1
|
Park SY, Baek YB, Lee CH, Kim HJ, Kim HP, Jeon YJ, Song JE, Jung SB, Kim HJ, Moon KS, Park SI, Lee CM, Kim SH. Establishment of canine mammary gland tumor cell lines harboring PI3K/Akt activation as a therapeutic target. BMC Vet Res 2024; 20:233. [PMID: 38807154 PMCID: PMC11134682 DOI: 10.1186/s12917-024-04085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Canine mammary gland tumors (MGT) have a poor prognosis in intact female canines, posing a clinical challenge. This study aimed to establish novel canine mammary cancer cell lines from primary tumors and characterize their cellular and molecular features to find potential therapeutic drugs. The MGT cell lines demonstrated rapid cell proliferation and colony formation in an anchorage-independent manner. Vimentin and α-SMA levels were significantly elevated in MGT cell lines compared to normal canine kidney (MDCK) cells, while CDH1 expression was either significantly lower or not detected at all, based on quantitative real-time PCR (qRT-PCR) analysis. Functional annotation and enrichment analysis revealed that epithelial-mesenchymal transition (EMT) phenotypes and tumor-associated pathways, particularly the PI3K/Akt signaling pathway, were upregulated in MGT cells. BYL719 (Alpelisib), a PI3K inhibitor, was also examined for cytotoxicity on the MGT cell lines. The results show that BYL719 can significantly inhibit the proliferation of MGT cell lines in vitro. Overall, our findings suggest that the MGT cell lines may be valuable for future studies on the development, progression, metastasis, and management of tumors.
Collapse
Affiliation(s)
- Seo-Young Park
- Laboratory of Animal Molecular Biochemistry, Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National university, Gwangju, 61186, Republic of Korea
| | - Chan-Ho Lee
- Laboratory of Animal Molecular Biochemistry, Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Jin Kim
- Laboratory of Animal Molecular Biochemistry, Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hwang-Phill Kim
- Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, 16229, Republic of Korea
| | - Young-Jun Jeon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Eun Song
- Gwangju Animal Medical Center, Gwangju, 62273, Republic of Korea
| | - Su-Bin Jung
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National university, Gwangju, 61186, Republic of Korea
| | - Hyo-Jin Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National university, Gwangju, 61186, Republic of Korea
| | - Kyeong-Seo Moon
- Laboratory of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National university, Gwangju, 61186, Republic of Korea.
| | - Chang-Min Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sung-Hak Kim
- Laboratory of Animal Molecular Biochemistry, Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Ali U, Vungarala S, Tiriveedhi V. Genomic Features of Homologous Recombination Deficiency in Breast Cancer: Impact on Testing and Immunotherapy. Genes (Basel) 2024; 15:162. [PMID: 38397152 PMCID: PMC10887603 DOI: 10.3390/genes15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic instability is one of the well-established hallmarks of cancer. The homologous recombination repair (HRR) pathway plays a critical role in correcting the double-stranded breaks (DSB) due to DNA damage in human cells. Traditionally, the BRCA1/2 genes in the HRR pathway have been tested for their association with breast cancer. However, defects in the HRR pathway (HRD, also termed 'BRCAness'), which has up to 50 genes, have been shown to be involved in tumorigenesis and treatment susceptibility to poly-ADP ribose polymerase inhibitors (PARPis), platinum-based chemotherapy, and immune checkpoint inhibitors (ICIs). A reliable consensus on HRD scores is yet to be established. Emerging evidence suggests that only a subset of breast cancer patients benefit from ICI-based immunotherapy. Currently, albeit with limitations, the expression of programmed death-ligand 1 (PDL1) and tumor mutational burden (TMB) are utilized as biomarkers to predict the favorable outcomes of ICI therapy in breast cancer patients. Preclinical studies demonstrate an interplay between the HRR pathway and PDL1 expression. In this review, we outline the current understanding of the role of HRD in genomic instability leading to breast tumorigenesis and delineate outcomes from various clinical trials. Furthermore, we discuss potential strategies for combining HRD-targeted therapy with immunotherapy to achieve the best healthcare outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Umer Ali
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Sunitha Vungarala
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, Nashville, TN 37209, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
3
|
Patni AP, Harishankar MK, Joseph JP, Sreeshma B, Jayaraj R, Devi A. Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways in oral squamous cell carcinoma - clinical implications. Cell Oncol (Dordr) 2021; 44:473-494. [PMID: 33704672 DOI: 10.1007/s13402-021-00591-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a malignant oral cavity neoplasm that affects many people, especially in developing countries. Despite several advances that have been made in diagnosis and treatment, the morbidity and mortality rates due to OSCC remain high. Accumulating evidence indicates that aberrant activation of cellular signaling pathways, such as the Notch, Wnt and Hedgehog pathways, occurs during the development and metastasis of OSCC. In this review, we have articulated the roles of the Notch, Wnt and Hedgehog signaling pathways in OSCC and their crosstalk during tumor development and progression. We have also examined possible interactions and associations between these pathways and treatment regimens that could be employed to effectively tackle OSCC and/or prevent its recurrence. CONCLUSIONS Activation of the Notch signaling pathway upregulates the expression of several genes, including c-Myc, β-catenin, NF-κB and Shh. Associations between the Notch signaling pathway and other pathways have been shown to enhance OSCC tumor aggressiveness. Crosstalk between these pathways supports the maintenance of cancer stem cells (CSCs) and regulates OSCC cell motility. Thus, application of compounds that block these pathways may be a valid strategy to treat OSCC. Such compounds have already been employed in other types of cancer and could be repurposed for OSCC.
