1
|
Willman GH, Xu H, Zeigler TM, McIntosh MT, Bhaduri-McIntosh S. Polymerase theta is a synthetic lethal target for killing Epstein-Barr virus lymphomas. J Virol 2024; 98:e0057224. [PMID: 38860782 PMCID: PMC11265443 DOI: 10.1128/jvi.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Treatment options for Epstein-Barr virus (EBV)-cancers are limited, underscoring the need for new therapeutic approaches. We have previously shown that EBV-transformed cells and cancers lack homologous recombination (HR) repair, a prominent error-free pathway that repairs double-stranded DNA breaks; instead, EBV-transformed cells demonstrate genome-wide scars of the error-prone microhomology-mediated end joining (MMEJ) repair pathway. This suggests that EBV-cancers are vulnerable to synthetic lethal therapeutic approaches that target MMEJ repair. Indeed, we have previously found that targeting PARP, an enzyme that contributes to MMEJ, results in the death of EBV-lymphoma cells. With the emergence of clinical resistance to PARP inhibitors and the recent discovery of inhibitors of Polymerase theta (POLθ), the polymerase essential for MMEJ, we investigated the role of POLθ in EBV-lymphoma cells. We report that EBV-transformed cell lines, EBV-lymphoma cell lines, and EBV-lymphomas in AIDS patients demonstrate greater abundance of POLθ, driven by the EBV protein EBNA1, compared to EBV-uninfected primary lymphocytes and EBV-negative lymphomas from AIDS patients (a group that also abundantly expresses POLθ). We also find POLθ enriched at cellular DNA replication forks and exposure to the POLθ inhibitor Novobiocin impedes replication fork progress, impairs MMEJ-mediated repair of DNA double-stranded breaks, and kills EBV-lymphoma cells. Notably, cell killing is not due to Novobiocin-induced activation of the lytic/replicative phase of EBV. These findings support a role for POLθ not just in DNA repair but also DNA replication and as a therapeutic target in EBV-lymphomas and potentially other EBV-cancers as EBNA1 is expressed in all EBV-cancers.IMPORTANCEEpstein-Barr virus (EBV) contributes to ~2% of the global cancer burden. With a recent estimate of >200,000 deaths a year, identifying molecular vulnerabilities will be key to the management of these frequently aggressive and treatment-resistant cancers. Building on our earlier work demonstrating reliance of EBV-cancers on microhomology-mediated end-joining repair, we now report that EBV lymphomas and transformed B cell lines abundantly express the MMEJ enzyme POLθ that likely protects cellular replication forks and repairs replication-related cellular DNA breaks. Importantly also, we show that a newly identified POLθ inhibitor kills EBV-cancer cells, revealing a novel strategy to block DNA replication and repair of these aggressive cancers.
Collapse
Affiliation(s)
- Griffin H. Willman
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Huanzhou Xu
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Travis M. Zeigler
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Michael T. McIntosh
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Liu Y, Li Y, Bao H, Liu Y, Chen L, Huang H. Epstein-Barr Virus Tegument Protein BKRF4 is a Histone Chaperone. J Mol Biol 2022; 434:167756. [PMID: 35870648 DOI: 10.1016/j.jmb.2022.167756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Histone chaperones, which constitute an interaction and functional network involved in all aspects of histone metabolism, have to date been identified only in eukaryotes. The Epstein-Barr virus tegument protein BKRF4 is a histone-binding protein that engages histones H2A-H2B and H3-H4, and cellular chromatin, inhibiting the host DNA damage response. Here, we identified BKRF4 as a bona fide viral histone chaperone whose histone-binding domain (HBD) forms a co-chaperone complex with the human histone chaperone ASF1 in vitro. We determined the crystal structures of the quaternary complex of the BKRF4 HBD with human H3-H4 dimer and the histone chaperone ASF1b and the ternary complex of the BKRF4 HBD with human H2A-H2B dimer. Through structural and biochemical studies, we elucidated the molecular basis for H3-H4 and H2A-H2B recognition by BKRF4. We also revealed two conserved motifs, D/EL and DEF/Y/W, within the BKRF4 HBD, which may represent common motifs through which histone chaperones target H3-H4 and H2A-H2B, respectively. In conclusion, our results identify BKRF4 as a histone chaperone encoded by the Epstein-Barr virus, representing a typical histone chaperone found in a non-eukaryote. We envision that more histone chaperones await identification and characterization in DNA viruses and even archaea.
Collapse
Affiliation(s)
- Yongrui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yue Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyu Bao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yanhong Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Chen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongda Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Asadi M, Ganjibakhsh M, Aghdam SM, Izadpanah M, Moghanjoghi SM, Gorji ZE, Rahmati H, Amoli AD, Movassagh SA, Fazeli SAS, Farhangniya M, Farzaneh P. Establishment and Preservation of Lymphoblastoid Cell Lines from Fresh and Frozen Whole Blood and Mononuclear Cells. In Vitro Cell Dev Biol Anim 2020; 56:332-340. [PMID: 32358742 DOI: 10.1007/s11626-020-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/08/2020] [Indexed: 10/24/2022]
Abstract
Although blood cells are interesting sources for genome investigations, one of the main problems in obtaining genomic DNA from blood is the restricted amount of DNA. This obstacle can be avoided by generating Epstein-Barr virus (EBV)-induced B cell lines. This study investigates the efficiency of four different methods to generate lymphoblastoid cell lines (LCLs). Blood samples (n = 120) were obtained from donors and categorized into four groups: fresh whole blood, frozen whole blood, fresh peripheral blood mononuclear cells (PBMCs), and frozen PBMCs. The samples were followed by EBV transformation to generate LCLs. Quality control and authentication of the cells were performed using multiplex PCR and short tandem repeat (STR) analyses. Finally, we assessed the success rate and amount of time to establish the cell lines in each group. The results showed that the cells were not contaminated nor were they misidentified or cross-contaminated with other cells. The success rate of LCLs generated from the whole blood groups was lower than the PBMC groups. The freezing procedures did not have any considerable effect on the establishment of lymphoblastoid cells. These established cells have been preserved in the human and animal cell bank of the Iranian Biological Resource Center (IBRC) and are available for researchers. Due to the management and transformation of a substantial number of blood samples, we recommend that researchers freeze PBMCs for further use with high efficiency and time-saving. We suggest that whole fresh blood should be directly transformed when the volume of the blood sample is less than 0.5 ml.
