1
|
Guzha BT, Matubu A, Nyandoro G, Mubata HO, Moyo E, Murewanhema G, Chirenje ZM. The impact of DNA tumor viruses in low-to-middle income countries (LMICS): A literature review. Tumour Virus Res 2024; 18:200289. [PMID: 38977263 PMCID: PMC11298656 DOI: 10.1016/j.tvr.2024.200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
DNA viruses are common in the human population and act as aetiological agents of cancer on a large scale globally. They include the human papillomaviruses (HPV), Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis viruses, and human polyomaviruses. Oncogenic viruses employ different mechanisms to induce cancer. Notably, cancer only develops in a minority of individuals who are infected, usually following protracted years of chronic infection. The human papillomaviruses (HPVs) are associated with the highest number of cancer cases, including cervical cancer and other epithelial malignancies. Hepatitis B virus (HBV) and the RNA virus hepatitis C (HCV) are significant contributors to hepatocellular cancer (HCC). Other oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpes virus (KSHV), human T-cell leukemia virus (HTLV-I), and Merkel cell polyomavirus (MCPyV). The identification of these infectious agents as aetiological agents for cancer has led to reductions in cancer incidence through preventive interventions such as HBV and HPV vaccination, HPV-DNA based cervical cancer screening, antiviral treatments for chronic HBV and HCV infections, and screening of blood for transfusion for HBV and HCV. Successful efforts to identify additional oncogenic viruses in human cancer may provide further understanding of the aetiology and development of cancer, and novel approaches for prevention and treatment. Cervical cancer, caused by HPV, is the leading gynaecological malignancy in LMICs, with high age-standardised incidence and mortality rates, HCC due to HBV is an important cause of cancer deaths, and the burden of other cancer attributable to infections continues to rise globally. Hence, cancers attributable to DNA viruses have become a significant global health challenge. These viruses hence warrant continued attention and interrogation as efforts to understand them further and device further preventive interventions are critical.
Collapse
Affiliation(s)
- Bothwell Takaingofa Guzha
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe; University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe
| | - Allen Matubu
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe
| | - George Nyandoro
- Hepatitis Alliance, 2172, Arlington, Hatfield, Harare, Zimbabwe
| | - Hamish O Mubata
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Enos Moyo
- School of Public Health Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Grant Murewanhema
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe; University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe.
| | - Zvavahera M Chirenje
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe; Department of Obstetrics, Gynecology and Reproductive Science, University of California San Francisco, San Francisco, USA
| |
Collapse
|
2
|
Ijaz R, Shahzad N, Farhan Ul Haque M. Detection of BK and JC polyomaviruses in sewage water of the urban areas of Lahore, Pakistan. Biologia (Bratisl) 2023; 78:1-8. [PMID: 37363645 PMCID: PMC10173206 DOI: 10.1007/s11756-023-01430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
The surveillance of sewage water has become an extremely essential tool to trace the circulation of viruses in a population and to predict the outbreak of viral diseases. Sewage monitoring is important for those viruses which cause subclinical infections since it is difficult to determine their prevalence. Polyomaviruses are ubiquitously present, circular double-stranded DNA viruses that can infect humans as well. Among all human polyomaviruses, BK polyomavirus and JC polyomavirus associated with the development of aggressive diseases in immunocompromised individuals, are highly prevalent. This study aimed to investigate the presence and the quantitative prevalence of these two disease-associated human polyomaviruses in sewage water collected from six drains of Lahore, Pakistan. The viruses present in the environmental samples were concentrated by PEG method before isolating viral nucleic acids. Conventional PCR amplifications were performed for molecular detection of BK polyomavirus and JC polyomavirus targeting their large tumor antigen genetic region. The presence of BK polyomavirus and JC polyomavirus was confirmed in the DNA extracted from concentrated sewage samples of each drain by performing both qualitative and quantitative PCR. Our data shows that the viral load ranged from 1278 to 178368 copies per µg of environmental DNA for BK polyomavirus and 5173 to 79129 copies per µg of environmental DNA for JC polyomavirus. In conclusion, here we report first time the detection of BK polyomavirus and JC polyomavirus in sewage water collected from six main drains in urban areas of Lahore, Pakistan showing the high prevalence of these viruses in the Pakistani population. This assay could be used as a proxy to determine the prevalence of these viruses in the Pakistani population.