Collapse
Affiliation(s)
- Anjali P Patni
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - M K Harishankar
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Joel P Joseph
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Bhuvanadas Sreeshma
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rama Jayaraj
- College of Human and Human Sciences, Charles Darwin University, Ellangowan Drive, Darwin, Northern Territory, 0909, Australia
| | - Arikketh Devi
- Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kanchipuram, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Kalló G, Kunkli B, Győri Z, Szilvássy Z, Csősz É, Tőzsér J. Compounds with Antiviral, Anti-Inflammatory and Anticancer Activity Identified in Wine from Hungary's Tokaj Region via High Resolution Mass Spectrometry and Bioinformatics Analyses. Int J Mol Sci 2020; 21:E9547. [PMID: 33334025 PMCID: PMC7765363 DOI: 10.3390/ijms21249547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Wine contains a variety of molecules with potential beneficial effects on human health. Our aim was to examine the wine components with high-resolution mass spectrometry including high-resolution tandem mass spectrometry in two wine types made from grapes with or without the fungus Botrytis cinerea, or "noble rot". (2) For LC-MS/MS analysis, 12 wine samples (7 without and 5 with noble rotting) from 4 different wineries were used and wine components were identified and quantified. (3) Results: 288 molecules were identified in the wines and the amount of 169 molecules was statistically significantly different between the two wine types. A database search was carried out to find the molecules, which were examined in functional studies so far, with high emphasis on molecules with antiviral, anti-inflammatory and anticancer activities. (4) Conclusions: A comprehensive functional dataset related to identified wine components is also provided highlighting the importance of components with potential health benefits.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Balázs Kunkli
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Zoltán Győri
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi út 128, 4032 Debrecen, Hungary;
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (G.K.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary;
| |
Collapse
|
5
|
Li M, Nopparat J, Aguilar BJ, Chen YH, Zhang J, Du J, Ai X, Luo Y, Jiang Y, Boykin C, Lu Q. Intratumor δ-catenin heterogeneity driven by genomic rearrangement dictates growth factor dependent prostate cancer progression. Oncogene 2020; 39:4358-4374. [PMID: 32313227 PMCID: PMC10493073 DOI: 10.1038/s41388-020-1281-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022]
Abstract
Only a small number of genes are bona fide oncogenes and tumor suppressors such as Ras, Myc, β-catenin, p53, and APC. However, targeting these cancer drivers frequently fail to demonstrate sustained cancer remission. Tumor heterogeneity and evolution contribute to cancer resistance and pose challenges for cancer therapy due to differential genomic rearrangement and expression driving distinct tumor responses to treatments. Here we report that intratumor heterogeneity of Wnt/β-catenin modulator δ-catenin controls individual cell behavior to promote cancer. The differential intratumor subcellular localization of δ-catenin mirrors its compartmentalization in prostate cancer xenograft cultures as result of mutation-rendered δ-catenin truncations. Wild-type and δ-catenin mutants displayed distinct protein interactomes that highlight rewiring of signal networks. Localization specific δ-catenin mutants influenced p120ctn-dependent Rho GTPase phosphorylation and shifted cells towards differential bFGF-responsive growth and motility, a known signal to bypass androgen receptor dependence. Mutant δ-catenin promoted Myc-induced prostate tumorigenesis while increasing bFGF-p38 MAP kinase signaling, β-catenin-HIF-1α expression, and the nuclear size. Therefore, intratumor δ-catenin heterogeneity originated from genetic remodeling promotes prostate cancer expansion towards androgen independent signaling, supporting a neomorphism model paradigm for targeting tumor progression.
