1
|
Fenis A, Demaria O, Gauthier L, Vivier E, Narni-Mancinelli E. New immune cell engagers for cancer immunotherapy. Nat Rev Immunol 2024; 24:471-486. [PMID: 38273127 DOI: 10.1038/s41577-023-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
There have been major advances in the immunotherapy of cancer in recent years, including the development of T cell engagers - antibodies engineered to redirect T cells to recognize and kill cancer cells - for the treatment of haematological malignancies. However, the field still faces several challenges to develop agents that are consistently effective in a majority of patients and cancer types, such as optimizing drug dose, overcoming treatment resistance and improving efficacy in solid tumours. A new generation of T cell-targeted molecules was developed to tackle these issues that are potentially more effective and safer. In addition, agents designed to engage the antitumour activities of other immune cells, including natural killer cells and myeloid cells, are showing promise and have the potential to treat a broader range of cancers.
Collapse
Affiliation(s)
- Aurore Fenis
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille Université, Centre National de la Recherche Scientifique, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Olivier Demaria
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Laurent Gauthier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille Université, Centre National de la Recherche Scientifique, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Marseille Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, Centre National de la Recherche Scientifique, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| |
Collapse
|
2
|
Barrière S, El-Ghazzi N, Garcia M, Guièze R. [Bispecific antibodies in onco-hematology: Applications and perspectives]. Bull Cancer 2021; 108:S195-S204. [PMID: 34920803 DOI: 10.1016/j.bulcan.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
Bispecific antibodies are novel approaches of immunotherapy engaging immune cells to destroy tumor cells. Their structure is variable and underlies their pharmacocinetic properties. These coumpounds are now being evaluated across multiple hematological malignancies. The anti-CD3/CD19 antibody blinatumomab is the first in class and have been approved for the treatment of patients with Ph-negative B-cell acute lymphoblastic leukemia. Other emerging applications are lymphoma, multiple myeloma and acute myeloid leukemia. The safety profile of bispecific antibodies is acceptable while limited by neurotoxicity and cytokine-release syndrome. The present review aims to depict the landscape of emerging bispecific antibodies currently in development for hematological malignancies.
Collapse
Affiliation(s)
- Sabrina Barrière
- CHU de Clermont-Ferrand, service d'hématologie clinique et de thérapie cellulaire, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France.
| | - Nathan El-Ghazzi
- CHU de Clermont-Ferrand, service d'hématologie clinique et de thérapie cellulaire, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France
| | - Manon Garcia
- Université Clermont-Auvergne, EA 7453, CHELTER, Clermont-Ferrand, France; Institut GReD, 28, place Henri-Dunant, 63100 Clermont-Ferrand, France
| | - Romain Guièze
- CHU de Clermont-Ferrand, service d'hématologie clinique et de thérapie cellulaire, 1, rue Lucie- et Raymond-Aubrac, 63100 Clermont-Ferrand, France; Université Clermont-Auvergne, EA 7453, CHELTER, Clermont-Ferrand, France
| |
Collapse
|
3
|
Du Y, Xu J. Engineered Bifunctional Proteins for Targeted Cancer Therapy: Prospects and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103114. [PMID: 34585802 DOI: 10.1002/adma.202103114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bifunctional proteins (BFPs) are a class of therapeutic agents produced through genetic engineering and protein engineering, and are increasingly used to treat various human diseases, including cancer. These proteins usually have two or more biological functions-specifically recognizing different molecular targets to regulate the related signaling pathways, or mediating effector molecules/cells to kill tumor cells. Unlike conventional small-molecule or single-target drugs, BFPs possess stronger biological activity but lower systemic toxicity. Hence, BFPs are considered to offer many benefits for the treatment of heterogeneous tumors. In this review, the authors briefly describe the unique structural feature of BFP molecules and innovatively divide them into bispecific antibodies, cytokine-based BFPs (immunocytokines), and protein toxin-based BFPs (immunotoxins) according to their mode of action. In addition, the latest advances in the development of BFPs are discussed and the potential limitations or problems in clinical applications are outlined. Taken together, future studies need to be centered on understanding the characteristics of BFPs for optimizing and designing more effective such drugs.
Collapse
Affiliation(s)
- Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Shin C, Kim SS, Jo YH. Extending traditional antibody therapies: Novel discoveries in immunotherapy and clinical applications. Mol Ther Oncolytics 2021; 22:166-179. [PMID: 34514097 PMCID: PMC8416972 DOI: 10.1016/j.omto.2021.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy has been well regarded as one of the safer and antigen-specific anti-cancer treatments compared to first-generation chemotherapy. Since Coley's discovery, researchers focused on engineering novel antibody-based therapies. Including artificial and modified antibodies, such as antibody fragments, antibody-drug conjugates, and synthetic mimetics, the variety of immunotherapy has been rapidly expanding in the last few decades. Genetic and chemical modifications to monoclonal antibody have been brought into academia, in vivo trials, and clinical applications. Here, we have looked around antibodies overall. First, we elucidate the antibody structure and its cytotoxicity mechanisms. Second, types of therapeutic antibodies are presented. Additionally, there is a summarized list of US Food and Drug Administration (FDA)-approved therapeutic antibodies and recent clinical trials. This review provides a comprehensive overview of both the general function of therapeutic antibodies and a few main variations in development, including recent advent with the proposed mechanism of actions, and we introduce types of therapeutic antibodies, clinical trials, and approved commercial immunotherapeutic drugs.
