1
|
Philippe A, Arns W, Ditt V, Hauser IA, Thaiss F, Sommerer C, Suwelack B, Dragun D, Hillen J, Schiedel C, Elsässer A, Nashan B. Impact of everolimus plus calcineurin inhibitor on formation of non-HLA antibodies and graft outcomes in kidney transplant recipients: 12-month results from the ATHENA substudy. FRONTIERS IN TRANSPLANTATION 2023; 2:1273890. [PMID: 38993854 PMCID: PMC11235374 DOI: 10.3389/frtra.2023.1273890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/31/2023] [Indexed: 07/13/2024]
Abstract
Background Non-human leukocyte antigen (non-HLA) antibodies including antibodies targeting Angiotensin II type 1 (AT1R) and Endothelin-1 type A (ETAR) receptors represent a topic of interest in kidney transplantation (KTx). This exploratory substudy evaluated the impact of everolimus (EVR) or mycophenolic acid (MPA) in combination with tacrolimus (TAC) or cyclosporine A (CsA) in patients with preformed non-HLA antibodies, potentially associated rejections and/or their impact on renal function over 1 year. Methods All eligible patients were randomized (1:1:1) before transplantation to receive either EVR/TAC, EVR/CsA, or MPA/TAC regimen. The effect of these regimens on the formation of non-HLA antibodies within one year post de novo KTx and the association with clinical events was evaluated descriptively in randomized (n = 268) population. Results At Month 12, in EVR/TAC group, higher incidence of patients negative for AT1R- and ETAR-antibodies (82.2% and 76.7%, respectively) was noted, whereas the incidence of AT1R- and ETAR-antibodies positivity (28.1% and 34.7%, respectively) was higher in the MPA/TAC group. Non-HLA antibodies had no influence on clinical outcomes in any treatment group and no graft loss or death was reported. Conclusions The studied combinations of immunosuppressants were safe with no influence on clinical outcomes and suggested minimal exposure of calcineurin inhibitors for better patient management. Clinical Trial Registration https://clinicaltrials.gov/ (NCT01843348; EudraCT number: 2011-005238-21).
Collapse
Affiliation(s)
- Aurélie Philippe
- BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Wolfgang Arns
- Transplant Centre Cologne, Cologne General Hospital, Cologne, Germany
| | - Vanessa Ditt
- Institute of Transfusion Medicine, Kliniken der Stadt Köln, Cologne, Germany
| | - Ingeborg A. Hauser
- Department of Nephrology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Sommerer
- Nephrology, Kidney Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara Suwelack
- Department of Internal Medicine, Transplant Nephrology, University Hospital of Münster, Münster, Germany
| | - Duska Dragun
- BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Clinic for Nephrology and Critical Care Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Jan Hillen
- Immunology, Novartis Pharma GmbH, Nürnberg, Germany
| | | | | | - Björn Nashan
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Organ Transplantation Center, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
2
|
Ibrahim U, Bassil C, Chavez JC, Khimani F, Jain MD, Locke FL, Osman K, Lazaryan A. CAR T Cell Therapy for Post-Transplant Lymphoproliferative Disorder After Solid Organ Transplantation: A Safe and Feasible Therapy for an Orphan Disease. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:772-778. [PMID: 37263876 DOI: 10.1016/j.clml.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 06/03/2023]
Affiliation(s)
- Uroosa Ibrahim
- Bone Marrow Transplant and Cellular Therapy/Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY.