Collapse
Affiliation(s)
- Mingchuan Li
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
- Department of Urological Surgery, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Jongdee Nopparat
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
- Department of Anatomy, Prince of Songkla University, Songkhla, Thailand
| | - Byron J. Aguilar
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| | - Yan-hua Chen
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| | - Jiao Zhang
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Xin Ai
- Dept. of Urology, PLA Army General Hospital, Beijing, China
| | - Yong Luo
- Department of Urological Surgery, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Yongguang Jiang
- Department of Urological Surgery, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Christi Boykin
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody school of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
- Department of Urological Surgery, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, The Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA 27834
| |
Collapse
|
6
|
Suman S, Kallakury BVS, Fornace AJ, Datta K. Fractionated and Acute Proton Radiation Show Differential Intestinal Tumorigenesis and DNA Damage and Repair Pathway Response in Apc Min/+ Mice. Int J Radiat Oncol Biol Phys 2019; 105:525-536. [PMID: 31271826 DOI: 10.1016/j.ijrobp.2019.06.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/08/2019] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Proton radiation is a major component of the radiation field in outer space and is used clinically in radiation therapy of resistant cancers. Although epidemiologic studies in atom bomb survivors and radiologic workers have established radiation as a risk factor for colorectal cancer (CRC), we have yet to determine the risk of CRC posed by proton radiation owing to a lack of sufficient human or animal data. The purpose of the current study was to quantitatively and qualitatively characterize differential effects of acute and fractionated high-energy protons on colorectal carcinogenesis. METHODS AND MATERIALS We used ApcMin/+ mice, a well-studied CRC model, to examine acute versus fractionated proton radiation-induced differences in intestinal tumorigenesis and associated signaling pathways. Mice were exposed to 1.88 Gy of proton radiation delivered in a single fraction or in 4 equal daily fractions (0.47 Gy × 4). Intestinal tumor number and grade were scored 100 to 110 days after irradiation, and tumor and tumor-adjacent normal tissues were harvested to assess proliferative β-catenin/Akt pathways and DNA damage response and repair pathways relevant to colorectal carcinogenesis. RESULTS Significantly higher intestinal tumor number and grade, along with decreased differentiation, were observed after acute radiation relative to fractionated radiation. Acute protons induced upregulation of β-catenin and Akt pathways with increased proliferative marker phospho-histone H3. Increased DNA damage along with decreased DNA repair factors involved in mismatch repair and nonhomologous end joining were also observed after exposure to acute protons. CONCLUSIONS We show increased γH2AX, 53BP1, and 8-oxo-dG, suggesting that increased ongoing DNA damage along with decreased DNA repair factors and increased proliferative responses could be triggering a higher number of intestinal tumors after acute relative to fractionated proton exposures in ApcMin/+ mice. Taken together, our data suggest greater carcinogenic potential of acute relative to fractionated proton radiation.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC
| | | | - Albert J Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Kamal Datta
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC; Department of Oncology, Georgetown University Medical Center, Washington, DC; Department of Pathology, Georgetown University Medical Center, Washington, DC.
| |
Collapse
|
7
|
Fatai AA, Gamieldien J. A 35-gene signature discriminates between rapidly- and slowly-progressing glioblastoma multiforme and predicts survival in known subtypes of the cancer. BMC Cancer 2018; 18:377. [PMID: 29614978 PMCID: PMC5883543 DOI: 10.1186/s12885-018-4103-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gene expression can be employed for the discovery of prognostic gene or multigene signatures cancer. In this study, we assessed the prognostic value of a 35-gene expression signature selected by pathway and machine learning based methods in adjuvant therapy-linked glioblastoma multiforme (GBM) patients from the Cancer Genome Atlas. METHODS Genes with high expression variance was subjected to pathway enrichment analysis and those having roles in chemoradioresistance pathways were used in expression-based feature selection. A modified Support Vector Machine Recursive Feature Elimination algorithm was employed to select a subset of these genes that discriminated between rapidly-progressing and slowly-progressing patients. RESULTS Survival analysis on TCGA samples not used in feature selection and samples from four GBM subclasses, as well as from an entirely independent study, showed that the 35-gene signature discriminated between the survival groups in all cases (p<0.05) and could accurately predict survival irrespective of the subtype. In a multivariate analysis, the signature predicted progression-free and overall survival independently of other factors considered. CONCLUSION We propose that the performance of the signature makes it an attractive candidate for further studies to assess its utility as a clinical prognostic and predictive biomarker in GBM patients. Additionally, the signature genes may also be useful therapeutic targets to improve both progression-free and overall survival in GBM patients.
