, Green MA, Jayne DG, Khot MI. Fluorescent imaging using novel conjugated polymeric nanoparticles-affimer probes in complex in vitro models of colorectal cancer. NANOSCALE 2023. [PMID: 37466243 DOI: 10.1039/d3nr02160b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
We developed a carcinoembryonic antigen (CEA) conjugated polymer nanoparticle (CPN510-CEA-Af) probe to target CEA-expressing CRC cells in vitro. Its efficacy was evaluated in 2D and 3D cultures of LS174T, LoVo, and HT29 CRC cell lines. CPN510-CEA-Af produced greater fluorescent signal intensity than unconjugated particles in both 2D cells and 3D spheriods, indicating its potential as a probe for image-guided colorectal cancer surgery.
Collapse
Affiliation(s)
- Precious Jolugbo
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| | - Thomas Willott
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| | - Wei-Hsiang Lin
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Thomas Maisey
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| | | | - Mark A Green
- Stream Bio Ltd, Alderley Park, Nether Alderley, Cheshire, SK10 4TG, UK
- Department of Physics, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, Strand, London, WC2R 2LS, UK
| | - David G Jayne
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| | - M Ibrahim Khot
- Leeds Institute of Medical Research at St James', School of Medicine, St James University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
12
|
Nikiforova A, Sedov I. Molecular Design of Magnetic Resonance Imaging Agents Binding to Amyloid Deposits. Int J Mol Sci 2023; 24:11152. [PMID: 37446329 DOI: 10.3390/ijms241311152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The ability to detect and monitor amyloid deposition in the brain using non-invasive imaging techniques provides valuable insights into the early diagnosis and progression of Alzheimer's disease and helps to evaluate the efficacy of potential treatments. Magnetic resonance imaging (MRI) is a widely available technique offering high-spatial-resolution imaging. It can be used to visualize amyloid deposits with the help of amyloid-binding diagnostic agents injected into the body. In recent years, a number of amyloid-targeted MRI probes have been developed, but none of them has entered clinical practice. We review the advances in the field and deduce the requirements for the molecular structure and properties of a diagnostic probe candidate. These requirements make up the base for the rational design of MRI-active small molecules targeting amyloid deposits. Particular attention is paid to the novel cryo-EM structures of the fibril aggregates and their complexes, with known binders offering the possibility to use computational structure-based design methods. With continued research and development, MRI probes may revolutionize the diagnosis and treatment of neurodegenerative diseases, ultimately improving the lives of millions of people worldwide.
Collapse
Affiliation(s)
- Alena Nikiforova
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
13
|
Nagarajan U, Chandra S, Yamazaki T, Shirahata N, Winnik FM. Analysis of Silicon Quantum Dots and Serum Proteins Interactions Using Asymmetrical Flow Field-Flow Fractionation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37225422 DOI: 10.1021/acs.langmuir.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Semiconductor nanocrystals or quantum dots (QDs) have gained significant attention in biomedical research as versatile probes for imaging, sensing, and therapies. However, the interactions between proteins and QDs, which are crucial for their use in biological applications, are not yet fully understood. Asymmetric flow field-flow fractionation (AF4) is a promising method for analyzing the interactions of proteins with QDs. This technique uses a combination of hydrodynamic and centrifugal forces to separate and fractionate particles based on their size and shape. By coupling AF4 with other techniques, such as fluorescence spectroscopy and multi-angle light scattering, it is possible to determine the binding affinity and stoichiometry of protein-QD interactions. Herein, this approach has been utilized to determine the interaction between fetal bovine serum (FBS) and silicon quantum dots (SiQDs). Unlike metal-containing conventional QDs, SiQDs are highly biocompatible and photostable in nature, making them attractive for a wide range of biomedical applications. In this study, AF4 has provided crucial information on the size and shape of the FBS/SiQD complexes, their elution profile, and their interaction with serum components in real time. The differential scanning microcalorimetric technique has also been employed to monitor the thermodynamic behavior of proteins in the presence of SiQDs. We have investigated their binding mechanisms by incubating them at temperatures below and above the protein denaturation. This study yields various significant characteristics such as their hydrodynamic radius, size distribution, and conformational behavior. The compositions of SiQD and FBS influence the size distribution of their bioconjugates; the size increases by intensifying the concentration of FBS, with their hydrodynamic radii ranging between 150 and 300 nm. The results signify that in the alliance of SiQDs to the system, there is an augmentation of the denaturation point of the proteins and hence their thermal stability, providing a more comprehensive understanding of the interactions between FBS and QDs.
Collapse
Affiliation(s)
- Usharani Nagarajan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Sourov Chandra
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Espoo, Aalto, Finland
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan
| | - Naoto Shirahata
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-0814, Japan
- Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan
| | - Françoise M Winnik
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Department of Chemistry, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
14
|
Sikkenk DJ, Sterkenburg AJ, Schmidt I, Gorpas D, Nagengast WB, Consten ECJ. Detection of Tumour-Targeted IRDye800CW Tracer with Commercially Available Laparoscopic Surgical Systems. Diagnostics (Basel) 2023; 13:diagnostics13091591. [PMID: 37174982 PMCID: PMC10178288 DOI: 10.3390/diagnostics13091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Introduction: Near-infrared fluorescence (NIRF) combined with tumour-targeted tracers, such as bevacizumab-800CW, could aid surgical decision-making. This study explored the use of IRDye800CW, conjugated to bevacizumab, with four commercially available NIRF laparoscopes optimised for indocyanine green (ICG). (2) Methods: A (lymph node) phantom was made from a calibration device for NIRF and tissue-mimicking material. Serial dilutions of bevacizumab-800CW were made and ICG functioned as a reference. System settings, working distance, and thickness of tissue-mimicking material were varied to assess visibility of the fluorescence signal and tissue penetration. Tests were performed with four laparoscopes: VISERA ELITE II, Olympus; IMAGE1 S™ 4U Rubina, KARL STORZ; ENDOCAM Logic 4K platform, Richard Wolf; da Vinci Xi, Intuitive Surgical. (3) Results: The lowest visible bevacizumab-800CW concentration ranged between 13-850 nM (8-512 times diluted stock solution) for all laparoscopes, but the tracer was not visible through 0.8 cm of tissue in all systems. In contrast, ICG was still visible at a concentration of 0.4 nM (16,384 times diluted) and through 1.6-2.4 cm of tissue. Visibility and tissue penetration generally improved with a reduced working distance and manually adjusted system settings. (4) Conclusion: Depending on the application, bevacizumab-800CW might be sufficiently visible with current laparoscopes, but optimisation would widen applicability of tumour-targeted IRDye800CW tracers.