| | - Claude Bassil
- Department of Onconephrology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Julio C Chavez
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Farhad Khimani
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Michael D Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Keren Osman
- Bone Marrow Transplant and Cellular Therapy/Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY
| | - Aleksandr Lazaryan
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
3
|
Gambari R, Zuccato C, Cosenza LC, Zurlo M, Gasparello J, Finotti A, Gamberini MR, Prosdocimi M. The Long Scientific Journey of Sirolimus (Rapamycin): From the Soil of Easter Island (Rapa Nui) to Applied Research and Clinical Trials on β-Thalassemia and Other Hemoglobinopathies. BIOLOGY 2023; 12:1202. [PMID: 37759601 PMCID: PMC10525103 DOI: 10.3390/biology12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
In this review article, we present the fascinating story of rapamycin (sirolimus), a drug able to induce γ-globin gene expression and increased production of fetal hemoglobin (HbF) in erythroid cells, including primary erythroid precursor cells (ErPCs) isolated from β-thalassemia patients. For this reason, rapamycin is considered of great interest for the treatment of β-thalassemia. In fact, high levels of HbF are known to be highly beneficial for β-thalassemia patients. The story of rapamycin discovery began in 1964, with METEI, the Medical Expedition to Easter Island (Rapa Nui). During this expedition, samples of the soil from different parts of the island were collected and, from this material, an antibiotic-producing microorganism (Streptomyces hygroscopicus) was identified. Rapamycin was extracted from the mycelium with organic solvents, isolated, and demonstrated to be very active as an anti-bacterial and anti-fungal agent. Later, rapamycin was demonstrated to inhibit the in vitro cell growth of tumor cell lines. More importantly, rapamycin was found to be an immunosuppressive agent applicable to prevent kidney rejection after transplantation. More recently, rapamycin was found to be a potent inducer of HbF both in vitro using ErPCs isolated from β-thalassemia patients, in vivo using experimental mice, and in patients treated with this compound. These studies were the basis for proposing clinical trials on β-thalassemia patients.
Collapse
Affiliation(s)
- Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | - Cristina Zuccato
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Alessia Finotti
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (L.C.C.); (M.Z.); (J.G.)
| | - Maria Rita Gamberini
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (M.R.G.)
| | | |
Collapse
|
4
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
5
|
Zurlo M, Nicoli F, Proietto D, Dallan B, Zuccato C, Cosenza LC, Gasparello J, Papi C, d'Aversa E, Borgatti M, Scapoli C, Finotti A, Gambari R. Effects of Sirolimus treatment on patients with β-Thalassemia: Lymphocyte immunophenotype and biological activity of memory CD4 + and CD8 + T cells. J Cell Mol Med 2023; 27:353-364. [PMID: 36625233 PMCID: PMC9889681 DOI: 10.1111/jcmm.17655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 01/11/2023] Open
Abstract
Inhibitors of the mammalian target of rapamycin (mTOR) have been proposed to improve vaccine responses, especially in the elderly. Accordingly, testing mTOR inhibitors (such as Sirolimus) and other geroprotective drugs might be considered a key strategy to improve overall health resilience of aged populations. In this respect, Sirolimus (also known as rapamycin) is of great interest, in consideration of the fact that it is extensively used in routine therapy and in clinical studies for the treatment of several diseases. Recently, Sirolimus has been considered in laboratory and clinical studies aimed to find novel protocols for the therapy of hemoglobinopathies (e.g. β-Thalassemia). The objective of the present study was to analyse the activity of CD4+ and CD8+ T cells in β-Thalassemia patients treated with Sirolimus, taking advantages from the availability of cellular samples of the NCT03877809 clinical trial. The approach was to verify IFN-γ releases following stimulation of peripheral blood mononuclear cells (PBMCs) to stimulatory CEF and CEFTA peptide pools, stimulatory for CD4+ and CD8+ T cells, respectively. The main results of the present study are that treatment of β-Thalassemia patients with Sirolimus has a positive impact on the biological activity and number of memory CD4+ and CD8+ T cells releasing IFN-γ following stimulation with antigenic stimuli present in immunological memory. These data are to our knowledge novel and in our opinion of interest, in consideration of the fact that β-Thalassemia patients are considered prone to immune deficiency.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Francesco Nicoli
- Department of Chemistry, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Davide Proietto
- Department of Chemistry, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Beatrice Dallan
- Department of Chemistry, Pharmaceutical and Agricultural SciencesUniversity of FerraraFerraraItaly
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Elisabetta d'Aversa
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, Section of Biology and EvolutionUniversity of FerraraFerraraItaly
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular BiologyUniversity of FerraraFerraraItaly,Center Chiara Gemmo and Elio Zago for the Research on ThalassemiaUniversity of FerraraFerraraItaly
| |
Collapse
|
6
|