Collapse
Affiliation(s)
- Azeez A Fatai
- South African Bioinformatics Institute and SAMRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, 7535, Western Cape, 7530, South Africa
| | - Junaid Gamieldien
- South African Bioinformatics Institute and SAMRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville, 7535, Western Cape, 7530, South Africa.
| |
Collapse
|
8
|
Kuppers DA, Schmitt TM, Hwang HC, Samraj L, Clurman BE, Fero ML. The miR-106a~363 Xpcl1 miRNA cluster induces murine T cell lymphoma despite transcriptional activation of the p27 Kip1 cell cycle inhibitor. Oncotarget 2017; 8:50680-50691. [PMID: 28881594 PMCID: PMC5584189 DOI: 10.18632/oncotarget.16932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
The miR-106a~363 cluster encodes 6 miRNAs on the X-chromosome which are abundant in blood cells and overexpressed in a variety of malignancies. The constituent miRNA of miR-106a~363 have functional activities in vitro that are predicted to be both oncogenic and tumor suppressive, yet little is known about their physiological functions in vivo. Mature miR-106a~363 (Mirc2) miRNAs are processed from an intragenic, non-protein encoding gene referred to as Xpcl1 (or Kis2), situated at an X-chromosomal locus frequently targeted by retroviruses in murine lymphomas. The oncogenic potential of miR-106a~363 Xpcl1 has not been proven, nor its potential role in T cell development. We show that miR106a~363 levels normally drop at the CD4+/CD8+ double positive (DP) stage of thymocyte development. Forced expression of Xpcl1 at this stage impairs thymocyte maturation and induces T-cell lymphomas. Surprisingly, miR-106a~363 Xpcl1 also induces p27 transcription via Foxo3/4 transcription factors. As a haploinsufficient tumor suppressor, elevated p27 is expected to inhibit lymphomagenesis. Consistent with this, concurrent p27 Kip1 deletion dramatically accelerated lymphomagenesis, indicating that p27 is rate limiting for tumor development by Xpcl1. Whereas down-regulation of miR-106a~363 is important for normal T cell differentiation and for the prevention of lymphomas, eliminating p27 reveals Xpcl1's full oncogenic potential.
Collapse
Affiliation(s)
| | | | | | | | - Bruce E. Clurman
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
9
|
Nopparat J, Zhang J, Lu JP, Chen YH, Zheng D, Neufer PD, Fan JM, Hong H, Boykin C, Lu Q. δ-Catenin, a Wnt/β-catenin modulator, reveals inducible mutagenesis promoting cancer cell survival adaptation and metabolic reprogramming. Oncogene 2015; 34:1542-52. [PMID: 24727894 PMCID: PMC4197123 DOI: 10.1038/onc.2014.89] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/16/2014] [Accepted: 02/17/2014] [Indexed: 02/06/2023]
Abstract
Mutations of Wnt/β-catenin signaling pathway has essential roles in development and cancer. Although β-catenin and adenomatous polyposis coli (APC) gene mutations are well established and are known to drive tumorigenesis, discoveries of mutations in other components of the pathway lagged, which hinders the understanding of cancer mechanisms. Here we report that δ-catenin (gene designation: CTNND2), a primarily neural member of the β-catenin superfamily that promotes canonical Wnt/β-catenin/LEF-1-mediated transcription, displays exonic mutations in human prostate cancer and promotes cancer cell survival adaptation and metabolic reprogramming. When overexpressed in cells derived from prostate tumor xenografts, δ-catenin gene invariably gives rise to mutations, leading to sequence disruptions predicting functional alterations. Ectopic δ-catenin gene integrating into host chromosomes is locus nonselective. δ-Catenin mutations promote tumor development in mouse prostate with probasin promoter (ARR2PB)-driven, prostate-specific expression of Myc oncogene, whereas mutant cells empower survival advantage upon overgrowth and glucose deprivation. Reprogramming energy utilization accompanies the downregulation of glucose transporter-1 and poly (ADP-ribose) polymerase cleavage while preserving tumor type 2 pyruvate kinase expression. δ-Catenin mutations increase β-catenin translocation to the nucleus and hypoxia-inducible factor 1α (HIF-1α) expression. Therefore, introducing δ-catenin mutations is an important milestone in prostate cancer metabolic adaptation by modulating β-catenin and HIF-1α signaling under glucose shortage to amplify its tumor-promoting potential.