Collapse
Affiliation(s)
- Masoumeh Asadi
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Meysam Ganjibakhsh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Samaneh Mahmoud Aghdam
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Mehrnaz Izadpanah
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Shiva Mohamadi Moghanjoghi
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran.,Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Elyasi Gorji
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Hedieh Rahmati
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | | | | | - Seyed Abolhassan Shahzadeh Fazeli
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran.,Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mansoureh Farhangniya
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Tahseen D, Rady PL, Tyring SK. Human polyomavirus modulation of the host DNA damage response. Virus Genes 2020; 56:128-135. [PMID: 31997082 DOI: 10.1007/s11262-020-01736-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
Abstract
The human DNA damage response (DDR) is a complex signaling network constituting many factors responsible for the preservation of genomic integrity. Human polyomaviruses (HPyVs) are able to harness the DDR machinery during their infectious cycle by expressing an array of tumor (T) antigens. These molecular interactions between human polyomavirus T antigens and the DDR create conditions that promote viral replication at the expense of host genomic stability to cause disease as well as carcinogenesis in the cases of the Merkel cell polyomavirus and BK polyomavirus. This review focuses on the six HPyVs with disease association, emphasizing strain-dependent differences in their selective manipulation of the DDR. Appreciation of the HPyV-DDR interface at a molecular scale is conducive to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Danyal Tahseen
- Department of Dermatology, University of Texas Medical School At Houston, Houston, TX, 77030, USA
| | - Peter L Rady
- Department of Dermatology, University of Texas Medical School At Houston, Houston, TX, 77030, USA
| | - Stephen K Tyring
- Department of Dermatology, University of Texas Medical School At Houston, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Salamun SG, Sitz J, De La Cruz-Herrera CF, Yockteng-Melgar J, Marcon E, Greenblatt J, Fradet-Turcotte A, Frappier L. The Epstein-Barr Virus BMRF1 Protein Activates Transcription and Inhibits the DNA Damage Response by Binding NuRD. J Virol 2019; 93:e01070-19. [PMID: 31462557 PMCID: PMC6819917 DOI: 10.1128/jvi.01070-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023] Open
Abstract
The BMRF1 protein of Epstein-Barr virus (EBV) has multiple roles in viral lytic infection, including serving as the DNA polymerase processivity factor, activating transcription from several EBV promoters and inhibiting the host DNA damage response to double-stranded DNA breaks (DSBs). Using affinity purification coupled to mass spectrometry, we identified the nucleosome remodeling and deacetylation (NuRD) complex as the top interactor of BMRF1. We further found that NuRD components localize with BMRF1 at viral replication compartments and that this interaction occurs through the BMRF1 C-terminal region previously shown to mediate transcriptional activation. We identified an RBBP4 binding motif within this region that can interact with both RBBP4 and MTA2 components of the NuRD complex and showed that point mutation of this motif abrogates NuRD binding as well as the ability of BMRF1 to activate transcription from the BDLF3 and BLLF1 EBV promoters. In addition to its role in transcriptional regulation, NuRD has been shown to contribute to DSB signaling in enabling recruitment of RNF168 ubiquitin ligase and subsequent ubiquitylation at the break. We showed that BMRF1 inhibited RNF168 recruitment and ubiquitylation at DSBs and that this inhibition was at least partly relieved by loss of the NuRD interaction. The results reveal a mechanism by which BMRF1 activates transcription and inhibits DSB signaling and a novel role for NuRD in transcriptional activation in EBV.IMPORTANCE The Epstein-Barr virus (EBV) BMRF1 protein is critical for EBV infection, playing key roles in viral genome replication, activation of EBV genes, and inhibition of host DNA damage responses (DDRs). Here we show that BMRF1 targets the cellular nucleosome remodeling and deacetylation (NuRD) complex, using a motif in the BMRF1 transcriptional activation sequence. Mutation of this motif disrupts the ability of BMRF1 to activate transcription and interfere with DDRs, showing the importance of the NuRD interaction for BMRF1 functions. BMRF1 was shown to act at the same step in the DDR as NuRD, suggesting that it interferes with NuRD function.
Collapse
Affiliation(s)
- Samuel G Salamun
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Justine Sitz
- Cancer Research Center and CHU de Québec Research Center-Hôtel-Dieu de Québec, Université Laval, Québec, Canada
| | | | - Jaime Yockteng-Melgar
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Facultad de ciencias de la vida, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Donnelly Centre, University of Toronto, Toronto, Canada
| | - Amelie Fradet-Turcotte
- Cancer Research Center and CHU de Québec Research Center-Hôtel-Dieu de Québec, Université Laval, Québec, Canada
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|