Goh J, De Mel S, Hoppe MM, Mohd Abdul Rashid MB, Zhang XY, Jaynes P, Ka Yan Ng E, Rahmat NDB, Jayalakshmi, Liu CX, Poon L, Chan E, Lee J, Chee YL, Koh LP, Tan LK, Soh TG, Yuen YC, Loi HY, Ng SB, Goh X, Eu D, Loh S, Ng S, Tan D, Cheah DMZ, Pang WL, Huang D, Ong SY, Nagarajan C, Chan JY, Ha JCH, Khoo LP, Somasundaram N, Tang T, Ong CK, Chng WJ, Lim ST, Chow EK, Jeyasekharan AD. An ex vivo platform to guide drug combination treatment in relapsed/refractory lymphoma. Sci Transl Med 2022; 14:eabn7824. [PMID: 36260690 DOI: 10.1126/scitranslmed.abn7824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although combination therapy is the standard of care for relapsed/refractory non-Hodgkin's lymphoma (RR-NHL), combination treatment chosen for an individual patient is empirical, and response rates remain poor in individuals with chemotherapy-resistant disease. Here, we evaluate an experimental-analytic method, quadratic phenotypic optimization platform (QPOP), for prediction of patient-specific drug combination efficacy from a limited quantity of biopsied tumor samples. In this prospective study, we enrolled 71 patients with RR-NHL (39 B cell NHL and 32 NK/T cell NHL) with a median of two prior lines of treatment, at two academic hospitals in Singapore from November 2017 to August 2021. Fresh biopsies underwent ex vivo testing using a panel of 12 drugs with known efficacy against NHL to identify effective single and combination treatments. Individualized QPOP reports were generated for 67 of 75 patient samples, with a median turnaround time of 6 days from sample collection to report generation. Doublet drug combinations containing copanlisib or romidepsin were most effective against B cell NHL and NK/T cell NHL samples, respectively. Off-label QPOP-guided therapy offered at physician discretion in the absence of standard options (n = 17) resulted in five complete responses. Among patients with more than two prior lines of therapy, the rates of progressive disease were lower with QPOP-guided treatments than with conventional chemotherapy. Overall, this study shows that the identification of patient-specific drug combinations through ex vivo analysis was achievable for RR-NHL in a clinically applicable time frame. These data provide the basis for a prospective clinical trial evaluating ex vivo-guided combination therapy in RR-NHL.
Collapse
Affiliation(s)
- Jasmine Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Sanjay De Mel
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | | - Xi Yun Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Esther Ka Yan Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | | - Jayalakshmi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Limei Poon
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Esther Chan
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Joanne Lee
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Yen Lin Chee
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Liang Piu Koh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore
| | - Lip Kun Tan
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| | - Teck Guan Soh
- Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| | - Yi Ching Yuen
- Department of Pharmacy, National University Health System, Singapore 119074, Singapore
| | - Hoi-Yin Loi
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xueying Goh
- Department of Otolaryngology, National University Hospital, Singapore 119074, Singapore
| | - Donovan Eu
- Department of Otolaryngology, National University Hospital, Singapore 119074, Singapore
| | - Stanley Loh
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Sheldon Ng
- Department of Diagnostic Imaging, National University Hospital, Singapore 119074, Singapore
| | - Daryl Tan
- Mount Elizabeth Novena Hospital, Singapore 329563, Singapore.,Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Daryl Ming Zhe Cheah
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Wan Lu Pang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Dachuan Huang
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Shin Yeu Ong
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
| | | | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,SingHealth Duke-NUS Blood Cancer Centre, Singapore 168582, Singapore
| | - Jeslin Chian Hung Ha
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Lay Poh Khoo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nagavalli Somasundaram
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore.,Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.,Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.,SingHealth Duke-NUS Blood Cancer Centre, Singapore 168582, Singapore.,Office of Education, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Edward K Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.,NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University Singapore, Singapore 117599, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore 119074, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
7
|