Collapse
Affiliation(s)
- J Nopparat
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J Zhang
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J-P Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Y-H Chen
- 1] Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [2] Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [3] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - D Zheng
- 1] Department of Kinesiology, East Carolina University, Greenville, NC, USA [2] East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - P D Neufer
- 1] Department of Kinesiology, East Carolina University, Greenville, NC, USA [2] East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA [3] Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - J M Fan
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - H Hong
- Department of Pathology and Laboratory Medicine, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - C Boykin
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Q Lu
- 1] Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [2] Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC, USA [3] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Hales KH, Speckman SC, Kurrey NK, Hales DB. Uncovering molecular events associated with the chemosuppressive effects of flaxseed: a microarray analysis of the laying hen model of ovarian cancer. BMC Genomics 2014; 15:709. [PMID: 25150550 PMCID: PMC4158050 DOI: 10.1186/1471-2164-15-709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/05/2014] [Indexed: 01/04/2023] Open
Abstract
Background The laying hen model of spontaneous epithelial ovarian cancer (EOC) is unique in that it is the only model that enables observations of early events in disease progression and is therefore also uniquely suited for chemoprevention trials. Previous studies on the effect of dietary flaxseed in laying hens have revealed the potential for both amelioration and prevention of ovarian cancer. The objective of this study was to assess the effect of flaxseed on genes and pathways that are dysregulated in tumors. We have used a bioinformatics approach to identify these genes, followed by qPCR validation, immunohistochemical localization, and in situ hybridization to visualize expression in normal ovaries and tumors from animals fed a control diet or a diet containing 10% flaxseed. Results Bioinformatic analysis of ovarian tumors in hens led to the identification of a group of highly up-regulated genes that are involved in the embryonic process of branching morphogenesis. Expression of these genes coincides with expression of E-cadherin in the tumor epithelium. Levels of expression of these genes in tumors from flax-fed animals are reduced 40-60%. E-cadherin and miR200 are both up-regulated in tumors from control-fed hens, whereas their expression is decreased 60-75% in tumors from flax-fed hens. This does not appear to be due to an increase in ZEB1 as mRNA levels are increased five-fold in tumors, with no significant difference between control-fed and flax-fed hens. Conclusions We suggest that nutritional intervention with flaxseed targets the pathways regulating branching morphogenesis and thereby alters the progression of ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-709) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen H Hales
- Department of Obstetrics and Gynecology, Southern Illinois University at Carbondale, School of Medicine, Life Science III, (M/C 6512), 1135 Dr,, Carbondale, Lincoln, IL 62901, USA.
| | | | | | | |
Collapse
|
11
|
Silencing of XB130 is associated with both the prognosis and chemosensitivity of gastric cancer. PLoS One 2012; 7:e41660. [PMID: 22927913 PMCID: PMC3426513 DOI: 10.1371/journal.pone.0041660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/24/2012] [Indexed: 12/03/2022] Open
Abstract
XB130 is a newly characterized adaptor protein that was reported to promote thyroid tumor growth, but its role in the progression of other kinds of cancer such as gastric cancer (GC) remains unknown. Accordingly, we investigated the association between XB130 expression and the prognosis of GC patients. The subjects were 411 patients with GC in stages I to IV. XB130 expression was examined in surgical specimens of GC. Kaplan-Meier analysis and the Cox proportional hazards model were used to assess the prognostic significance of XB130 for survival and recurrence. Moreover, GC cells stably transfected with XB130 short hairpin RNA were established to analyze the effect of XB130 on sensitivity of chemotherapy. The results show that both XB130 mRNA and protein expression were detectable in normal gastric tissues. The overall survival time of stage IV patients and the disease-free period after radical resection of GC in stage I–III patients were significantly shorter when immunohistochemical staining for XB130 was low than when staining was high (both p<0.05). XB130 expression also predicted tumor sensitivity to several chemotherapy agents. Viability of both XB130-silenced SGC7901 cells and wild-type cells was suppressed by 5-fluorouracil (5-FU), cisplatin, and irinotecan in a dose-dependent way, but cisplatin and irinotecan were more sensitive against sXB130-silenced GC cells and 5-FU showed higher sensitivity to wild-type cells. When treated by 5-FU, patients with high expression of XB130 tumors had a higher survival rate than those with low expression tumors. These findings indicate that reduced XB130 protein expression is a prognostic biomarker for shorter survival and a higher recurrence rate in patients with GC, as well as for the response to chemotherapy.
Collapse
|