Collapse
Affiliation(s)
- Charles Shin
- Chadwick International, Incheon 22002, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Tian Z, Liu M, Zhang Y, Wang X. Bispecific T cell engagers: an emerging therapy for management of hematologic malignancies. J Hematol Oncol 2021; 14:75. [PMID: 33941237 PMCID: PMC8091790 DOI: 10.1186/s13045-021-01084-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Harnessing the power of immune cells, especially T cells, to enhance anti-tumor activities has become a promising strategy in clinical management of hematologic malignancies. The emerging bispecific antibodies (BsAbs), which recruit T cells to tumor cells, exemplified by bispecific T cell engagers (BiTEs), have facilitated the development of tumor immunotherapy. Here we discussed the advances and challenges in BiTE therapy developed for the treatment of hematologic malignancies. Blinatumomab, the first BiTE approved for the treatment of acute lymphocytic leukemia (ALL), is appreciated for its high efficacy and safety. Recent studies have focused on improving the efficacy of BiTEs by optimizing treatment regimens and refining the molecular structures of BiTEs. A considerable number of bispecific T cell-recruiting antibodies which are potentially effective in hematologic malignancies have been derived from BiTEs. The elucidation of mechanisms of BiTE action and neonatal techniques used for the construction of BsAbs can improve the treatment of hematological malignancies. This review summarized the features of bispecific T cell-recruiting antibodies for the treatment of hematologic malignancies with special focus on preclinical experiments and clinical studies.
Collapse
Affiliation(s)
- Zheng Tian
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ming Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated To Shandong University, Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, Shandong, China. .,School of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China. .,Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
6
|
Voynov V, Adam PJ, Nixon AE, Scheer JM. Discovery Strategies to Maximize the Clinical Potential of T-Cell Engaging Antibodies for the Treatment of Solid Tumors. Antibodies (Basel) 2020; 9:E65. [PMID: 33217946 PMCID: PMC7709135 DOI: 10.3390/antib9040065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
T-cell Engaging bispecific antibodies (TcEs) that can re-direct cytotoxic T-cells to kill cancer cells have been validated in clinical studies. To date, the clinical success with these agents has mainly been seen in hematologic tumor indications. However, an increasing number of TcEs are currently being developed to exploit the potent mode-of-action to treat solid tumor indications, which is more challenging in terms of tumor-cell accessibility and the complexity of the tumor microenvironment (TME). Of particular interest is the potential of TcEs as an immunotherapeutic approach for the treatment of non-immunogenic (often referred to as cold) tumors that do not respond to checkpoint inhibitors such as programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) antibodies. This has led to considerable discovery efforts for, firstly, the identification of tumor selective targeting approaches that can safely re-direct cytotoxic T-cells to cancer cells, and, secondly, bispecific antibodies and their derivatives with drug-like properties that promote a potent cytolytic synapse between T-cells and tumor cells, and in the most advanced TcEs, have IgG-like pharmacokinetics for dosing convenience. Based on encouraging pre-clinical data, a growing number of TcEs against a broad range of targets, and using an array of different molecular structures have entered clinical studies for solid tumor indications, and the first clinical data is beginning to emerge. This review outlines the different approaches that have been taken to date in addressing the challenges of exploiting the TcE mode-of-action for a broad range of solid indications, as well as opportunities for future discovery potential.
Collapse
Affiliation(s)
- Vladimir Voynov
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA; (A.E.N.); (J.M.S.)
| | - Paul J. Adam
- Cancer Immunology & Immune Modulation, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria;
| | - Andrew E. Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA; (A.E.N.); (J.M.S.)
| | - Justin M. Scheer
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA; (A.E.N.); (J.M.S.)
| |
Collapse
|
7
|
Nie S, Wang Z, Moscoso-Castro M, D'Souza P, Lei C, Xu J, Gu J. Biology drives the discovery of bispecific antibodies as innovative therapeutics. Antib Ther 2020; 3:18-62. [PMID: 33928225 PMCID: PMC7990219 DOI: 10.1093/abt/tbaa003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
A bispecific antibody (bsAb) is able to bind two different targets or two distinct epitopes on the same target. Broadly speaking, bsAbs can include any single molecule entity containing dual specificities with at least one being antigen-binding antibody domain. Besides additive effect or synergistic effect, the most fascinating applications of bsAbs are to enable novel and often therapeutically important concepts otherwise impossible by using monoclonal antibodies alone or their combination. This so-called obligate bsAbs could open up completely new avenue for developing novel therapeutics. With evolving understanding of structural architecture of various natural or engineered antigen-binding immunoglobulin domains and the connection of different domains of an immunoglobulin molecule, and with greatly improved understanding of molecular mechanisms of many biological processes, the landscape of therapeutic bsAbs has significantly changed in recent years. As of September 2019, over 110 bsAbs are under active clinical development, and near 180 in preclinical development. In this review article, we introduce a system that classifies bsAb formats into 30 categories based on their antigen-binding domains and the presence or absence of Fc domain. We further review the biology applications of approximately 290 bsAbs currently in preclinical and clinical development, with the attempt to illustrate the principle of selecting a bispecific format to meet biology needs and selecting a bispecific molecule as a clinical development candidate by 6 critical criteria. Given the novel mechanisms of many bsAbs, the potential unknown safety risk and risk/benefit should be evaluated carefully during preclinical and clinical development stages. Nevertheless we are optimistic that next decade will witness clinical success of bsAbs or multispecific antibodies employing some novel mechanisms of action and deliver the promise as next wave of antibody-based therapeutics.