Collapse
Affiliation(s)
- Daan J Sikkenk
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Surgery, Meander Medical Centre, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| | - Andrea J Sterkenburg
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Iris Schmidt
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Ismaninger Straße 22, D-81675 Munich, Germany
| | - Wouter B Nagengast
- Department of Gastroenterology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Esther C J Consten
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Surgery, Meander Medical Centre, Maatweg 3, 3813 TZ Amersfoort, The Netherlands
| |
Collapse
|
15
|
Chauhan N, Cabrera M, Chowdhury P, Nagesh PK, Dhasmana A, Pranav, Jaggi M, Chauhan SC, Yallapu MM. Indocyanine Green-based Glow Nanoparticles Probe for Cancer Imaging. Nanotheranostics 2023; 7:353-367. [PMID: 37151801 PMCID: PMC10161388 DOI: 10.7150/ntno.78405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/22/2023] [Indexed: 08/31/2023] Open
Abstract
Indocyanine green (ICG) is one of the FDA-approved near infra-red fluorescent (NIRF) probes for cancer imaging and image-guided surgery in the clinical setting. However, the limitations of ICG include poor photostability, high concentration toxicity, short circulation time, and poor cancer cell specificity. To overcome these hurdles, we engineered a nanoconstruct composed of poly (vinyl pyrrolidone) (PVP)-indocyanine green that is cloaked self-assembled with tannic acid (termed as indocyanine green-based glow nanoparticles probe, ICG-Glow NPs) for the cancer cell/tissue-specific targeting. The self-assembled ICG-Glow NPs were confirmed by spherical nanoparticles formation (DLS and TEM) and spectral analyses. The NIRF imaging characteristic of ICG-Glow NPs was established by superior fluorescence counts on filter paper and chicken tissue. The ICG-Glow NPs exhibited excellent hemo and cellular compatibility with human red blood cells, kidney normal, pancreatic normal, and other cancer cell lines. An enhanced cancer-specific NIRF binding and imaging capability of ICG-Glow NPs was confirmed using different human cancer cell lines and human tumor tissues. Additionally, tumor-specific binding/accumulation of ICG-Glow NPs was confirmed in MDA-MB-231 xenograft mouse model. Collectively, these findings suggest that ICG-Glow NPs have great potential as a novel and safe NIRF imaging probe for cancer cell/tumor imaging. This can lead to a quicker cancer diagnosis facilitating precise disease detection and management.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Marco Cabrera
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Prashanth K.B. Nagesh
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Pranav
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| |
Collapse
|
16
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
17
|
Kim KR, Lee AS, Kim SM, Heo HR, Kim CS. Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 2023; 10:1106767. [PMID: 36714624 PMCID: PMC9878189 DOI: 10.3389/fbioe.2022.1106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Virus-like nanoparticles (VLPs) are natural polymer-based nanomaterials that mimic viral structures through the hierarchical assembly of viral coat proteins, while lacking viral genomes. VLPs have received enormous attention in a wide range of nanotechnology-based medical diagnostics and therapies, including cancer therapy, imaging, and theranostics. VLPs are biocompatible and biodegradable and have a uniform structure and controllable assembly. They can encapsulate a wide range of therapeutic and diagnostic agents, and can be genetically or chemically modified. These properties have led to sophisticated multifunctional theranostic platforms. This article reviews the current progress in developing and applying engineered VLPs for molecular imaging, drug delivery, and multifunctional theranostics in cancer research.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Ae Sol Lee
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Su Min Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea
| | - Hye Ryoung Heo
- Senotherapy-Based Metabolic Disease Control Research Center, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| | - Chang Sup Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan, South Korea,School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Chang Sup Kim, ; Hye Ryoung Heo,
| |
Collapse
|
18
|
Ren L, Liu Y, Yao T, Nguyen KT, Yuan B. In vivo tumor ultrasound-switchable fluorescence imaging via intravenous injections of size-controlled thermosensitive nanoparticles. NANO RESEARCH 2023; 16:1009-1020. [PMID: 38098888 PMCID: PMC10720766 DOI: 10.1007/s12274-022-4846-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/13/2022] [Accepted: 08/01/2022] [Indexed: 12/17/2023]
Abstract
Near-infrared fluorescence imaging has emerged as a noninvasive, inexpensive, and ionizing-radiation-free monitoring tool for assessing tumor growth and treatment efficacy. In particular, ultrasound switchable fluorescence (USF) imaging has been explored with improved imaging sensitivity and spatial resolution in centimeter-deep tissues. This study achieved size control of polymer-based and indocyanine green (ICG) encapsulated USF contrast agents, capable of accumulating at the tumor after intravenous injections. These nanoprobes varied in size from 58 nm to 321 nm. The bioimaging profiles demonstrated that the proposed nanoparticles can efficiently eliminate the background light from normal tissue and show a tumor-specific fluorescence enhancement in the BxPC-3 tumor-bearing mice models possibly via the enhanced permeability and retention effect. In vivo tumor USF imaging further proved that these nanoprobes can effectively be switched 'ON' with enhanced fluorescence in response to a focused ultrasound stimulation in the tumor microenvironment, contributing to the high-resolution USF images. Therefore, our findings suggest that ICG-encapsulated nanoparticles are good candidates for USF imaging of tumors in living animals, indicating their great potential in optical tumor imaging in deep tissue.
Collapse
Affiliation(s)
- Liqin Ren
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Liu
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tingfeng Yao
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T. Nguyen
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
| | - Baohong Yuan
- Ultrasound and Optical Imaging Laboratory, Department of Bioengineering, the University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, the University of Texas at Arlington and the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
20
|
Xu J, Han T, Wang Y, Zhang F, Li M, Bai L, Wang X, Sun B, Wang X, Du J, Liu K, Zhang J, Zhu S. Ultrabright Renal-Clearable Cyanine-Protein Nanoprobes for High-Quality NIR-II Angiography and Lymphography. NANO LETTERS 2022; 22:7965-7975. [PMID: 36165293 DOI: 10.1021/acs.nanolett.2c03311] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The renal-clearable aspect of imaging agent with minimum toxicity issues and side effects is essential for clinical translation, yet clinical near-infrared-I/II (NIR-I/II) fluorophores with timely renal-clearance pathways are very limited. Herein, we rationally develop the cyanine-protein composite strategy through covalent bonding of β-lactoglobulin (β-LG) and chloride-cyanine dye to produce a brilliant and stable NIR-I/II fluorophore (e.g., β-LG@IR-780). The β-LG acts as a protecting shell with small molecular weight (18.4 kDa) and ultrasmall size (<5 nm), thus endowing the β-LG@IR-780 with excellent biocompatibility and renal excretion. Our β-LG@IR-780 probe enables noninvasive and precise NIR-II visualization of the physiological and pathological conditions of the vascular and lymphatic drainage system, facilitating intraoperative imaging-guided surgery and postoperative noninvasive monitoring. The minimum accumulation of our probes in the main organs improves the overall biosafety. This study provides a facile methodology for new-generation NIR-II fluorophores and largely improves the brightness and pharmacokinetics of small molecular dyes.
Collapse
Affiliation(s)
- Jiajun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Tianyang Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yajun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Feiran Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Mengfei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Lang Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xinyu Wang
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, Changchun 130031, P. R. China
| | - Bin Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Xin Wang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Jianshi Du
- China-Japan Union Hospital of Jilin University, Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, Changchun 130031, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
21
|
Som A, Rosenboom JG, Chandler A, Sheth RA, Wehrenberg-Klee E. Image-guided intratumoral immunotherapy: Developing a clinically practical technology. Adv Drug Deliv Rev 2022; 189:114505. [PMID: 36007674 PMCID: PMC10456124 DOI: 10.1016/j.addr.2022.114505] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized the contemporary oncology landscape, with durable responses possible across a range of cancer types. However, the majority of cancer patients do not respond to immunotherapy due to numerous immunosuppressive barriers. Efforts to overcome these barriers and increase systemic immunotherapy efficacy have sparked interest in the local intratumoral delivery of immune stimulants to activate the local immune response and subsequently drive systemic tumor immunity. While clinical evaluation of many therapeutic candidates is ongoing, development is hindered by a lack of imaging confirmation of local delivery, insufficient intratumoral drug distribution, and a need for repeated injections. The use of polymeric drug delivery systems, which have been widely used as platforms for both image guidance and controlled drug release, holds promise for delivery of intratumoral immunoadjuvants and the development of an in situ cancer vaccine for patients with metastatic cancer. In this review, we explore the current state of the field for intratumoral delivery and methods for optimizing controlled drug release, as well as practical considerations for drug delivery design to be optimized for clinical image guided delivery particularly by CT and ultrasound.
