1
|
Pyöriä L, Pratas D, Toppinen M, Simmonds P, Hedman K, Sajantila A, Perdomo M. Intra-host genomic diversity and integration landscape of human tissue-resident DNA virome. Nucleic Acids Res 2024; 52:13073-13093. [PMID: 39436041 PMCID: PMC11602146 DOI: 10.1093/nar/gkae871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The viral intra-host genetic diversities and interactions with the human genome during decades of persistence remain poorly characterized. In this study, we analyzed the variability and integration sites of persisting viruses in nine organs from thirteen individuals who died suddenly from non-viral causes. The viruses studied included parvovirus B19, six herpesviruses, Merkel cell (MCPyV) and JC polyomaviruses, totaling 127 genomes. The viral sequences across organs were remarkably conserved within each individual, suggesting that persistence stems from single dominant strains. This indicates that intra-host viral evolution, thus far inferred primarily from immunocompromised patients, is likely overestimated in healthy subjects. Indeed, we detected increased viral subpopulations in two individuals with putative reactivations, suggesting that replication status influences diversity. Furthermore, we identified asymmetrical mutation patterns reflecting selective pressures exerted by the host. Strikingly, our analysis revealed non-clonal viral integrations even in individuals without cancer. These included MCPyV integrations and truncations resembling clonally expanded variants in Merkel cell carcinomas, as well as novel junctions between herpesvirus 6B and mitochondrial sequences, the significance of which remains to be evaluated. Our work systematically characterizes the genomic landscape of the tissue-resident virome, highlighting potential deviations occurring during disease.
Collapse
Affiliation(s)
- Lari Pyöriä
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Diogo Pratas
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
- IEETA, Institute of Electronics and Informatics Engineering of Aveiro, and LASI, Intelligent Systems Associate Laboratory, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mari Toppinen
- Department of Forensic Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Peter Medawar Building, South Parks Road, OX1 3SY, Oxford, UK
| | - Klaus Hedman
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166 A, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Maria F Perdomo
- Department of Virology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 3, P.O. Box 21, FI-00014, Helsinki, Finland
| |
Collapse
|
2
|
Arvia R, Stincarelli MA, Manaresi E, Gallinella G, Zakrzewska K. Parvovirus B19 in Rheumatic Diseases. Microorganisms 2024; 12:1708. [PMID: 39203550 PMCID: PMC11357344 DOI: 10.3390/microorganisms12081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Parvovirus B19 (B19V) is a human pathogen belonging to the Parvoviridae family. It is widely diffused in the population and responsible for a wide range of diseases, diverse in pathogenetic mechanisms, clinical course, and severity. B19V infects and replicates in erythroid progenitor cells (EPCs) in the bone marrow leading to their apoptosis. Moreover, it can also infect, in an abortive manner, a wide set of different cell types, normally non-permissive, and modify their normal physiology. Differences in the characteristics of virus-cell interaction may translate into different pathogenetic mechanisms and clinical outcomes. Joint involvement is a typical manifestation of B19V infection in adults. Moreover, several reports suggest, that B19V could be involved in the pathogenesis of some autoimmune rheumatologic diseases such as rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), systemic sclerosis (SSc), systemic lupus erythematosus (SLE), or vasculitis. This review provides basic information on the B19 virus, highlights characteristics of viral infection in permissive and non-permissive systems, and focuses on recent findings concerning the pathogenic role of B19V in rheumatologic diseases.
Collapse
Affiliation(s)
- Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| | - Maria A. Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (E.M.); (G.G.)
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (E.M.); (G.G.)
- S. Orsola-Malpighi Hospital—Microbiology, 40138 Bologna, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (M.A.S.); (K.Z.)