Collapse
Affiliation(s)
- Siwei Nie
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and ,To whom correspondence should addressed. Jijie Guor Siwei Nie. or
| | - Zhuozhi Wang
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and
| | | | - Paul D'Souza
- Clarivate Analytics, Friars House, 160 Blackfriars Road, London SE1 8EZ, UK
| | - Can Lei
- Clarivate Analytics, Friars House, 160 Blackfriars Road, London SE1 8EZ, UK
| | - Jianqing Xu
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and
| | - Jijie Gu
- WuXi Biologics, 299 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China and ,To whom correspondence should addressed. Jijie Guor Siwei Nie. or
| |
Collapse
|
8
|
Novel TCR-based biologics: mobilising T cells to warm 'cold' tumours. Cancer Treat Rev 2019; 77:35-43. [PMID: 31207478 DOI: 10.1016/j.ctrv.2019.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
Immunotherapeutic strategies have revolutionised cancer therapy in recent years, bringing meaningful improvements in outcomes for patients with previously intractable conditions. These successes have, however, been largely limited to certain types of liquid tumours and a small subset of solid tumours that are known to be particularly immunogenic. Broadening these advances across the majority of tumour indications, which are characterised by an immune-excluded, immune-deserted or immune-suppressed ('cold') phenotype, will require alternative approaches that are able to specifically address this unique biological environment. Several newer therapeutic modalities, including adoptive cell therapy and T cell redirecting bispecific molecules, are considered to hold particular promise and are being investigated in early phase clinical trials across various solid tumour indications. ImmTAC molecules are a novel class of T cell redirecting bispecific biologics that exploit TCR-based targeting of tumour cells; providing potent and highly specific access to the vast landscape of intracellular targets. The first of these reagents to reach the clinic, tebentafusp (IMCgp100), has generated demonstrable clinical efficacy in an immunologically cold solid tumour with a high unmet need. Here, we highlight the key elements of the ImmTAC platform that make it ideally positioned to overcome the cold tumour microenvironment in an off-the-shelf format.
Collapse
|
9
|
Ellwanger K, Reusch U, Fucek I, Wingert S, Ross T, Müller T, Schniegler-Mattox U, Haneke T, Rajkovic E, Koch J, Treder M, Tesar M. Redirected optimized cell killing (ROCK®): A highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs 2019; 11:899-918. [PMID: 31172847 PMCID: PMC6601565 DOI: 10.1080/19420862.2019.1616506] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Redirection of immune cells to efficiently eliminate tumor cells holds great promise. Natural killer cells (NK), macrophages, or T cells are specifically engaged with target cells expressing markers after infection or neoplastic transformation, resulting in their activation and subsequent killing of those targets. Multiple strategies to redirect immunity have been developed in the past two decades, but they have technical hurdles or cause undesirable side-effects, as exemplified by the T cell-based chimeric antigen receptor approaches (CAR-T therapies) or bispecific T cell engager platforms. Our first-in-class bispecific antibody redirecting innate immune cells to tumors (AFM13, a CD30/CD16A-specific innate immune cell engager) has shown signs of clinical efficacy in CD30-positive lymphomas and the potential to be safely administered, indicating a wider therapeutic window compared to T cell engaging therapies. AFM13 is the most advanced candidate from our fit-for-purpose redirected optimized cell killing (ROCK®) antibody platform, which comprises a plethora of CD16A-binding innate immune cell engagers with unique properties. Here, we discuss aspects of this modular platform, including the advantages of innate immune cell engagement over classical monoclonal antibodies and other engager concepts. We also present details on its potential to engineer a fit-for-purpose innate immune cell engager format that can be equipped with unique CD16A domains, modules that influence pharmacokinetic properties and molecular architectures that influence the activation of immune effectors, as well as tumor targeting. The ROCK® platform is aimed at the activation of innate immunity for the effective lysis of tumor cells and holds the promise of overcoming limitations of other approaches that redirect immune cells by widening the therapeutic window.
Collapse
Affiliation(s)
| | - Uwe Reusch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Ivica Fucek
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Thorsten Ross
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Thomas Müller
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Torsten Haneke
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Erich Rajkovic
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Joachim Koch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Martin Treder
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Michael Tesar
- a Affimed GmbH, Research Department , Heidelberg , Germany
| |
Collapse
|
10
|
Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1556. [DOI: 10.1002/wnan.1556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Keith J. Arlotta
- Department of Biomedical Engineering University of Utah Salt Lake City Utah
| | - Shawn C. Owen
- Department of Biomedical Engineering University of Utah Salt Lake City Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry University of Utah Salt Lake City Utah
| |
Collapse
|
11
|
Yu L, Wang J. T cell-redirecting bispecific antibodies in cancer immunotherapy: recent advances. J Cancer Res Clin Oncol 2019; 145:941-956. [PMID: 30798356 DOI: 10.1007/s00432-019-02867-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Globally, cancer is a critical illness which seriously threatens human health. T-cell-based cancer immunotherapy for some patients has demonstrated impressive achievements including chimeric antigen receptor T cells, immune checkpoint inhibitors and T cell-redirecting bispecific antibodies (TRBAs). TRBAs recruit T cells to lyse cancer cells bypassing the antigen presentation through the major histocompatibility complex pathways. In this review we summarized the TRBAs formats, biophysical characteristics, the preclinical and clinical trial results, as well as the challenges faced by TRBAs in tumour therapy. METHODS Herein the relevant literature and clinical trials from the PubMed and ClinicalTrials.gov database. RESULTS The advances in protein engineering technology have generated diverse TRBAs format which can be classified into two categories: IgG-like TRBAs and non-IgG-like TRBAs. Multiple applications of TRBAs showed encouraging curative effect and entered clinical trials for lymphoid malignancy and solid tumour. CONCLUSIONS TRBA is a powerful tool for the cancer treatment and the clinical studies showed potent anti-tumour efficacy in hematologic malignancies. Although the clinical outcomes of TRBAs in solid tumours are less satisfied than hematologic malignancies, many preclinical antibodies and combination therapies are being evaluated.