Collapse
Affiliation(s)
- Avik Som
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States
| | - Jan-Georg Rosenboom
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Alana Chandler
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, United States; Department of Gastroenterology, Brigham and Women's Hospital, United States
| | - Rahul A Sheth
- Department of Interventional Radiology, M.D. Anderson Cancer Center, United States
| | - Eric Wehrenberg-Klee
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital, United States.
| |
Collapse
|
22
|
Zhang P, Liu J, Yin L, An Y, Zhang S, Tong W, Hui H, Tian J. Adaptive permissible region based random Kaczmarz reconstruction method for localization of carotid atherosclerotic plaques in fluorescence molecular tomography. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/04/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. In this study, we propose the adaptive permissible region based random Kaczmarz method as an improved reconstruction method to recover small carotid atherosclerotic plaque targets in rodents with high resolution in fluorescence molecular tomography (FMT). Approach. We introduce the random Kaczmarz method as an advanced minimization method to solve the FMT inverse problem. To satisfy the special condition of this method, we proposed an adaptive permissible region strategy based on traditional permissible region methods to flexibly compress the dimension of the solution space. Main results. Monte Carlo simulations, phantom experiments, and in vivo experiments demonstrate that the proposed method can recover the small carotid atherosclerotic plaque targets with high resolution and accuracy, and can achieve lower root mean squared error and distance error (DE) than other traditional methods. For targets with 1.5 mm diameter and 0.5 mm separation, the DE indicators can be improved by up to 40%. Moreover, the proposed method can be utilized for in vivo locating atherosclerotic plaques with high accuracy and robustness. Significance. We applied the random Kaczmarz method to solve the inverse problem in FMT and improve the reconstruction result via this advanced minimization method. We verified that the FMT technology has a great potential to locate and quantify atherosclerotic plaques with higher accuracy, and can be expanded to more preclinical research.
Collapse
|
23
|
Wongso H. Recent progress on the development of fluorescent probes targeting the translocator protein 18 kDa (TSPO). Anal Biochem 2022; 655:114854. [PMID: 35963341 DOI: 10.1016/j.ab.2022.114854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/06/2022] [Indexed: 11/01/2022]
Abstract
The translocator protein 18 kDa (TSPO) was first identified in 1997, and has now become one of the appealing subcellular targets in medicinal chemistry and its related fields. TSPO involves in a variety of diseases, covering neurodegenerative diseases, psychiatric disorders, cancers, and so on. To date, various high-affinity TSPO ligands labelled with single-photon emission computed tomography (SPECT)/positron emission tomography (PET) radionuclides have been reported, with some third-generation radioligands advanced to clinical trials. On the other hand, only a few number of TSPO ligands have been labelled with fluorophores for disease diagnosis. It is noteworthy that the majority of the TSPO fluorescent probes synthesised to date are based on visible fluorophores, suggesting that their applications are limited to in vitro studies, such as in vitro imaging of cancer cells, post-mortem analysis, and tissue biopsies examinations. In this context, the potential application of TSPO ligands can be broadened for in vivo investigations of human diseases by labelling with near-infrared (NIR)-fluorophores or substituting visible fluorophores with NIR-fluorophores on the currently developed fluorescent probes. In this review article, recent progress on fluorescent probes targeting the TSPO are summarised, with an emphasis on development trend in recent years and application prospects in the future.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten, 15314, Indonesia.
| |
Collapse
|
24
|
De Ravin E, Venkatesh S, Harmsen S, Delikatny EJ, Husson MA, Lee JYK, Newman JG, Rajasekaran K. Indocyanine green fluorescence-guided surgery in head and neck cancer: A systematic review. Am J Otolaryngol 2022; 43:103570. [PMID: 35939987 DOI: 10.1016/j.amjoto.2022.103570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To assess the feasibility and effectiveness of indocyanine green (ICG) for image-guided resection of head and neck cancer (HNC). DATA SOURCES PubMed, Embase, and Scopus databases. REVIEW METHODS Searches were conducted from database inception to February 2022. Patient and study characteristics, imaging parameters, and imaging efficacy data were extracted from each study. RESULTS Nine studies met inclusion criteria, representing 103 head and neck tumors. Weighted mean ICG dose and imaging time were 1.27 mg/kg and 11.77 h, respectively. Among the five studies that provided quantitative metrics of imaging efficacy, average ICG tumor-to-background ratio (TBR) was 1.56 and weighted mean ONM-100 TBR was 3.64. Pooled sensitivity and specificity across the five studies were 91.7 % and 71.9 %, respectively. CONCLUSION FGS with ICG may facilitate real-time tumor-margin delineation to improve margin clearance rates and progression-free survival. Future studies with validated, quantitative metrics of imaging success are necessary to further evaluate the prognostic benefit of these techniques.
Collapse
Affiliation(s)
- Emma De Ravin
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States of America; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Sanjena Venkatesh
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Stefan Harmsen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Edward J Delikatny
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael A Husson
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jason G Newman
- Department of Otolaryngology - Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States of America
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
25
|
Young K, Ma E, Kejriwal S, Nielsen T, Aulakh SS, Birkeland AC. Intraoperative In Vivo Imaging Modalities in Head and Neck Cancer Surgical Margin Delineation: A Systematic Review. Cancers (Basel) 2022; 14:cancers14143416. [PMID: 35884477 PMCID: PMC9323577 DOI: 10.3390/cancers14143416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Surgical margin status is one of the strongest prognosticators in predicting patient outcomes in head and neck cancer, yet head and neck surgeons continue to face challenges in the accurate detection of these margins with the current standard of care. Novel intraoperative imaging modalities have demonstrated great promise for potentially increasing the accuracy and efficiency in surgical margin delineation. In this current study, we collated and analyzed various intraoperative imaging modalities utilized in head and neck cancer to evaluate their use in discriminating malignant from healthy tissues. The authors conducted a systematic database search through PubMed/Medline, Web of Science, and EBSCOhost (CINAHL). Study screening and data extraction were performed and verified by the authors, and more studies were added through handsearching. Here, intraoperative imaging modalities are described, including optical coherence tomography, narrow band imaging, autofluorescence, and fluorescent-tagged probe techniques. Available sensitivities and specificities in delineating cancerous from healthy tissues ranged from 83.0% to 100.0% and 79.2% to 100.0%, respectively, across the different imaging modalities. Many of these initial studies are in small sample sizes, with methodological differences that preclude more extensive quantitative comparison. Thus, there is impetus for future larger studies examining and comparing the efficacy of these intraoperative imaging technologies.