Zuccato C, Cosenza LC, Zurlo M, Gasparello J, Papi C, D’Aversa E, Breveglieri G, Lampronti I, Finotti A, Borgatti M, Scapoli C, Stievano A, Fortini M, Ramazzotti E, Marchetti N, Prosdocimi M, Gamberini MR, Gambari R. Expression of γ-globin genes in β-thalassemia patients treated with sirolimus: results from a pilot clinical trial (Sirthalaclin). Ther Adv Hematol 2022; 13:20406207221100648. [PMID: 35755297 PMCID: PMC9218916 DOI: 10.1177/20406207221100648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Introduction β-thalassemia is caused by autosomal mutations in the β-globin gene, which induce the absence or low-level synthesis of β-globin in erythroid cells. It is widely accepted that a high production of fetal hemoglobin (HbF) is beneficial for patients with β-thalassemia. Sirolimus, also known as rapamycin, is a lipophilic macrolide isolated from a strain of Streptomyces hygroscopicus that serves as a strong HbF inducer in vitro and in vivo. In this study, we report biochemical, molecular, and clinical results of a sirolimus-based NCT03877809 clinical trial (a personalized medicine approach for β-thalassemia transfusion-dependent patients: testing sirolimus in a first pilot clinical trial, Sirthalaclin). Methods Accumulation of γ-globin mRNA was analyzed using reverse-transcription quantitative polymerase chain reaction (PCR), while the hemoglobin pattern was analyzed using high-performance liquid chromatography (HPLC). The immunophenotype was analyzed using a fluorescence-activated cell sorter (FACS), with antibodies against CD3, CD4, CD8, CD14, CD19, CD25 (for analysis of peripheral blood mononuclear cells), or CD71 and CD235a (for analysis of in vitro cultured erythroid precursors). Results The results were obtained in eight patients with the β+/β+ and β+/β0 genotypes, who were treated with a starting dosage of 1 mg/day sirolimus for 24-48 weeks. The first finding of this study was that the expression of γ-globin mRNA increased in the blood and erythroid precursor cells isolated from β-thalassemia patients treated with low-dose sirolimus. This trial also led to the important finding that sirolimus influences erythropoiesis and reduces biochemical markers associated with ineffective erythropoiesis (excess free α-globin chains, bilirubin, soluble transferrin receptor, and ferritin). A decrease in the transfusion demand index was observed in most (7/8) of the patients. The drug was well tolerated, with minor effects on the immunophenotype, and an only side effect of frequently occurring stomatitis. Conclusion The data obtained indicate that low doses of sirolimus modify hematopoiesis and induce increased expression of γ-globin genes in a subset of patients with β-thalassemia. Further clinical trials are warranted, possibly including testing of the drug in patients with less severe forms of the disease and exploring combination therapies.
Collapse
Affiliation(s)
- Cristina Zuccato
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Lucia Carmela Cosenza
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Matteo Zurlo
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Jessica Gasparello
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Chiara Papi
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Elisabetta D’Aversa
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Giulia Breveglieri
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biologia ed Evoluzione, Università degli Studi di Ferrara, Ferrara, Italy
| | - Alice Stievano
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, Ferrara, Italy
| | - Monica Fortini
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, Ferrara, Italy
| | - Eric Ramazzotti
- Laboratorio Unico Metropolitano, Ospedale Maggiore, Azienda USL di Bologna, Bologna, Italy
| | - Nicola Marchetti
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università degli Studi di Ferrara, Ferrara, Italy
| | | | - Maria Rita Gamberini
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, via Aldo Moro, 8, Ferrara 44124, Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, via Fossato di Mortara, 74, Ferrara 44121, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Università degli Studi di Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
9
|
Zurlo M, Nicoli F, Borgatti M, Finotti A, Gambari R. Possible effects of sirolimus treatment on the long‑term efficacy of COVID‑19 vaccination in patients with β‑thalassemia: A theoretical perspective. Int J Mol Med 2022; 49:33. [PMID: 35059731 DOI: 10.3892/ijmm.2022.5088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 11/06/2022] Open
Abstract
The pandemic caused by the severe acute respiratory syndrome coronavirus (SARS‑CoV‑2), responsible for coronavirus disease 2019 (COVID‑19) has posed a major challenge for global health. In order to successfully combat SARS‑CoV‑2, the development of effective COVID‑19 vaccines is crucial. In this context, recent studies have highlighted a high COVID‑19 mortality rate in patients affected by β‑thalassemia, probably due to their co‑existent immune deficiencies. In addition to a role in the severity of SARS‑CoV‑2 infection and in the mortality rate of COVID‑19‑infected patients with thalassemia, immunosuppression is expected to deeply affect the effectivity of anti‑COVID‑19 vaccines. In the context of the interplay between thalassemia‑associated immunosuppression and the effectiveness of COVID‑19 vaccines, the employment of immunomodulatory molecules is hypothesized. For instance, short‑term treatment with mammalian target of rapamycin inhibitors (such as everolimus and sirolimus) has been found to improve responses to influenza vaccination in adults, with benefits possibly persisting for a year following treatment. Recently, sirolimus has been considered for the therapy of hemoglobinopathies (including β‑thalassemia). Sirolimus induces the expression of fetal hemoglobin (and this may contribute to the amelioration of the clinical parameters of patients with β‑thalassemia) and induces autophagy (thereby reducing the excessive levels of α‑globin). It may also finally contribute to the mobilization of erythroid cells from the bone marrow (thereby reducing anemia). In the present study, the authors present the hypothesis that sirolimus treatment, in addition to its beneficial effects on erythroid‑related parameters, may play a crucial role in sustaining the effects of COVID‑19 vaccination in patients with β‑thalassemia. This hypothesis is based on several publications demonstrating the effects of sirolimus treatment on the immune system.