Collapse
Affiliation(s)
- Lin Yu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology (Ministry of Education), College of Bioengineering, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
12
|
Abstract
Bispecific antibodies have moved from being an academic curiosity with therapeutic promise to reality, with two molecules being currently commercialized (Hemlibra® and Blincyto®) and many more in clinical trials. The success of bispecific antibodies is mainly due to the continuously growing number of mechanisms of actions (MOA) they enable that are not accessible to monoclonal antibodies. One of the earliest MOA of bispecific antibodies and currently the one with the largest number of clinical trials is the redirecting of the cytotoxic activity of T-cells for oncology applications, now extending its use in infective diseases. The use of bispecific antibodies for crossing the blood-brain barrier is another important application because of its potential to advance the therapeutic options for neurological diseases. Another noteworthy application due to its growing trend is enabling a more tissue-specific delivery or activity of antibodies. The different molecular solutions to the initial hurdles that limited the development of bispecific antibodies have led to the current diverse set of bispecific or multispecific antibody formats that can be grouped into three main categories: IgG-like formats, antibody fragment-based formats, or appended IgG formats. The expanded applications of bispecific antibodies come at the price of additional challenges for clinical development. The rising complexity in their structure may increase the risk of immunogenicity and the multiple antigen specificity complicates the selection of relevant species for safety assessment.
Collapse
Affiliation(s)
- Bushra Husain
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Diego Ellerman
- Protein Chemistry Department, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
13
|
Abstract
INTRODUCTION There is long-standing interest in drugs targeting the myeloid differentiation antigen CD33 in acute myeloid leukemia (AML). Positive results from randomized trials with the antibody-drug conjugate (ADC) gemtuzumab ozogamicin (GO) validate this approach. Partly stimulated by the success of GO, several CD33-targeted therapeutics are currently in early phase testing. AREAS COVERED CD33-targeted therapeutics in clinical development include Fc-engineered unconjugated antibodies (BI 836858 [mAb 33.1]), ADCs (SGN-CD33A [vadastuximab talirine], IMGN779), radioimmunoconjugates (225Ac-lintuzumab), bi- and trispecific antibodies (AMG 330, AMG 673, AMV564, 161533 TriKE fusion protein), and chimeric antigen receptor (CAR)-modified immune effector cells. Besides limited data on 225Ac-lintuzumab showing modest single-agent activity, clinical data are so far primarily available for SGN-CD33A. SGN-CD33A has single-agent activity and has shown encouraging results when combined with an azanucleoside or standard chemotherapeutics. However, concerns about toxicity to the liver and normal hematopoietic cells - the latter leading to early termination of a phase 3 trial - have derailed the development of SGN-CD33A, and its future is uncertain. EXPERT OPINION Early results from a new generation of CD33-targeted therapeutics are anticipated in the next 2-3 years. Undoubtedly, re-approval of GO in 2017 has changed the landscape and rendered clinical development for these agents more challenging.
Collapse
Affiliation(s)
- Roland B Walter
- a Clinical Research Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Department of Medicine, Division of Hematology , University of Washington , Seattle , WA , USA.,c Department of Epidemiology , University of Washington , Seattle , WA , USA
| |
Collapse
|
14
|
The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017; 122:2-19. [PMID: 27916504 DOI: 10.1016/j.addr.2016.11.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Abstract
It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field.
Collapse
|
15
|
Chang CH, Wang Y, Li R, Rossi DL, Liu D, Rossi EA, Cardillo TM, Goldenberg DM. Combination Therapy with Bispecific Antibodies and PD-1 Blockade Enhances the Antitumor Potency of T Cells. Cancer Res 2017; 77:5384-5394. [PMID: 28819027 DOI: 10.1158/0008-5472.can-16-3431] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/24/2017] [Accepted: 08/04/2017] [Indexed: 11/16/2022]
Abstract
The DOCK-AND-LOCK (DNL) method is a platform technology that combines recombinant engineering and site-specific conjugation to create multispecific, multivalent antibodies of defined composition with retained bioactivity. We have applied DNL to generate a novel class of trivalent bispecific antibodies (bsAb), each comprising an anti-CD3 scFv covalently conjugated to a stabilized dimer of different antitumor Fabs. Here, we report the further characterization of two such constructs, (E1)-3s and (14)-3s, which activate T cells and target Trop-2- and CEACAM5-expressing cancer cells, respectively. (E1)-3s and (14)-3s, in the presence of human T cells, killed target cells grown as monolayers at subnanomolar concentrations, with a similar potency observed for drug-resistant cells. Antitumor efficacy was demonstrated for (E1)-3s coadministered with human peripheral blood mononuclear cells (PBMC) in NOD/SCID mice harboring xenografts of MDA-MB-231, a triple-negative breast cancer line constitutively expressing Trop-2 and PD-L1. Growth inhibition was observed following treatment with (E1)-3s or (14)-3s combined with human PBMC in 3D spheroids generated from target cell lines to mimic the in vivo behavior and microenvironment of these tumors. Moreover, addition of an antagonistic anti-PD-1 antibody increased cell death in 3D spheroids and extended survival of MDA-MB-231-bearing mice. These preclinical results emphasize the potential of combining T-cell-redirecting bsAbs with antagonists or agonists that mitigate T-cell inhibition within the tumor microenvironment to improve immunotherapy of solid cancers in patients. They also support the use of 3D spheroids as a predictive alternative to in vivo models for evaluating T-cell functions. Cancer Res; 77(19); 5384-94. ©2017 AACR.