Collapse
Affiliation(s)
- Kurtis Young
- John A. Burns School of Medicine, Honolulu, HI 96813, USA; (K.Y.); (E.M.); (S.K.); (T.N.)
| | - Enze Ma
- John A. Burns School of Medicine, Honolulu, HI 96813, USA; (K.Y.); (E.M.); (S.K.); (T.N.)
| | - Sameer Kejriwal
- John A. Burns School of Medicine, Honolulu, HI 96813, USA; (K.Y.); (E.M.); (S.K.); (T.N.)
| | - Torbjoern Nielsen
- John A. Burns School of Medicine, Honolulu, HI 96813, USA; (K.Y.); (E.M.); (S.K.); (T.N.)
| | | | - Andrew C. Birkeland
- Department of Otolaryngology—Head and Neck Surgery, University of California, Davis, CA 95817, USA
- Correspondence:
| |
Collapse
|
26
|
Abstract
Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.
Collapse
Affiliation(s)
- Seongje Hong
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Siyeon Rhee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Spatarelu CP, Van Namen A, Jandhyala S, Luke GP. Fluorescent Phase-Changing Perfluorocarbon Nanodroplets as Activatable Near-Infrared Probes. Int J Mol Sci 2022; 23:ijms23137312. [PMID: 35806326 PMCID: PMC9266996 DOI: 10.3390/ijms23137312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The sensitivity of fluorescence imaging is limited by the high optical scattering of tissue. One approach to improve sensitivity to small signals is to use a contrast agent with a signal that can be externally modulated. In this work, we present a new phase-changing perfluorocarbon nanodroplet contrast agent loaded with DiR dye. The nanodroplets undergo a liquid-to-gas phase transition when exposed to an externally applied laser pulse. This results in the unquenching of the encapsulated dye, thus increasing the fluorescent signal, a phenomenon that can be characterized by an ON/OFF ratio between the fluorescence of activated and nonactivated nanodroplets, respectively. We investigate and optimize the quenching/unquenching of DiR upon nanodroplets’ vaporization in suspension, tissue-mimicking phantoms and a subcutaneous injection mouse model. We also demonstrate that the vaporized nanodroplets produce ultrasound contrast, enabling multimodal imaging. This work shows that these nanodroplets could be applied to imaging applications where high sensitivity is required.
Collapse
Affiliation(s)
| | - Austin Van Namen
- Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA; (C.-P.S.); (A.V.N.); (S.J.)
| | - Sidhartha Jandhyala
- Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA; (C.-P.S.); (A.V.N.); (S.J.)
| | - Geoffrey P. Luke
- Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA; (C.-P.S.); (A.V.N.); (S.J.)
- Norris Cotton Cancer Center, 1 Medical Center Drive, Lebanon, NH 03766, USA
- Correspondence:
| |
Collapse
|
28
|
Woong Yoo S, Young Kwon S, Kang SR, Min JJ. Molecular imaging approaches to facilitate bacteria-mediated cancer therapy. Adv Drug Deliv Rev 2022; 187:114366. [PMID: 35654213 DOI: 10.1016/j.addr.2022.114366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Bacteria-mediated cancer therapy is a potential therapeutic strategy for cancer that has unique properties, including broad tumor-targeting ability, various administration routes, the flexibility of delivery, and facilitating the host's immune responses. The molecular imaging of bacteria-mediated cancer therapy allows the therapeutically injected bacteria to be visualized and confirms the accurate delivery of the therapeutic bacteria to the target lesion. Several hurdles make bacteria-specific imaging challenging, including the need to discriminate therapeutic bacterial infection from inflammation or other pathologic lesions. To realize the full potential of bacteria-specific imaging, it is necessary to develop bacteria-specific targets that can be associated with an imaging assay. This review describes the current status of bacterial imaging techniques together with the advantages and disadvantages of several imaging modalities. Also, we describe potential targets for bacterial-specific imaging and related applications.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea.
| |
Collapse
|
29
|
How CW, Teoh SL, Loh JS, Tan SLK, Foo JB, Ng HS, Wong SYW, Ong YS. Emerging Nanotheranostics for 5-Fluorouracil in Cancer Therapy: A Systematic Review on Efficacy, Safety, and Diagnostic Capability. Front Pharmacol 2022; 13:882704. [PMID: 35662688 PMCID: PMC9158334 DOI: 10.3389/fphar.2022.882704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
The conventional concept of using nanocarriers to deliver chemotherapeutic drugs has advanced to accommodate additional diagnostic capability. Nanotheranostic agents (NTA), combining both treatment and diagnostic tools, are an ideal example of engineering-health integration for cancer management. Owing to the diverse materials used to construct NTAs, their safety, effectiveness, and diagnostic accuracy could vary substantially. This systematic review consolidated current NTAs incorporating 5-fluorouracil and elucidated their toxicity, anticancer efficacy, and imaging capability. Medline and Embase databases were searched up to March 18, 2022. The search, selection, and extraction were performed by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines to ensure completeness and reproducibility. Original research papers involving 5-fluorouracil in the preparation of nanoparticles which reported their efficacy, toxicity, and diagnostic capability in animal cancer models were recruited. The quality of included studies was assessed using the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist. Nine studies were eligible for the systematic review. There was no significant toxicity reported based on animal weight and organ histology. Complete tumor remission was observed in several animal models using chemo-thermal ablation with NTAs, proving the enhancement of 5-fluorouracil efficacy. In terms of imaging performance, the time to achieve maximum tumor image intensity correlates with the presence of targeting ligand on NTAs. The NTAs, which are composed of tumor-targeting ligands, hold promises for further development. Based on the input of current NTA research on cancer, this review proposed a checklist of parameters to recommend researchers for their future NTA testing, especially in animal cancer studies. Systematic Review Registration: website, identifier registration number.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Stella Li Kar Tan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | | | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
30
|
Tank A, Vergato C, Waxman DJ, Roblyer D. Spatial frequency domain imaging for monitoring immune-mediated chemotherapy treatment response and resistance in a murine breast cancer model. Sci Rep 2022; 12:5864. [PMID: 35393476 PMCID: PMC8989878 DOI: 10.1038/s41598-022-09671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Spatial Frequency Domain Imaging (SFDI) can provide longitudinal, label-free, and widefield hemodynamic and scattering measurements of murine tumors in vivo. Our previous work has shown that the reduced scattering coefficient (μ's) at 800 nm, as well as the wavelength dependence of scattering, both have prognostic value in tracking apoptosis and proliferation during treatment with anti-cancer therapies. However, there is limited work in validating these optical biomarkers in clinically relevant tumor models that manifest specific treatment resistance mechanisms that mimic the clinical setting. It was recently demonstrated that metronomic dosing of cyclophosphamide induces a strong anti-tumor immune response and tumor volume reduction in the E0771 murine breast cancer model. This immune activation mechanism can be blocked with an IFNAR-1 antibody, leading to treatment resistance. Here we present a longitudinal study utilizing SFDI to monitor this paired responsive-resistant model for up to 30 days of drug treatment. Mice receiving the immune modulatory metronomic cyclophosphamide schedule had a significant increase in tumor optical scattering compared to mice receiving cyclophosphamide in combination with the IFNAR-1 antibody (9% increase vs 10% decrease on day 5 of treatment, p < 0.001). The magnitude of these differences increased throughout the duration of treatment. Additionally, scattering changes on day 4 of treatment could discriminate responsive versus resistant tumors with an accuracy of 78%, while tumor volume had an accuracy of only 52%. These results validate optical scattering as a promising prognostic biomarker that can discriminate between treatment responsive and resistant tumor models.