Collapse
Affiliation(s)
- Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Francesco Nicoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
10
|
Watarai Y, Danguilan R, Casasola C, Chang SS, Ruangkanchanasetr P, Kee T, Wong HS, Kenmochi T, Amante AJ, Shu KH, Ingsathit A, Bernhardt P, Hernandez-Gutierrez MP, Han DJ, Kim MS. Everolimus-facilitated calcineurin inhibitor reduction in Asian de novo kidney transplant recipients: Two-year results from the subgroup analysis of the TRANSFORM study. Clin Transplant 2021; 35:e14415. [PMID: 34216395 PMCID: PMC9255374 DOI: 10.1111/ctr.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022]
Abstract
Objective We analyzed the efficacy and safety of an everolimus with reduced‐exposure calcineurin inhibitor (EVR+rCNI) versus mycophenolic acid with standard‐exposure CNI (MPA+sCNI) regimen in Asian patients from the TRANSFORM study. Methods In this 24‐month, open‐label study, de novo kidney transplant recipients (KTxRs) were randomized (1:1) to receive EVR+rCNI or MPA+sCNI, along with induction therapy and corticosteroids. Results Of the 2037 patients randomized in the TRANSFORM study, 293 were Asian (EVR+rCNI, N = 136; MPA+sCNI, N = 157). At month 24, EVR+rCNI was noninferior to MPA+sCNI for the binary endpoint of estimated glomerular filtration rate (eGFR) < 50 ml/min/1.73 m2 or treated biopsy‐proven acute rejection (27.0% vs. 29.2%, P = .011 for a noninferiority margin of 10%). Graft loss and death were reported for one patient each in both arms. Mean eGFR was higher in EVR+rCNI versus MPA+sCNI (72.2 vs. 66.3 ml/min/1.73 m2, P = .0414) even after adjusting for donor type and donor age (64.3 vs. 59.3 ml/min/1.73 m2, P = .0582). Overall incidence of adverse events was comparable. BK virus (4.4% vs. 12.1%) and cytomegalovirus (4.4% vs. 13.4%) infections were significantly lower in the EVR+rCNI arm. Conclusion This subgroup analysis in Asian de novo KTxRs demonstrated that the EVR+rCNI versus MPA+sCNI regimen provides comparable antirejection efficacy, better renal function, and reduced viral infections (NCT01950819).
Collapse
Affiliation(s)
- Yoshihiko Watarai
- Department of Transplant Surgery, Kidney Disease Center, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Romina Danguilan
- National Kidney and Transplant Institute, Quezon City, Philippines
| | - Concesa Casasola
- National Kidney and Transplant Institute, Quezon City, Philippines
| | - Shen-Shin Chang
- National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | | | - Terence Kee
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Hin Seng Wong
- Department of Nephrology & Clinical Research Centre Hospital Selayang, Selangor Darul Ehsan, Batu Caves, Malaysia
| | | | | | | | - Atiporn Ingsathit
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Abstract
Lymphoma is a hematological malignancy and its incidence is growing. The use of CD20 monoclonal antibody improves the therapeutic efficacy in CD20-positive B-cell lymphoma. Despite remarkable progress in lymphoma treatment over the past decades, chemotherapy resistance and disease relapse become the main obstacles to further improve the prognosis of the patients. Therefore, the development of new treatment methods and drugs is urgently needed to improve the treatment of lymphoma. In tumors, autophagy functions to protect tumor cells from hypoxia, radiotherapy, and apoptosis. The ability to improve the prognosis of patients with lymphoma through the active regulation of autophagy represents a new approach to clinical treatment.