Collapse
Affiliation(s)
- Chien-Hsing Chang
- Immunomedics, Inc., Morris Plains, New Jersey. .,IBC Pharmaceuticals, Inc., Morris Plains, New Jersey
| | - Yang Wang
- Immunomedics, Inc., Morris Plains, New Jersey
| | - Rongxiu Li
- Immunomedics, Inc., Morris Plains, New Jersey
| | | | - Donglin Liu
- Immunomedics, Inc., Morris Plains, New Jersey.,IBC Pharmaceuticals, Inc., Morris Plains, New Jersey
| | | | | | - David M Goldenberg
- Immunomedics, Inc., Morris Plains, New Jersey.,IBC Pharmaceuticals, Inc., Morris Plains, New Jersey
| |
Collapse
|
16
|
Potent and conditional redirected T cell killing of tumor cells using Half DVD-Ig. Protein Cell 2017; 9:121-129. [PMID: 28585177 PMCID: PMC5777973 DOI: 10.1007/s13238-017-0429-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/04/2017] [Indexed: 12/28/2022] Open
Abstract
Novel biologics that redirect cytotoxic T lymphocytes (CTLs) to kill tumor cells bearing a tumor associated antigen hold great promise in the clinic. However, the ability to safely and potently target CD3 on CTL toward tumor associated antigens (TAA) expressed on tumor cells remains a challenge of both technology and biology. Herein we describe the use of a Half DVD-Ig format that can redirect CTL to kill tumor cells. Notably, Half DVD-Ig molecules that are monovalent for each specificity demonstrated reduced non-specific CTL activation and conditional CTL activation upon binding to TAA compared to intact tetravalent DVD-Ig molecules that are bivalent for each specificity, while maintaining good drug like properties and appropriate PK properties.
Collapse
|
17
|
Ellwanger K, Reusch U, Fucek I, Knackmuss S, Weichel M, Gantke T, Molkenthin V, Zhukovsky EA, Tesar M, Treder M. Highly Specific and Effective Targeting of EGFRvIII-Positive Tumors with TandAb Antibodies. Front Oncol 2017; 7:100. [PMID: 28596941 PMCID: PMC5442391 DOI: 10.3389/fonc.2017.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022] Open
Abstract
To harness the cytotoxic capacity of immune cells for the treatment of solid tumors, we developed tetravalent, bispecific tandem diabody (TandAb) antibodies that recognize EGFRvIII, the deletion variant III of the epidermal growth factor receptor (EGFR), and CD3 on T-cells, thereby directing immune cells to eliminate EGFRvIII-positive tumor cells. Using phage display, we identified scFv antibodies selectively binding to EGFRvIII. These highly EGFRvIII-specific, fully human scFv were substantially improved by affinity maturation, achieving KDs in the picomolar range, and were used to construct a set of bispecific EGFRvIII-targeting TandAbs with a broad range of binding and cytotoxic properties. These antibodies exhibited an exquisite specificity for a distinguished epitope in the N-terminal portion of EGFRvIII, as shown on recombinant antigen in Western Blot, SPR, and ELISA, as well as on antigen-expressing cells in FACS assays, and did not bind to the wild-type EGFR. High-affinity EGFRvIII/CD3 TandAbs were most potent in killing assays, displaying cytotoxicity toward EGFRvIII-expressing CHO, F98 glioma, or human DK-MG cells with EC50 values in the range of 1-10 pM in vitro. They also demonstrated dose-dependent growth control in vivo in an EGFRvIII-positive subcutaneous xenograft tumor model. Together with the tumor-exclusive expression of EGFRvIII, the EGFRvIII/CD3 TandAbs' high specificity and strictly target-dependent activation with no off-target activity provide an opportunity to target tumor cells and spare normal tissues, thereby reducing the side effects associated with other anti-EGFR therapies. In summary, EGFRvIII/CD3 TandAbs are highly attractive therapeutic antibody candidates for selective immunotherapy of EGFRvIII-positive tumors.