| |
Collapse
|
3
|
Bua G, Marrazzo P, Manaresi E, Gamberini C, Bonsi L, Alviano F, Gallinella G. Non-Permissive Parvovirus B19 Infection: A Reservoir and Questionable Safety Concern in Mesenchymal Stem Cells. Int J Mol Sci 2023; 24:ijms24098204. [PMID: 37175911 PMCID: PMC10179342 DOI: 10.3390/ijms24098204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent cells with differentiation, immunoregulatory and regenerative properties. Because of these features, they represent an attractive tool for regenerative medicine and cell-based therapy. However, MSCs may act as a reservoir of persistent viruses increasing the risk of failure of MSCs-based therapies and of viral transmission, especially in immunocompromised patients. Parvovirus B19V (B19V) is a common human pathogen that infects bone marrow erythroid progenitor cells, leading to transient or persistent anemia. Characteristics of B19V include the ability to cross the placenta, infecting the fetus, and to persist in several tissues. We thus isolated MSCs from bone marrow (BM-MSCs) and fetal membrane (FM-MSCs) to investigate their permissiveness to B19V infection. The results suggest that both BM- and FM- MSCs can be infected by B19V and, while not able to support viral replication, allow persistence over time in the infected cultures. Future studies are needed to understand the potential role of MSCs in B19V transmission and the conditions that can favor a potential reactivation of the virus.
Collapse
Affiliation(s)
- Gloria Bua
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Chiara Gamberini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
4
|
Bichicchi F, Guglietta N, Rocha Alves AD, Fasano E, Manaresi E, Bua G, Gallinella G. Next Generation Sequencing for the Analysis of Parvovirus B19 Genomic Diversity. Viruses 2023; 15:217. [PMID: 36680257 PMCID: PMC9863757 DOI: 10.3390/v15010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Parvovirus B19 (B19V) is a ssDNA human virus, responsible for an ample range of clinical manifestations. Sequencing of B19V DNA from clinical samples is frequently reported in the literature to assign genotype (genotypes 1-3) and for finer molecular epidemiological tracing. The increasing availability of Next Generation Sequencing (NGS) with its depth of coverage potentially yields information on intrinsic sequence heterogeneity; however, integration of this information in analysis of sequence variation is not routinely obtained. The present work investigated genomic sequence heterogeneity within and between B19V isolates by application of NGS techniques, and by the development of a novel dedicated bioinformatic tool and analysis pipeline, yielding information on two newly defined parameters. The first, α-diversity, is a measure of the amount and distribution of position-specific, normalised Shannon Entropy, as a measure of intra-sample sequence heterogeneity. The second, σ-diversity, is a measure of the amount of inter-sample sequence heterogeneity, also incorporating information on α-diversity. Based on these indexes, further cluster analysis can be performed. A set of 24 high-titre viraemic samples was investigated. Of these, 23 samples were genotype 1 and one sample was genotype 2. Genotype 1 isolates showed low α-diversity values, with only a few samples showing distinct position-specific polymorphisms; a few genetically related clusters emerged when analysing inter-sample distances, correlated to the year of isolation; the single genotype 2 isolate showed the highest α-diversity, even if not presenting polymorphisms, and was an evident outlier when analysing inter-sample distance. In conclusion, NGS analysis and the bioinformatic tool and pipeline developed and used in the present work can be considered effective tools for investigating sequence diversity, an observable parameter that can be incorporated into the quasispecies theory framework to yield a better insight into viral evolution dynamics.
Collapse
Affiliation(s)
- Federica Bichicchi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Niccolò Guglietta
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Arthur Daniel Rocha Alves
- Laboratory of Technological Development in Virology, Oswaldo Cruz Foundation/FIOCRUZ, Brasil Avenue 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Erika Fasano
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Gloria Bua
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138 Bologna, Italy
- Microbiology Section, IRCCS Sant’Orsola Hospital, 40138 Bologna, Italy
| |
Collapse
|
5
|
Linthorst J, Welkers MRA, Sistermans EA. Clinically relevant DNA viruses in pregnancy. Prenat Diagn 2022; 43:457-466. [PMID: 35170055 DOI: 10.1002/pd.6116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Abstract
Infections by DNA viruses during pregnancy are associated with increased health risks to both mother and fetus. Although not all DNA viruses are related to an increased risk of complications during pregnancy, several can directly infect the fetus and/or cause placental dysfunction. During NIPT analysis, the presence of viral DNA can be detected, theoretically allowing screening early in pregnancy. Although treatment options are currently limited, this might rapidly change in the near future. It is therefore important to be aware of the potential impact of these viruses on feto-maternal health. In this manuscript we provide a brief introduction into the most commonly detected DNA viruses in human cell-free DNA sequencing experiments and their pathogenic potential during pregnancy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jasper Linthorst