Collapse
|
12
|
Marosvári D, Nagy N, Kriston C, Deák B, Hajdu M, Bödör C, Csala I, Bagó AG, Szállási Z, Sebestyén A, Reiniger L. Discrepancy Between Low Levels of mTOR Activity and High Levels of P-S6 in Primary Central Nervous System Lymphoma May Be Explained by PAS Domain-Containing Serine/Threonine-Protein Kinase-Mediated Phosphorylation. J Neuropathol Exp Neurol 2019; 77:268-273. [PMID: 29361117 DOI: 10.1093/jnen/nlx121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary aim of this study was to determine mTOR-pathway activity in primary central nervous system lymphoma (PCNSL), which could be a potential target for therapy. After demonstrating that p-S6 positivity largely exceeded mTOR activity, we aimed to identify other pathways that may lead to S6 phosphorylation. We measured mTOR activity with immunohistochemistry for p-mTOR and its downstream effectors p(T389)-p70S6K1, p-S6, and p-4E-BP1 in 31 cases of PCNSL and 51 cases of systemic diffuse large B-cell lymphoma (DLBCL) and evaluated alternative S6 phosphorylation pathways with p-RSK, p(T229)-p70S6K1, and PASK antibodies. Finally, we examined the impact of PASK inhibition on S6 phosphorylation on BHD1 cell line. mTOR-pathway activity was significantly less frequent in PCNSL compared with DLBCL. p-S6 positivity was related to mTOR-pathway in DLBCL, but not in PCNSL. Among the other kinases potentially responsible for S6 phosphorylation, PASK proved to be positive in all cases of PCNSL and DLBCL. Inhibition of PASK resulted in reduced expression of p-S6 in BHD1-cells. This is the first study demonstrating an mTOR independent p-S6 activity in PCNSL and that PASK may contribute to the phosphorylation of S6. Our findings also suggest a potential role of PASK in the pathomechanism of PCNSL and in DLBCL.
Collapse
Affiliation(s)
- Dóra Marosvári
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary.,MTA-SE Lendulet Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary
| | - Csilla Kriston
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary
| | - Beáta Deák
- National Institute of Oncology, Budapest, Hungary
| | - Melinda Hajdu
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary.,MTA-SE Lendulet Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Csala
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Attila G Bagó
- Department of Neurooncology, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Zoltán Szállási
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, Harvard Medical School, and Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.,2nd Department of Pathology, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary.,Tumour Progression Research Group of Joint Research Organization of Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Lilla Reiniger
- 1st Department of Pathology and Experimental Cancer Research Semmelweis University, Budapest, Hungary.,2nd Department of Pathology, MTA-SE NAP, Brain Metastasis Research Group, Hungarian Academy of Sciences
| |
Collapse
|
13
|
Zheng S, Song D, Jin X, Zhang H, Aldarouish M, Chen Y, Wang C. Targeted microbubbles with ultrasound irradiation and PD-1 inhibitor to increase antitumor activity in B-cell lymphoma. Nanomedicine (Lond) 2018; 13:297-311. [PMID: 29338562 DOI: 10.2217/nnm-2017-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: Severe cardiac toxicity of doxorubicin and an immunosuppressive tumor micro-environment become main obstacles for the effective treatment of B-cell lymphoma. In this research, rituximab-conjugated and doxorubicin-loaded microbubbles (RDMs) were designed for exploring a combination approach of targeted microbubbles with ultrasound (US) irradiation and PD-1 inhibitor to overcome obstacles mentioned above. Methods: In vivo studies were performed on SU-DHL-4 cell-grafted mice and ex vivo studies were performed on CD20+ human SU-DHL-4 cells and human T cells. Results: A greater therapeutic effect and higher expression of PD-L1 protein expression were obtained with RDMs with US irradiation in vivo. A significant inhibitory effect on SU-DHL-4 B-cell lymphoma cells was observed after treated by RDMs with US irradiation and PD-1 inhibitor ex vivo. Conclusion: Combination of RDMs with US irradiation and PD-1 inhibitor could be a promising therapeutic strategy for B-cell lymphoma.