Collapse
Affiliation(s)
- Anup Tank
- Biomedical Engineering, Boston University, Boston, MA, USA
| | - Cameron Vergato
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Darren Roblyer
- Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
31
|
Lau D, Lechermann LM, Gallagher FA. Clinical Translation of Neutrophil Imaging and Its Role in Cancer. Mol Imaging Biol 2022; 24:221-234. [PMID: 34637051 PMCID: PMC8983506 DOI: 10.1007/s11307-021-01649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023]
Abstract
Neutrophils are the first line of defense against pathogens and abnormal cells. They regulate many biological processes such as infections and inflammation. Increasing evidence demonstrated a role for neutrophils in cancer, where different subpopulations have been found to possess both pro- or anti-tumorigenic functions in the tumor microenvironment. In this review, we discuss the phenotypic and functional diversity of neutrophils in cancer, their prognostic significance, and therapeutic relevance in human and preclinical models. Molecular imaging methods are increasingly used to probe neutrophil biology in vivo, as well as the cellular changes that occur during tumor progression and over the course of treatment. This review will discuss the role of neutrophil imaging in oncology and the lessons that can be drawn from imaging in infectious diseases and inflammatory disorders. The major factors to be considered when developing imaging techniques and biomarkers for neutrophils in cancer are reviewed. Finally, the potential clinical applications and the limitations of each method are discussed, as well as the challenges for future clinical translation.
Collapse
Affiliation(s)
- Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Centre, Cambridge, UK.
- Department of Oncology, University of Oxford, Oxford, UK.
| | | | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Centre, Cambridge, UK.
| |
Collapse
|
32
|
Buckle T, van Willigen DM, Welling MM, van Leeuwen FW. Pre-clinical development of fluorescent tracers and translation towards clinical application. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Thanh Nguyen TD, Marasini R, Aryal S. Re-engineered imaging agent using biomimetic approaches. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1762. [PMID: 34698438 PMCID: PMC8758533 DOI: 10.1002/wnan.1762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023]
Abstract
Recent progress in biomedical technology, the clinical bioimaging, has a greater impact on the diagnosis, treatment, and prevention of disease, especially by early intervention and precise therapy. Varieties of organic and inorganic materials either in the form of small molecules or nano-sized materials have been engineered as a contrast agent (CA) to enhance image resolution among different tissues for the detection of abnormalities such as cancer and vascular occlusion. Among different innovative imaging agents, contrast agents coupled with biologically derived endogenous platform shows the promising application in the biomedical field, including drug delivery and bioimaging. Strategy using biocomponents such as cells or products of cells as a delivery system predominantly reduces the toxic behavior of its cargo, as these systems reduce non-specific distribution by navigating its cargo toward the targeted location. The hypothesis is that depending on the original biological role of the naïve cell, the contrast agents carried by such a system can provide corresponding natural designated behavior. Therefore, by combining properties of conventional synthetic molecules and nanomaterials with endogenous cell body, new solutions in the field of bioimaging to overcome biological barriers have been offered as innovative bioengineering. In this review, we will discuss the engineering of cell and cell-derived components as a delivery system for various contrast agents to achieve clinically relevant contrast for diagnosis and study underlining mechanism of disease progression. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Tuyen Duong Thanh Nguyen
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ramesh Marasini
- Department of Chemistry, Nanotechnology Innovation Center of Kansas State, Kansas State Univeristy, Manhattan, KS
| | - Santosh Aryal
- Department of Pharmaceutical Sciences and Health Outcomes, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas 75799, USA
| |
Collapse
|
34
|
Adriano B, Cotto NM, Chauhan N, Karumuru V, Jaggi M, Chauhan SC, Yallapu MM. Bay Leaf Extract-Based Near-Infrared Fluorescent Probe for Tissue and Cellular Imaging. J Imaging 2021; 7:256. [PMID: 34940722 PMCID: PMC8705868 DOI: 10.3390/jimaging7120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
The development of fluorescence dyes for near-infrared (NIR) fluorescence imaging has been a significant interest for deep tissue imaging. Among many imaging fluoroprobes, indocyanine green (ICG) and its analogues have been used in oncology and other medical applications. However, these imaging agents still experience poor imaging capabilities due to low tumor targetability, photostability, and sensitivity in the biological milieu. Thus, developing a biocompatible NIR imaging dye from natural resources holds the potential of facilitating cancer cell/tissue imaging. Chlorophyll (Chl) has been demonstrated to be a potential candidate for imaging purposes due to its natural NIR absorption qualities and its wide availability in plants and green vegetables. Therefore, it was our aim to assess the fluorescence characteristics of twelve dietary leaves as well as the fluorescence of their Chl extractions. Bay leaf extract, a high-fluorescence agent that showed the highest levels of fluorescence, was further evaluated for its tissue contrast and cellular imaging properties. Overall, this study confirms bay-leaf-associated dye as a NIR fluorescence imaging agent that may have important implications for cellular imaging and image-guided cancer surgery.
Collapse
Affiliation(s)
- Benilde Adriano
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (B.A.); (N.M.C.); (N.C.); (V.K.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Nycol M. Cotto
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (B.A.); (N.M.C.); (N.C.); (V.K.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (B.A.); (N.M.C.); (N.C.); (V.K.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vinita Karumuru
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (B.A.); (N.M.C.); (N.C.); (V.K.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (B.A.); (N.M.C.); (N.C.); (V.K.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (B.A.); (N.M.C.); (N.C.); (V.K.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (B.A.); (N.M.C.); (N.C.); (V.K.); (M.J.); (S.C.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
35
|
Wu C, Mao Y, Wang X, Li P, Tang B. Deep-Tissue Fluorescence Imaging Study of Reactive Oxygen Species in a Tumor Microenvironment. Anal Chem 2021; 94:165-176. [PMID: 34802229 DOI: 10.1021/acs.analchem.1c03104] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tumor microenvironment (TME) is the survival environment for tumor cells to proliferate and metastasize in deep tissue. TME contains tumor cells, immune cells, stromal cells and a variety of active molecules including reactive oxygen species (ROS). Inside the TME, ROS regulate the oxidation-reduction (redox) homeostasis and promote oxidative stress. Due to the rapid proliferation ability and specific metabolic patterns of the TME, ROS pervade virtually all complex physiological processes and play irreplaceable roles in protein modification, signal transduction, metabolism, and energy production in various tumors. Therefore, measurements of the dynamically, multicomponent simultaneous changes of ROS in the TME are of great significance to reveal the detailed proliferation and metastasis mechanisms of the tumor. Near-infrared (NIR) and two-photon (TP) fluorescence imaging techniques possess real-time, dynamic, highly sensitive, and highly signal-to-noise ratios with deep tissue penetration abilities. With the rationally designed probes, the NIR and TP fluorescence imaging techniques have been widely used to reveal the mechanisms of how ROS regulates and constructs complex signals and metabolic networks in TME. Therefore, we summarize the design principles and performances of NIR and TP fluorescence imaging of ROS in the TME in the last four years, as well as discuss the advantages and potentials of these works. This Review can provide guidance and prospects for future research work on TME and facilitate the development of antitumor drugs.