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Dept of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erik A Sistermans
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| |
Collapse
|
6
|
Reggiani A, Avati A, Valenti F, Fasano E, Bua G, Manaresi E, Gallinella G. A Functional Minigenome of Parvovirus B19. Viruses 2022; 14:v14010084. [PMID: 35062288 PMCID: PMC8780457 DOI: 10.3390/v14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022] Open
Abstract
Parvovirus B19 (B19V) is a human pathogenic virus of clinical relevance, characterized by a selective tropism for erythroid progenitor cells in bone marrow. Relevant information on viral characteristics and lifecycle can be obtained from experiments involving engineered genetic systems in appropriate in vitro cellular models. Previously, a B19V genome of defined consensus sequence was designed, synthesized and cloned in a complete and functional form, able to replicate and produce infectious viral particles in a producer/amplifier cell system. Based on such a system, we have now designed and produced a derived B19V minigenome, reduced to a replicon unit. The genome terminal regions were maintained in a form able to sustain viral replication, while the internal region was clipped to include only the left-side genetic set, containing the coding sequence for the functional NS1 protein. Following transfection in UT7/EpoS1 cells, this minigenome still proved competent for replication, transcription and production of NS1 protein. Further, the B19V minigenome was able to complement B19-derived, NS1-defective genomes, restoring their ability to express viral capsid proteins. The B19V genome was thus engineered to yield a two-component system, with complementing functions, providing a valuable tool for studying viral expression and genetics, suitable to further engineering for purposes of translational research.
Collapse
|
7
|
Ferri C, Arcangeletti MC, Caselli E, Zakrzewska K, Maccari C, Calderaro A, D'Accolti M, Soffritti I, Arvia R, Sighinolfi G, Artoni E, Giuggioli D. Insights into the knowledge of complex diseases: Environmental infectious/toxic agents as potential etiopathogenetic factors of systemic sclerosis. J Autoimmun 2021; 124:102727. [PMID: 34601207 DOI: 10.1016/j.jaut.2021.102727] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease secondary to three cardinal pathological features: immune-system alterations, diffuse microangiopathy, and fibrosis involving the skin and internal organs. The etiology of SSc remains quite obscure; it may encompass multiple host genetic and environmental -infectious/chemical-factors. The present review focused on the potential role of environmental agents in the etiopathogenesis of SSc based on epidemiological, clinical, and laboratory investigations previously published in the world literature. Among infectious agents, some viruses that may persist and reactivate in infected individuals, namely human cytomegalovirus (HCMV), human herpesvirus-6 (HHV-6), and parvovirus B19 (B19V), and retroviruses have been proposed as potential causative agents of SSc. These viruses share a number of biological activities and consequent pathological alterations, such as endothelial dysfunction and/or fibroblast activation. Moreover, the acute worsening of pre-existing interstitial lung involvement observed in SSc patients with symptomatic SARS-CoV-2 infection might suggest a potential role of this virus in the overall disease outcome. A variety of chemical/occupational agents might be regarded as putative etiological factors of SSc. In this setting, the SSc complicating silica dust exposure represents one of the most promising models of study. Considering the complexity of SSc pathogenesis, none of suggested causative factors may explain the appearance of the whole SSc; it is likely that the disease is the result of a multifactorial and multistep pathogenetic process. A variable combination of potential etiological factors may modulate the appearance of different clinical phenotypes detectable in individual scleroderma patients. The in-deep investigations on the SSc etiopathogenesis may provide useful insights in the broad field of human diseases characterized by diffuse microangiopathy or altered fibrogenesis.
Collapse
Affiliation(s)
- Clodoveo Ferri
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy; Rheumatology Unit, Casa di Cura Madonna dello Scoglio, Cotronei (KR), Italy.
| | | | - Elisabetta Caselli
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Krystyna Zakrzewska
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Clara Maccari
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria D'Accolti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology, Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Ferrara, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Sighinolfi
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy.