Collapse
Affiliation(s)
- Rabia Ijaz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54000 Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54000 Pakistan
| | - Muhammad Farhan Ul Haque
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54000 Pakistan
| |
Collapse
|
3
|
Passerini S, Prezioso C, Prota A, Babini G, Coppola L, Lodi A, Epifani AC, Sarmati L, Andreoni M, Moens U, Pietropaolo V, Ciotti M. Detection Analysis and Study of Genomic Region Variability of JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV in the Urine and Plasma of HIV-1-Infected Patients. Viruses 2022; 14:v14112544. [PMID: 36423152 PMCID: PMC9698965 DOI: 10.3390/v14112544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Since it was clearly established that HIV/AIDS predisposes to the infection, persistence or reactivation of latent viruses, the prevalence of human polyomaviruses (HPyVs) among HIV-1-infected patients and a possible correlation between HPyVs and HIV sero-status were investigated. PCR was performed to detect and quantify JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV DNA in the urine and plasma samples of 103 HIV-1-infected patients. Subsequently, NCCR, VP1 and MCPyV LT sequences were examined. In addition, for MCPyV, the expression of transcripts for the LT gene was investigated. JCPyV, BKPyV and MCPyV's presence was reported, whereas HPyV6, HPyV7 and QPyV were not detected in any sample. Co-infection patterns of JCPyV, BKPyV and MCPyV were found. Archetype-like NCCRs were observed with some point mutations in plasma samples positive for JCPyV and BKPyV. The VP1 region was found to be highly conserved among these subjects. LT did not show mutations causing stop codons, and LT transcripts were expressed in MCPyV positive samples. A significant correlation between HPyVs' detection and a low level of CD4+ was reported. In conclusion, HPyV6, HPyV7 and QPyV seem to not have a clinical relevance in HIV-1 patients, whereas further studies are warranted to define the clinical importance of JCPyV, BKPyV and MCPyV DNA detection in these subjects.
Collapse
Affiliation(s)
- Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
| | - Annalisa Prota
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giulia Babini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Luigi Coppola
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Lodi
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Anna Chiara Epifani
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
4
|
Prevalence of MCPyV, HPyV6, HPyV7 and TSPyV in Actinic Keratosis Biopsy Specimens. Viruses 2022; 14:v14020427. [PMID: 35216020 PMCID: PMC8876850 DOI: 10.3390/v14020427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
To date, 14 human polyomaviruses (HPyVs) have been identified using high-throughput technologies. Among them, MCPyV, HPyV6, HPyV7 and TSPyV present a skin tropism, but a causal role in skin diseases has been established only for MCPyV as a causative agent of Merkel cell carcinoma (MCC) and TSPyV as an etiological agent of Trichodysplasia Spinulosa (TS). In the search for a possible role for cutaneous HPyVs in the development of skin malignant lesions, we investigated the prevalence of MCPyV, HPyV6, HPyV7 and TSPyV in actinic keratosis (AK), a premalignant skin lesion that has the potential to progress towards a squamous cell carcinoma (SCC). One skin lesion and one non-lesion skin from nine affected individuals were analyzed by qualitative PCR. MCPyV was detected in 9 out of 9 lesion biopsies and 6 out of 8 non-lesion biopsies. HPyV6 was detected only in healthy skin, while HPyV7 and TSPyV were not detected in any skin sample. These findings argue against a possible role of cutaneous HPyVs in AK. However, considering the small sample size analyzed, a definitive conclusion cannot be drawn. Longitudinal studies on large cohorts are warranted.