Collapse
Affiliation(s)
- Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Yuantao Mao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
36
|
Braga M, Leow CH, Gil JH, Teh JH, Carroll L, Long NJ, Tang MX, Aboagye EO. Investigating CXCR4 expression of tumor cells and the vascular compartment: A multimodal approach. PLoS One 2021; 16:e0260186. [PMID: 34793563 PMCID: PMC8601444 DOI: 10.1371/journal.pone.0260186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
The C-X-C chemokine receptor 4 (CXCR4) is G protein-coupled receptor that upon binding to its cognate ligand, can lead to tumor progression. Several CXCR4-targeted therapies are currently under investigation, and with it comes the need for imaging agents capable of accurate depiction of CXCR4 for therapeutic stratification and monitoring. PET agents enjoy the most success, but more cost-effective and radiation-free approaches such as ultrasound (US) imaging could represent an attractive alternative. In this work, we developed a targeted microbubble (MB) for imaging of vascular CXCR4 expression in cancer. A CXCR4-targeted MB was developed through incorporation of the T140 peptide into the MB shell. Binding properties of the T140-MB and control, non-targeted MB (NT-MB) were evaluated in MDA-MB-231 cells where CXCR4 expression was knocked-down (via shRNA) through optical imaging, and in the lymphoma tumor models U2932 and SuDHL8 (high and low CXCR4 expression, respectively) by US imaging. PET imaging of [18F]MCFB, a tumor-penetrating CXCR4-targeted small molecule, was used to provide whole-tumor CXCR4 readouts. CXCR4 expression and microvessel density were performed by immunohistochemistry analysis and western blot. T140-MB were formed with similar properties to NT-MB and accumulated sensitively and specifically in cells according to their CXCR4 expression. In NOD SCID mice, T140-MB persisted longer in tumors than NT-MB, indicative of target interaction, but showed no difference between U2932 and SuDHL8. In contrast, PET imaging with [18F]MCFB showed a marked difference in tumor uptake at 40-60 min post-injection between the two tumor models (p<0.05). Ex vivo analysis revealed that the large differences in CXCR4 expression between the two models are not reflected in the vascular compartment, where the MB are restricted; in fact, microvessel density and CXCR4 expression in the vasculature was comparable between U2932 and SuDHL8 tumors. In conclusion, we successfully developed a T140-MB that can be used for imaging CXCR4 expression in the tumor vasculature.
Collapse
Affiliation(s)
- Marta Braga
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chee Hau Leow
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Javier Hernandez Gil
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Jin H. Teh
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Laurence Carroll
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicholas J. Long
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Eric O. Aboagye
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
37
|
Casteleiro B, Martinho JMG, Farinha JPS. Encapsulation of gold nanoclusters: stabilization and more. NANOSCALE 2021; 13:17199-17217. [PMID: 34622909 DOI: 10.1039/d1nr04939a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles with only a few atoms, known as gold nanoclusters (AuNCs), have dimensions below 2 nm and feature singular properties such as size dependent luminescence. AuNCs are also highly photostable and have catalytic activity, low toxicity and good biocompatibility. With these properties, they are extremely promising candidates for application in bioimaging, sensing and catalysis. However, when stabilized only with small capping ligands, their use is hindered by lack of colloidal stability. Encapsulation of the AuNCs can contribute to provide a more robust protection and even to improve their properties. Here, we review the encapsulation of AuNCs in polymers, silica and metal organic frameworks (MOFs) for applications in bioimaging, sensing and catalysis.
Collapse
Affiliation(s)
- Bárbara Casteleiro
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Manuel Gaspar Martinho
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| | - José Paulo Sequeira Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| |
Collapse
|
38
|
Dong YC, Bouché M, Uman S, Burdick JA, Cormode DP. Detecting and Monitoring Hydrogels with Medical Imaging. ACS Biomater Sci Eng 2021; 7:4027-4047. [PMID: 33979137 PMCID: PMC8440385 DOI: 10.1021/acsbiomaterials.0c01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Stemler T, Hoffmann C, Hierlmeier IM, Maus S, Krause E, Ezziddin S, Jung G, Bartholomä MD. A Structure-Activity Relationship Study of Bimodal BODIPY-Labeled PSMA-Targeting Bioconjugates. ChemMedChem 2021; 16:2535-2545. [PMID: 33905162 PMCID: PMC8453963 DOI: 10.1002/cmdc.202100210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to identify a high-affinity BODIPY peptidomimetic that targets the prostate-specific membrane antigen (PSMA) as a potential bimodal imaging probe for prostate cancer. For the structure-activity study, several BODIPY (difluoroboron dipyrromethene) derivatives with varying spacers between the BODIPY dye and the PSMA Glu-CO-Lys binding motif were prepared. Corresponding affinities were determined by competitive binding assays in PSMA-positive LNCaP cells. One compound was identified with comparable affinity (IC50 =21.5±0.1 nM) to Glu-CO-Lys-Ahx-HBED-CC (PSMA-11) (IC50 =18.4±0.2 nM). Radiolabeling was achieved by Lewis-acid-mediated 19 F/18 F exchange in moderate molar activities (∼0.7 MBq nmol-1 ) and high radiochemical purities (>99 %) with mean radiochemical yields of 20-30 %. Cell internalization of the 18 F-labeled high-affinity conjugate was demonstrated in LNCaP cells showing gradual increasing PSMA-mediated internalization over time. By fluorescence microscopy, localization of the high-affinity BODIPY-PSMA conjugate was found in the cell membrane at early time points and also in subcellular compartments at later time points. In summary, a high-affinity BODIPY-PSMA conjugate has been identified as a suitable candidate for the development of PSMA-specific dual-imaging agents.
Collapse
Affiliation(s)
- Tobias Stemler
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Caroline Hoffmann
- Department of Biophysical ChemistrySaarland UniversityCampus B2 266123SaarbrückenGermany
| | - Ina M. Hierlmeier
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Stephan Maus
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Elmar Krause
- Department of Cellular NeurophysiologyCenter for Integrative Physiology and Molecular Medicine (CIPMM)Saarland UniversityKirrbergerstrasse66421HomburgGermany
| | - Samer Ezziddin
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| | - Gregor Jung
- Department of Biophysical ChemistrySaarland UniversityCampus B2 266123SaarbrückenGermany
| | - Mark D. Bartholomä
- Department of Nuclear MedicineSaarland University – Medical CenterKirrbergerstrasse66421HomburgGermany
| |
Collapse
|
40
|
Augustine R, Mamun AA, Hasan A, Salam SA, Chandrasekaran R, Ahmed R, Thakor AS. Imaging cancer cells with nanostructures: Prospects of nanotechnology driven non-invasive cancer diagnosis. Adv Colloid Interface Sci 2021; 294:102457. [PMID: 34144344 DOI: 10.1016/j.cis.2021.102457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/25/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
The application of nanostructured materials in medicine is a rapidly evolving area of research that includes both the diagnosis and treatment of various diseases. Metals, metal oxides and carbon-based nanomaterials have shown much promise in medical technological advancements due to their tunable physical, chemical and biological properties. The nanoscale properties, especially the size, shape, surface chemistry and stability makes them highly desirable for diagnosing and treating various diseases, including cancers. Major applications of nanomaterials in cancer diagnosis include in vivo bioimaging and molecular marker detection, mainly as image contrast agents using modalities such as radio, magnetic resonance, and ultrasound imaging. When a suitable targeting ligand is attached on the nanomaterial surface, it can help pinpoint the disease site during imaging. The application of nanostructured materials in cancer diagnosis can help in the early detection, treatment and patient follow-up . This review aims to gather and present the information regarding the application of nanotechnology in cancer diagnosis. We also discuss the challenges and prospects regarding the application of nanomaterials as cancer diagnostic tools.