| | - Erica Artoni
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| | - Dilia Giuggioli
- Rheumatology Unit, Medical School, University of Modena and Reggio E, University-Hospital Policlinico of Modena, Modena, Italy
| |
Collapse
|
8
|
Bua G, Tedesco D, Conti I, Reggiani A, Bartolini M, Gallinella G. No G-Quadruplex Structures in the DNA of Parvovirus B19: Experimental Evidence versus Bioinformatic Predictions. Viruses 2020; 12:E935. [PMID: 32854437 PMCID: PMC7552014 DOI: 10.3390/v12090935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Parvovirus B19 (B19V), an ssDNA virus in the family Parvoviridae, is a human pathogenic virus, responsible for a wide range of clinical manifestations, still in need of effective and specific antivirals. DNA structures, including G-quadruplex (G4), have been recognised as relevant functional features in viral genomes, and small-molecule ligands binding to these structures are promising antiviral compounds. Bioinformatic tools predict the presence of potential G4 forming sequences (PQSs) in the genome of B19V, raising interest as targets for antiviral strategies. Predictions locate PQSs in the genomic terminal regions, in proximity to replicative origins. The actual propensity of these PQSs to form G4 structures was investigated by circular dichroism spectroscopic analysis on synthetic oligonucleotides of corresponding sequences. No signature of G4 structures was detected, and the interaction with the G4 ligand BRACO-19 (N,N'-(9-{[4-(dimethylamino)phenyl]amino}acridine-3,6-diyl)bis(3-pyrrolidin-1-ylpropanamide) did not appear consistent with the stabilisation of G4 structures. Any potential role of PQSs in the viral lifecycle was then assessed in an in vitro infection model system, by evaluating any variation in replication or expression of B19V in the presence of the G4 ligands BRACO-19 and pyridostatin. Neither showed a significant inhibitory activity on B19V replication or expression. Experimental challenge did not support bioinformatic predictions. The terminal regions of B19V are characterised by relevant sequence and symmetry constraints, which are functional to viral replication. Our experiments suggest that these impose a stringent requirement prevailing over the propensity of forming actual G4 structures.
Collapse
|
9
|
Abstract
The family Parvoviridae includes an ample and most diverse collection of viruses. Exploring the biological diversity and the inherent complexity in these apparently simple viruses has been a continuous commitment for the scientific community since their first discovery more than fifty years ago. The Special Issue of ‘Viruses’ dedicated to the ‘New Insights into Parvovirus Research’ aimed at presenting a ‘state of the art’ in many aspects of research in the field, at collecting the newest contributions on unresolved issues, and at presenting new approaches exploiting systemic (-omic) methodologies.
Collapse
Affiliation(s)
- Giorgio Gallinella
- Department of Pharmacy and Biotechnology University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
10
|
Manaresi E, Gallinella G. Advances in the Development of Antiviral Strategies against Parvovirus B19. Viruses 2019; 11:v11070659. [PMID: 31323869 PMCID: PMC6669595 DOI: 10.3390/v11070659] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Parvovirus B19 (B19V) is a human pathogenic virus, responsible for an ample range of clinical manifestations. Infections are usually mild, self-limiting, and controlled by the development of a specific immune response, but in many cases clinical situations can be more complex and require therapy. Presently available treatments are only supportive, symptomatic, or unspecific, such as administration of intravenous immunoglobulins, and often of limited efficacy. The development of antiviral strategies against B19V should be considered of highest relevance for increasing the available options for more specific and effective therapeutic treatments. This field of research has been explored in recent years, registering some achievements as well as interesting future perspectives. In addition to immunoglobulins, some compounds have been shown to possess inhibitory activity against B19V. Hydroxyurea is an antiproliferative drug used in the treatment of sickle-cell disease that also possesses inhibitory activity against B19V. The nucleotide analogues Cidofovir and its lipid conjugate Brincidofovir are broad-range antivirals mostly active against dsDNA viruses, which showed an antiviral activity also against B19V. Newly synthesized coumarin derivatives offer possibilities for the development of molecules with antiviral activity. Identification of some flavonoid molecules, with direct inhibitory activity against the viral non-structural (NS) protein, indicates a possible line of development for direct antiviral agents. Continuing research in the field, leading to better knowledge of the viral lifecycle and a precise understanding of virus–cell interactions, will offer novel opportunities for developing more efficient, targeted antiviral agents, which can be translated into available therapeutic options.
Collapse
Affiliation(s)
- Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, I-40138 Bologna, Italy
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, I-40138 Bologna, Italy.
| |
Collapse
|
11
|
Antiviral activity of brincidofovir on parvovirus B19. Antiviral Res 2019; 162:22-29. [DOI: 10.1016/j.antiviral.2018.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/30/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
|
12
|
Affiliation(s)
- Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|