Collapse
|
18
|
Reusch U, Harrington KH, Gudgeon CJ, Fucek I, Ellwanger K, Weichel M, Knackmuss SHJ, Zhukovsky EA, Fox JA, Kunkel LA, Guenot J, Walter RB. Characterization of CD33/CD3 Tetravalent Bispecific Tandem Diabodies (TandAbs) for the Treatment of Acute Myeloid Leukemia. Clin Cancer Res 2016; 22:5829-5838. [PMID: 27189165 DOI: 10.1158/1078-0432.ccr-16-0350] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Randomized studies with gemtuzumab ozogamicin have validated CD33 as a target for antigen-specific immunotherapy of acute myelogenous leukemia (AML). Here, we investigated the potential of CD33/CD3-directed tandem diabodies (TandAbs) as novel treatment approach for AML. These tetravalent bispecific antibodies provide two binding sites for each antigen to maintain the avidity of a bivalent antibody and have a molecular weight exceeding the renal clearance threshold, thus offering a longer half-life compared to smaller antibody constructs. EXPERIMENTAL DESIGN We constructed a series of TandAbs composed of anti-CD33 and anti-CD3 variable domains of diverse binding affinities and profiled their functional properties in CD33+ human leukemia cell lines, xenograft models, and AML patient samples. RESULTS Our studies demonstrated that several CD33/CD3 TandAbs could induce potent, dose-dependent cytolysis of CD33+ AML cell lines. This effect was modulated by the effector-to-target cell ratio and strictly required the presence of T cells. Activation and proliferation of T cells and maximal AML cell cytolysis correlated with high avidity to both CD33 and CD3. High-avidity TandAbs were broadly active in primary specimens from patients with newly diagnosed or relapsed/refractory AML in vitro, with cytotoxic properties independent of CD33 receptor density and cytogenetic risk. Tumor growth delay and inhibition were observed in both prophylactic and established HL-60 xenograft models in immunodeficient mice. CONCLUSIONS Our data show high efficacy of CD33/CD3 TandAbs in various preclinical models of human AML. Together, these findings support further study of CD33/CD3 TandAbs as novel immunotherapeutics for patients with AML. Clin Cancer Res; 22(23); 5829-38. ©2016 AACR.
Collapse
Affiliation(s)
- Uwe Reusch
- Affimed GmbH, Biomunex Pharmaceuticals, Paris, France
| | - Kimberly H Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chelsea J Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ivica Fucek
- Affimed GmbH, Biomunex Pharmaceuticals, Paris, France
| | | | | | | | - Eugene A Zhukovsky
- Affimed GmbH, Biomunex Pharmaceuticals, Paris, France.,Biomunex Pharmaceuticals, 96 bis Boulevard Raspail, 75006 Paris, France
| | - Judith A Fox
- Amphivena Therapeutics, Inc., South San Francisco, California
| | - Lori A Kunkel
- Amphivena Therapeutics, Inc., South San Francisco, California
| | | | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Hematology/Department of Medicine, University of Washington, Seattle, Washington.,Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Thakur A, Lum LG. "NextGen" Biologics: Bispecific Antibodies and Emerging Clinical Results. Expert Opin Biol Ther 2016; 16:675-88. [PMID: 26848610 DOI: 10.1517/14712598.2016.1150996] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Bispecific antibodies (BsAb) are emerging as a novel approach for dual targeting strategies. Two bispecific antibodies are approved for therapy and >30 are in clinical development. The first generation of BsAb were produced by chemical cross-linking or hybridoma technology; with the recent advent of genetic and protein engineering technologies numerous formats of bispecific antibodies have emerged using either the fragments of IgG or whole IgG molecules. Further areas of development include dual blockade of different disease pathways, diagnosis and imaging. AREAS COVERED Biologics, including bi- or multi-specific antibodies and T cell-based approaches are rapidly changing the landscape of cancer therapeutics. New engineering platforms for bi- or multi-specific antibodies and scaffolds offer improved efficacy and reduced toxicities over IgG-based monoclonal antibodies. Preclinical and clinical studies using different formats of BsAbs are described in this review using PubMed as a literature search tool. EXPERT OPINION A comprehensive presentation of preclinical data and clinical trials evaluating the various formats of BsAbs indicate their safety and efficacy. However, a vast opportunity to fine tune physical properties and functional activity of biologics to improve the stability, engagement of cytotoxic CD8 T cells and multi-antigen targeting strategy through protein engineering holds a greater therapeutic potential.
Collapse
Affiliation(s)
- Archana Thakur
- a Department of Oncology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
| | - Lawrence G Lum
- a Department of Oncology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA.,b Department of Medicine , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA.,c Department of Pediatrics , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA.,d Department of Immunology and Microbiology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
| |
Collapse
|
20
|
Taylor K, Howard CB, Jones ML, Sedliarou I, MacDiarmid J, Brahmbhatt H, Munro TP, Mahler SM. Nanocell targeting using engineered bispecific antibodies. MAbs 2015; 7:53-65. [PMID: 25523746 PMCID: PMC4622061 DOI: 10.4161/19420862.2014.985952] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There are many design formats for bispecific antibodies (BsAbs), and the best design choice is highly dependent on the final application. Our aim was to engineer BsAbs to target a novel nanocell (EnGeneIC Delivery Vehicle or EDVTMnanocell) to the epidermal growth factor receptor (EGFR). EDVTMnanocells are coated with lipopolysaccharide (LPS), and BsAb designs incorporated single chain Fv (scFv) fragments derived from an anti-LPS antibody (1H10) and an anti-EGFR antibody, ABX-EGF. We engineered various BsAb formats with monovalent or bivalent binding arms and linked scFv fragments via either glycine-serine (G4S) or Fc-linkers. Binding analyses utilizing ELISA, surface plasmon resonance, bio-layer interferometry, flow cytometry and fluorescence microscopy showed that binding to LPS and to either soluble recombinant EGFR or MDA-MB-468 cells expressing EGFR, was conserved for all construct designs. However, the Fc-linked BsAbs led to nanocell clumping upon binding to EDVTMnanocells. Clumping was eliminated when additional disulfide bonds were incorporated into the scFv components of the BsAbs, but this resulted in lower BsAb expression. The G4S-linked tandem scFv BsAb format was the optimal design with respect to EDV binding and expression yield. Doxorubicin-loaded EDVTMnanocells actively targeted with tandem scFv BsAb in vivo to MDA-MB-468-derived tumors in mouse xenograft models enhanced tumor regression by 40% compared to passively targeted EDVTMnanocells. BsAbs therefore provide a functional means to deliver EDVTMnanocells to target cells.