Collapse
|
41
|
Broadwater D, Medeiros HCD, Lunt RR, Lunt SY. Current Advances in Photoactive Agents for Cancer Imaging and Therapy. Annu Rev Biomed Eng 2021; 23:29-60. [PMID: 34255992 DOI: 10.1146/annurev-bioeng-122019-115833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.
Collapse
Affiliation(s)
- Deanna Broadwater
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Richard R Lunt
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; , .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA; ,
| |
Collapse
|
42
|
Rosenberg A, Fujimura D, Okada R, Furusawa A, Inagaki F, Wakiyama H, Kato T, Choyke PL, Kobayashi H. Real-Time Fluorescence Imaging Using Indocyanine Green to Assess Therapeutic Effects of Near-Infrared Photoimmunotherapy in Tumor Model Mice. Mol Imaging 2021; 19:1536012120934965. [PMID: 32609570 PMCID: PMC7331766 DOI: 10.1177/1536012120934965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Near-infrared photoimmunotherapy (NIR-PIT) is a cancer therapy that causes an increase in tumor perfusion, a phenomenon termed the super-enhanced permeability and retention effect. Currently, in vivo treatment efficacy of NIR-PIT is observable days after treatment, but monitoring would be improved by more acute detection of intratumor change. Fluorescence imaging may detect increased tumor perfusion immediately after treatment. Methods: In the first experiment, athymic nude mouse models bearing unilateral subcutaneous flank tumors were treated with either NIR-PIT or laser therapy only. In the second experiment, mice bearing bilateral flank tumors were treated with NIR-PIT only on the left-sided tumor. In both groups, immediately after treatment, indocyanine green was injected at different doses intravenously, and mice were monitored with the Shimadzu LIGHTVISION fluorescence imaging system for 1 hour. Results: Tumor-to-background ratio of fluorescence intensity increased over the 60 minutes of monitoring in treated mice but did not vary significantly in control mice. Tumor-to-background ratio was highest in the 1 mg kg−1 and 0.3 mg kg−1 doses. In mice with bilateral tumors, tumor-to-untreated tumor ratio increased similarly. Conclusions: Acute changes in tumor perfusion after NIR-PIT can be detected by real-time fluorescence imaging.
Collapse
Affiliation(s)
- Adrian Rosenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daiki Fujimura
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryuhei Okada
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aki Furusawa
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fuyuki Inagaki
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Takuya Kato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics 2021; 13:pharmaceutics13070948. [PMID: 34202660 PMCID: PMC8309086 DOI: 10.3390/pharmaceutics13070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid growth of nanotechnology and the development of novel nanomaterials with unique physicochemical characteristics provides potential for the utility of nanomaterials in theranostics, including neuroimaging, for identifying neurodegenerative changes or central nervous system malignancy. Here we present a systematic and thorough review of the current evidence pertaining to the imaging characteristics of various nanomaterials, their associated toxicity profiles, and mechanisms for enhancing tropism in an effort to demonstrate the utility of nanoparticles as an imaging tool in neuro-oncology. Particular attention is given to carbon-based and metal oxide nanoparticles and their theranostic utility in MRI, CT, photoacoustic imaging, PET imaging, fluorescent and NIR fluorescent imaging, and SPECT imaging.
Collapse
|
44
|
Afifi I, Abdelrahman H, El-Faramawy A, Mahmood I, Khoschnau S, Al-Naimi N, El-Menyar A, Al-Thani H, Rizoli S. The use of Indocyanine green fluorescent in patients with abdominal trauma for better intraoperative decision-making and less bowel anastomosis leak: case series. J Surg Case Rep 2021; 2021:rjab235. [PMID: 34150193 PMCID: PMC8208799 DOI: 10.1093/jscr/rjab235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
Despite technological advances in the management of blunt abdominal trauma, the rate of bowel anastomotic leakage (AL) remains high. The etiology of AL is multifactorial, but insufficient blood perfusion is considered to play a substantial role in the pathogenesis. In recent years, angiography with Indocyanine green (ICG), a fluorescent dye, has been introduced in the clinical practice to assess organ perfusion in several conditions. Given the scarcity of publications describing the use of ICG in trauma patients as a potentially useful strategy that may facilitate intraoperative decisions and limit the extent of bowel resection, we presented the utility of intraoperative ICG fluorescent in abdominal trauma patients in a level 1 trauma center. The use of ICG fluoroscopy in patients with abdominal trauma is feasible and useful; however, large prospective studies in trauma patients are warranted.
Collapse
Affiliation(s)
- Ibrahim Afifi
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Husham Abdelrahman
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Ahmed El-Faramawy
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Ismail Mahmood
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Sherwan Khoschnau
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Noof Al-Naimi
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma and Vascular Surgery Section, Department of Surgery, HGH, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar
| |
Collapse
|
45
|
Simonsen JB, Kromann EB. Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies - A commentary. J Control Release 2021; 335:660-667. [PMID: 34089794 DOI: 10.1016/j.jconrel.2021.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022]
Abstract
Fluorescence-based techniques are prevalent in studies of nanomedicine-targeting to cells and tissues. However, fluorescence-based studies are rarely quantitative, thus prohibiting direct comparisons of nanomedicine-performance across studies. With this Commentary, we aim to provoke critical thinking about experimental design by treating some often-overlooked pitfalls in 'quantitative' fluorescence-based experimentation. Focusing on fluorescence-labeled nanoparticles, we cover mechanisms like solvent-interactions and fluorophore-dissociation, which disqualify the assumption that 'a higher fluorescence readout' translates directly to 'a better targeting efficacy'. With departure in recent literature, we propose guidelines for circumventing these pitfalls in studies of tissue-accumulation and cell-uptake, thus covering fluorescence-based techniques like bulk solution fluorescence measurements, fluorescence microscopy, flow cytometry, and infrared fluorescence imaging. With this, we hope to lay a foundation for more 'quantitative thinking' during experimental design, enabling (for example) the estimation and reporting of actual numbers of fluorescent nanoparticles accumulated in cells and organs.