Collapse
Affiliation(s)
- Shiya Zheng
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Dan Song
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Xiaoxiao Jin
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Mohanad Aldarouish
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Yan Chen
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
14
|
Guo L, Lin P, Xiong H, Tu S, Chen G. Molecular heterogeneity in diffuse large B-cell lymphoma and its implications in clinical diagnosis and treatment. Biochim Biophys Acta Rev Cancer 2018; 1869:85-96. [PMID: 29337112 DOI: 10.1016/j.bbcan.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over half of patients with diffuse large B-cell lymphoma (DLBCL) can be cured by standard R-CHOP treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). However, the remaining patients are refractory and ultimately succumb to progressive or relapsed disease. During the past decade, there has been significant progress in the understanding of molecular mechanisms in DLBCL, largely owing to collaborative efforts in large-scale gene expression profiling and deep sequencing, which have identified genetic alterations critical in lymphomagenesis through activation of key signaling transduction pathways in DLBCL. These discoveries have not only led to the development of targeted therapies, including several currently in clinical trials, but also laid a solid foundation for the future identification of more effective therapies for patients not curable by R-CHOP. This review summarizes the recent advances in our understanding of the molecular characterization and pathogenesis of DLBCL and new treatment directions.
Collapse
Affiliation(s)
- Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu 215000, China.
| | - Pei Lin
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Box 72, Houston, TX 77030, USA.
| | - Hui Xiong
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China.
| | - Shichun Tu
- Shanghai Righton Biotechnology Co., Ltd, 1698 Wangyuan Road, Building 12, Fengxian District, Shanghai 201403, China; Scintillon Institute for Biomedical and Bioenergy Research, 6888 Nancy Ridge Dr., San Diego, CA 92121, USA; Allele Biotechnology & Pharmaceuticals, Inc., 6404 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | - Gang Chen
- Department of Pathology of Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China.
| |
Collapse
|
15
|
Recomendaciones para el uso de everolimus en trasplante renal de novo: falsas creencias, mitos y realidades. Nefrologia 2017; 37:253-266. [DOI: 10.1016/j.nefro.2016.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/16/2022] Open
|
16
|
Prognostic value of PD-1 and TIM-3 on CD3+ T cells from diffuse large B-cell lymphoma. Biomed Pharmacother 2015; 75:83-7. [PMID: 26463635 DOI: 10.1016/j.biopha.2015.08.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/30/2015] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To investigate the expression of PD-1 and TIM-3 in CD3+ T cells in patients with diffuse large B-cell lymphoma (DLBCL). METHODS A retrospective analysis was conducted on data from 46 patients with newly diagnosed DLBCL and 30 healthy people. Flow cytometry was used to detect the expression of PD-1 and TIM-3 before and after chemotherapy. RESULTS Compared to healthy control, the expression of PD-1 and TIM-3 in patients with DLBCL was increased in CD3+ T cells. There is no significant change of PD-1 and TIM-3 in patients with stage I/II DLBCL, however, they were markedly increased in patients with stage III/IV DLBCL. The expression of PD-1 and TIM-3 elevated in DLBCL patients with B symptoms, IPI score >2 points and high level of LDH and Ki-67. After four courses of standard chemotherapy, PD-1 and TIM-3 expression level decreased. The treatment efficiency is higher in patients with low expression of PD-1 and TIM-3 than in patients with high PD-1 and TIM-3 expression. CONCLUSION DLBCL patients have high expression level of PD-1 and TIM-3, which are related to DLBCL staging. PD-1 and TIM-3 expression levels are also related to the efficiency of chemotherapy. PD-1 and TIM-3 expression levels may be used as an indicator of chemotherapeutic efficacy in patients with DLBCL.
Collapse
|