Collapse
Affiliation(s)
- Karin Taylor
- a Australian Institute for Bioengineering and Nanotechnology (AIBN) ; University of Queensland, St Lucia ; Queensland , Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Targeted treatment of cancer with monoclonal antibodies has added to the beneficial outcome of patients. In an attempt to improve anti-tumor activity of monoclonal antibodies, multi-specific antibodies have entered the research arena. To date, only a few multi-specific constructs have entered phase III clinical trials, in contrast to classical monoclonal antibodies, which are the standard first-line therapy in several tumor entities. In this review, we will assess selected multi-specific antibodies in pre-clinical and clinical development that may be new treatment options for cancer patients in the very near future. We will further evaluate therapy modalities including the timely distribution or the combination of various therapeutic approaches and assess the potential role of multi-specific antibodies in cancer treatment.
Collapse
Affiliation(s)
- Ron D Jachimowicz
- Department I of Internal Medicine, Innate Immunity Group, University Hospital Cologne, Joseph Stelzmann Str. 9, 50937, Cologne, Germany,
| | | | | |
Collapse
|
22
|
A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood 2015; 125:4024-31. [PMID: 25887777 DOI: 10.1182/blood-2014-12-614636] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/07/2015] [Indexed: 01/08/2023] Open
Abstract
AFM13 is a bispecific, tetravalent chimeric antibody construct (TandAb) designed for the treatment of CD30-expressing malignancies. AFM13 recruits natural killer (NK) cells via binding to CD16A as immune effector cells. In this phase 1 dose-escalation study, 28 patients with heavily pretreated relapsed or refractory Hodgkin lymphoma received AFM13 at doses of 0.01 to 7 mg/kg body weight. Primary objectives were safety and tolerability. Secondary objectives included pharmacokinetics, antitumor activity, and pharmacodynamics. Adverse events were generally mild to moderate. The maximum tolerated dose was not reached. Pharmacokinetics assessment revealed a half-life of up to 19 hours. Three of 26 evaluable patients achieved partial remission (11.5%) and 13 patients achieved stable disease (50%), with an overall disease control rate of 61.5%. AFM13 was also active in brentuximab vedotin-refractory patients. In 13 patients who received doses of ≥1.5 mg/kg AFM13, the overall response rate was 23% and the disease control rate was 77%. AFM13 treatment resulted in a significant NK-cell activation and a decrease of soluble CD30 in peripheral blood. In conclusion, AFM13 represents a well-tolerated, safe, and active targeted immunotherapy of Hodgkin lymphoma. A phase 2 study is currently planned to optimize the dosing schedule in order to further improve the therapeutic efficacy. This phase 1 study was registered at www.clinicaltrials.gov as #NCT01221571.
Collapse
|
23
|
Bispecific antibodies. Drug Discov Today 2015; 20:838-47. [PMID: 25728220 DOI: 10.1016/j.drudis.2015.02.008] [Citation(s) in RCA: 409] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
Bispecific antibodies (bsAbs) combine specificities of two antibodies and simultaneously address different antigens or epitopes. BsAbs with 'two-target' functionality can interfere with multiple surface receptors or ligands associated, for example with cancer, proliferation or inflammatory processes. BsAbs can also place targets into close proximity, either to support protein complex formation on one cell, or to trigger contacts between cells. Examples of 'forced-connection' functionalities are bsAbs that support protein complexation in the clotting cascade, or tumor-targeted immune cell recruiters and/or activators. Following years of research and development (R&D), the first bsAb was approved in 2009. Another bsAb entered the market in December 2014 and several more are in clinical trials. Here, we describe the potentials of bsAbs to become the next wave of antibody-based therapies, focusing on molecules in clinical development.
Collapse
|
24
|
Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, Galon J, Marabelle A, Kohrt H, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e985940. [PMID: 25949870 DOI: 10.4161/2162402x.2014.985940] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/11/2014] [Indexed: 12/31/2022] Open
Abstract
An expanding panel of monoclonal antibodies (mAbs) that specifically target malignant cells or intercept trophic factors delivered by the tumor stroma is now available for cancer therapy. These mAbs can exert direct antiproliferative/cytotoxic effects as they inhibit pro-survival signal transduction cascades or activate lethal receptors at the plasma membrane of cancer cells, they can opsonize neoplastic cells to initiate a tumor-targeting immune response, or they can be harnessed to specifically deliver toxins or radionuclides to transformed cells. As an indication of the success of this immunotherapeutic paradigm, international regulatory agencies approve new tumor-targeting mAbs for use in cancer patients every year. Moreover, the list of indications for previously licensed molecules is frequently expanded to other neoplastic disorders as the results of large, randomized clinical trials become available. Here, we discuss recent advances in the preclinical and clinical development of tumor-targeting mAbs for oncological indications.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM ; U1015 , Villejuif, France
| | - Holbrook Kohrt
- Department of Medicine; Division of Oncology; Stanford University ; Stanford, CA, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM ; U1015 , Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou ; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
25
|
|
26
|
Abstract
Bi- and multispecific antibody derivatives (bsAbs) can be considered as the next generation of targeted biologics for cancer therapy. The general concept of bsAbs is a physical connection of recombinant antibody-derived entities with at least two binding specificities. This generates bsAbs that bind at least two antigens or epitopes, thus altering their binding functionalities and specificities in comparison to "normal" antibodies. Most bsAbs are produced as recombinant proteins, either as large IgG-like proteins that contain Fc regions, or as smaller entities with multiple antigen-binding regions but without Fc. Application of bsAbs in experimental cancer therapy currently includes molecules that bind different cell surface proteins to achieve more complete blockage of proliferative or angiogenesis-associated pathways. This approach of blocking more than one pathway component, or to simultaneously hit complementing pathways, also may limit potential escape mechanisms of cancer cells. BsAbs also are applied in the clinic as vehicles to deliver immune effector cells and/or cytokines to tumors.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharmaceuticals Research and Early Development (pRED), Discovery Oncology (UHW) and Large Molecule Research (UB), Roche Innovation Center Penzberg, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Ulrich Brinkmann
- Roche Pharmaceuticals Research and Early Development (pRED), Discovery Oncology (UHW) and Large Molecule Research (UB), Roche Innovation Center Penzberg, Germany.