Collapse
Affiliation(s)
- Jens B Simonsen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark.
| | - Emil B Kromann
- Department of Health Technology, Section for Biomimetics, Technical University of Denmark, Ørsteds Plads 345C, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
46
|
Wang W, Hansen AE, Sun H, Fliedner FP, Kjaer A, Jensen AI, Andresen TL, Henriksen JR. Carbohydrate based biomarkers enable hybrid near infrared fluorescence and 64Cu based radio-guidance for improved surgical precision. Nanotheranostics 2021; 5:448-460. [PMID: 34055574 PMCID: PMC8156217 DOI: 10.7150/ntno.60295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Increasing numbers of lung tumors are identified at early disease stages by diagnostic imaging in screening programs, but difficulties in locating these during surgical intervention has prevented an improved treatment outcome. Surgical biomarkers that are visible on diagnostic images, and that provide the surgeon with real-time image guidance during the intervention are thus highly warranted to bridge diagnostic precision into enhanced therapeutic outcome. In this paper, a liquid soft tissue marker for near infrared fluorescence and radio-guidance is presented. The biocompatible marker is based on the carbohydrate ester, sucrose acetate isobutyrate, ethanol, and a multifunctional naphthalocyanine dye, which enable near infrared fluorescence image-guided resection at short, medium and long tissue depths. Naphthalocyanine dyes have high quantum yields and may further act as chelators of radionuclides. Upon injection of the liquid marker, a gel-like depot is formed in situ at the site of injection, wherein the fluorescent dye and radionuclide is retained. The radiolabeled markers were optimized for minimal fluorescence quenching and high retention of the positron emission tomography radionuclide 64Cu. The performance of the radiolabeled marker was tested in vivo in mice, where it displayed high photostability over a period of 4 weeks, and high retention of 64Cu for 48 hours. The retention and biodistribution of 64Cu was quantified via PET/CT, and the fluorescence emission by an in vivo imaging system. The presented data demonstrate proof-of-concept for naphthalocyanine markers as multimodal imaging agents that can bridge the precision of diagnostic imaging into surgical interventions.
Collapse
Affiliation(s)
- Wenbo Wang
- Technical University of Denmark, Department of Health Technology, Building 423, 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Anders E Hansen
- Technical University of Denmark, Department of Health Technology, Building 423, 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Hongmei Sun
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering, (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutic, Hubei province Cooperative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Frederikke P Fliedner
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences, Rigshospitalet and University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Andreas I Jensen
- Technical University of Denmark, The Hevesy Laboratory, Department of Health Technology, 4000 Roskilde, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Thomas L Andresen
- Technical University of Denmark, Department of Health Technology, Building 423, 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Jonas R Henriksen
- Technical University of Denmark, Department of Health Technology, Building 423, 2800 Lyngby, Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
47
|
Zhang NN, Lu CY, Chen MJ, Xu XL, Shu GF, Du YZ, Ji JS. Recent advances in near-infrared II imaging technology for biological detection. J Nanobiotechnology 2021; 19:132. [PMID: 33971910 PMCID: PMC8112043 DOI: 10.1186/s12951-021-00870-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Molecular imaging technology enables us to observe the physiological or pathological processes in living tissue at the molecular level to accurately diagnose diseases at an early stage. Optical imaging can be employed to achieve the dynamic monitoring of tissue and pathological processes and has promising applications in biomedicine. The traditional first near-infrared (NIR-I) window (NIR-I, range from 700 to 900 nm) imaging technique has been available for more than two decades and has been extensively utilized in clinical diagnosis, treatment and scientific research. Compared with NIR-I, the second NIR window optical imaging (NIR-II, range from 1000 to 1700 nm) technology has low autofluorescence, a high signal-to-noise ratio, a high tissue penetration depth and a large Stokes shift. Recently, this technology has attracted significant attention and has also become a heavily researched topic in biomedicine. In this study, the optical characteristics of different fluorescence nanoprobes and the latest reports regarding the application of NIR-II nanoprobes in different biological tissues will be described. Furthermore, the existing problems and future application perspectives of NIR-II optical imaging probes will also be discussed.![]()
Collapse
Affiliation(s)
- Nan-Nan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Chen-Ying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Min-Jiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gao-Feng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Interventional Research of Zhejiang Province, Lishui Hospital, Zhejiang University School of Medicine, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
48
|
Fujimoto S, Muguruma N, Nakao M, Ando H, Kashihara T, Miyamoto Y, Okamoto K, Sano S, Ishida T, Sato Y, Takayama T. Indocyanine green-labeled dasatinib as a new fluorescent probe for molecular imaging of gastrointestinal stromal tumors. J Gastroenterol Hepatol 2021; 36:1253-1262. [PMID: 32989784 DOI: 10.1111/jgh.15281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/16/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM It is difficult to differentiate gastrointestinal stromal tumors (GISTs) from other subepithelial lesions under gastrointestinal endoscopy. Because most GISTs express tyrosine kinase receptor c-KIT, fluorescence-labeled c-KIT-specific tyrosine kinase inhibitors seem to be useful agents for molecular imaging of GIST. We aimed to develop a near-infrared fluorescent imaging technology for GIST targeting c-KIT using the novel fluorescent probe indocyanine green-labeled dasatinib (ICG-dasatinib) and to investigate the antitumor effect of ICG-dasatinib on GIST cells. METHODS Indocyanine green-labeled dasatinib was synthesized by labeling linker-induced dasatinib with ICG derivative 3-indocyanine-green-acyl-1,3-thiazolidine-2-thione. Human GIST cell lines GIST-T1 and GIST-882M were incubated with ICG-dasatinib and observed by fluorescent microscopy. GIST cells were incubated with ICG-dasatinib, unlabeled dasatinib, or imatinib, and cell viabilities were evaluated. Subcutaneous GIST model mice or orthotopic GIST model rats were intravenously injected with ICG-dasatinib and observed using an IVIS Spectrum. RESULTS Strong fluorescent signals of ICG-dasatinib were observed in both GIST cell lines in vitro. IC50 values for ICG-dasatinib, unlabeled dasatinib, and imatinib were 13.9, 1.17, and 16.2 nM in GIST-T1 and 26.6, 3.63, and 47.6 nM in GIST-882M cells, respectively. ICG-dasatinib accumulated in subcutaneous xenografts in mice. Fluorescent signals were also observed in liver and gallbladder, indicating biliary excretion; however, fluorescence intensity of tumors was significantly higher than that of intestine after washing. Strong fluorescent signals were observed in orthotopic xenografts through the covering normal mucosa in rats. CONCLUSIONS Indocyanine green-labeled dasatinib could visualize GIST cells and xenografted tumors. The antitumor effect of ICG-dasatinib was preserved to the same degree as imatinib.
Collapse
Affiliation(s)
- Shota Fujimoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naoki Muguruma
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Michiyasu Nakao
- Department of Molecular Medicinal Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takanori Kashihara
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshihiko Miyamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koichi Okamoto
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shigeki Sano
- Department of Molecular Medicinal Chemistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasushi Sato
- Department of Community Medicine for Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuji Takayama
- Department of Gastroenterology and Oncology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
49
|
Srinivasulu YG, Mozhi A, Goswami N, Yao Q, Xie J. Traceable Nanocluster–Prodrug Conjugate for Chemo-photodynamic Combinatorial Therapy of Non-small Cell Lung Cancer. ACS APPLIED BIO MATERIALS 2021; 4:3232-3245. [DOI: 10.1021/acsabm.0c01611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuvasri Genji Srinivasulu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Anbu Mozhi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Nirmal Goswami
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar, Odisha 751013, India
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117585, Singapore
| |
Collapse
|
50
|
Taleghani AS, Nakhjiri AT, Khakzad MJ, Rezayat SM, Ebrahimnejad P, Heydarinasab A, Akbarzadeh A, Marjani A. Mesoporous silica nanoparticles as a versatile nanocarrier for cancer treatment: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|