| |
Collapse
|
27
|
Kovaleva M, Ferguson L, Steven J, Porter A, Barelle C. Shark variable new antigen receptor biologics - a novel technology platform for therapeutic drug development. Expert Opin Biol Ther 2014; 14:1527-39. [PMID: 25090369 DOI: 10.1517/14712598.2014.937701] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics drugs have succeeded in achieving a commercial dominance in the global market for new therapies and large pharmaceutical companies' interest remains strong through a continued commitment to pipeline development. It is not surprising, therefore, that next-generation biologics, particularly antibody-like scaffolds that offer many of the advantages of the original biologic drugs but in simplified formats, have entered the clinic as competing substitute therapeutic products, to capture market share. AREAS COVERED Specifically, this paper will position shark-derived variable new antigen receptors (VNARs) within an overview of the existing biologics landscape including the growth, diversity and success to date of alternative scaffolds. The intention is not to provide a comprehensive review of biologics as a whole but to discuss the main competing single-domain technologies and the exciting therapeutic potential of VNAR domains as clinical candidates within this context. EXPERT OPINION The inherent ability to specifically bind target and intervene in disease-related biological processes, while reducing off-site toxicity, makes mAbs an effective, potent and now proven class of therapeutics. There are, however, limitations to these 'magic bullets'. Their size and complexity can restrict their utility in certain diseases types and disease locations. In contrast, a number of so-called alternative scaffolds, derived from both immunoglobulin- and non-immunoglobulin-based sources have been developed with real potential to overcome many of the shortcomings documented for mAb treatments. Unlike competing approaches such as Darpins and Affibodies, we now know that shark VNAR domains (like camel VHH nanobody domains), are an integral part of the adaptive immune system of these animals and have evolved naturally (but from very different starting molecules) to exhibit high affinity and selectivity for target. In addition, and again influenced by the environment in which they have evolved naturally, their small size, simple architecture, high solubility and stability, deliver additional flexibility compared to classical antibodies (and many non-natural alternative scaffolds), thereby providing an attractive basis for particular clinical indications where these attributes may offer advantages.
Collapse
Affiliation(s)
- Marina Kovaleva
- University of Aberdeen, Institute of Medical Sciences, College of Life Sciences and Medicine , Foresterhill, Aberdeen, AB25 2ZD , UK +012 2443 8545 ;
| | | | | | | | | |
Collapse
|
28
|
Le Couter J, Scheer JM. Bispecific therapeutics for ophthalmic indications: target selection and the optimal molecular format. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.2014.918846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Abstract
Cancer immunotherapy is a promising and effective treatment modality for patients with cancers. Cytokine, anticytokine, and antibody therapies appear to be effective in treating various forms of cancer. The human papillomavirus vaccine is protective for cervical cancer, and this discovery has paved the way to the development of cancer vaccines for other forms of virus-associated cancers such as liver cancer and Merkel cell carcinoma. Clinical trials have demonstrated that adoptive cell therapy using tumor-infiltrating lymphocytes can induce tumor regression in approximately 75% of metastatic melanoma patients, suggesting the possibility of using similar technique to effectively treat breast, lung, and renal cancers in the near future. Besides, genetically engineered T cells transduced with genes encoding specific T cell receptors and chimeric antigen receptors have been shown effective in the treatment of cancer patients. These studies suggest that combination therapies are superior choices in cancer immunotherapy for patients.
Collapse
|
30
|
Vyas M, Koehl U, Hallek M, von Strandmann EP. Natural ligands and antibody-based fusion proteins: harnessing the immune system against cancer. Trends Mol Med 2013; 20:72-82. [PMID: 24268686 DOI: 10.1016/j.molmed.2013.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/26/2022]
Abstract
The insight that the immune system is able to eradicate tumor cells inspired the development of targeted immunotherapies. These novel approaches aim to trigger immune molecules and receptors, including CD3 on T cells and NKG2D and NKp30 on natural killer (NK) cells, to harness the immune system against cancer. In cancer patients, overcoming immune suppression induced by malignant cells or by the tumor microenvironment remains the major challenge to the clinical efficacy of immunotherapies. Recombinant constructs have been developed in various formats either utilizing natural ligands (immunoligands) or antibody-derived components (immunoconstructs) to circumvent mechanisms that counteract an effective antitumor immune response.
Collapse
Affiliation(s)
- Maulik Vyas
- University of Cologne, Clinic 1 for Internal Medicine, 50924 Cologne, Germany
| | - Ulrike Koehl
- Hannover Medical School, Institute of Cellular Therapeutics, 30625 Hannover, Germany
| | - Michael Hallek
- University of Cologne, Clinic 1 for Internal Medicine, 50924 Cologne, Germany
| | | |
Collapse
|