Collapse
|
5
|
Prezioso C, Grimaldi A, Landi D, Nicoletti CG, Brazzini G, Piacentini F, Passerini S, Limongi D, Ciotti M, Palamara AT, Marfia GA, Pietropaolo V. Risk Assessment of Progressive Multifocal Leukoencephalopathy in Multiple Sclerosis Patients during 1 Year of Ocrelizumab Treatment. Viruses 2021; 13:v13091684. [PMID: 34578264 PMCID: PMC8473394 DOI: 10.3390/v13091684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Progressive multifocal leukoencephalopathy (PML) caused by the JC virus is the main limitation to the use of disease modifying therapies for treatment of multiple sclerosis (MS). Methods: To assess the PML risk in course of ocrelizumab, urine and blood samples were collected from 42 MS patients at baseline (T0), at 6 (T2) and 12 months (T4) from the beginning of therapy. After JCPyV-DNA extraction, a quantitative-PCR (Q-PCR) was performed. Moreover, assessment of JCV-serostatus was obtained and arrangements’ analysis of non-coding control region (NCCR) and of viral capsid protein 1 (VP1) was carried out. Results: Q-PCR revealed JCPyV-DNA in urine at all selected time points, while JCPyV-DNA was detected in plasma at T4. From T0 to T4, JC viral load in urine was detected, increased in two logarithms and, significantly higher, compared to viremia. NCCR from urine was archetypal. Plasmatic NCCR displayed deletion, duplication, and point mutations. VP1 showed the S269F substitution involving the receptor-binding region. Anti-JCV index and IgM titer were found to statistically decrease during ocrelizumab treatment. Conclusions: Ocrelizumab in JCPyV-DNA positive patients is safe and did not determine PML cases. Combined monitoring of ocrelizumab’s effects on JCPyV pathogenicity and on host immunity might offer a complete insight towards predicting PML risk.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
- Correspondence: (C.P.); (V.P.)
| | - Alfonso Grimaldi
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Carolina Gabri Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Gabriele Brazzini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
| | - Francesca Piacentini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
| | - Dolores Limongi
- IRCCS San Raffaele Roma, Telematic University, 00163 Rome, Italy;
| | - Marco Ciotti
- Laboratory of Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy;
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico di Tor Vergata, 00133 Rome, Italy; (A.G.); (D.L.); (C.G.N.); (G.A.M.)
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Unit of Neurology, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (G.B.); (F.P.); (S.P.)
- Correspondence: (C.P.); (V.P.)
| |
Collapse
|
6
|
Prezioso C, Moens U, Oliveto G, Brazzini G, Piacentini F, Frasca F, Viscido A, Scordio M, Guerrizio G, Rodio DM, Pierangeli A, d’Ettorre G, Turriziani O, Antonelli G, Scagnolari C, Pietropaolo V. KI and WU Polyomavirus in Respiratory Samples of SARS-CoV-2 Infected Patients. Microorganisms 2021; 9:microorganisms9061259. [PMID: 34207902 PMCID: PMC8229673 DOI: 10.3390/microorganisms9061259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been declared a global pandemic. Our goal was to determine whether co-infections with respiratory polyomaviruses, such as Karolinska Institutet polyomavirus (KIPyV) and Washington University polyomavirus (WUPyV) occur in SARS-CoV-2 infected patients. Oropharyngeal swabs from 150 individuals, 112 symptomatic COVID-19 patients and 38 healthcare workers not infected by SARS-CoV-2, were collected from March 2020 through May 2020 and tested for KIPyV and WUPyV DNA presence. Of the 112 SARS-CoV-2 positive patients, 27 (24.1%) were co-infected with KIPyV, 5 (4.5%) were positive for WUPyV, and 3 (2.7%) were infected simultaneously by KIPyV and WUPyV. Neither KIPyV nor WUPyV DNA was detected in samples of healthcare workers. Significant correlations were found in patients co-infected with SARS-CoV-2 and KIPyV (p < 0.05) and between SARS-CoV-2 cycle threshold values and KIPyV, WUPyV and KIPyV and WUPyV concurrently detected (p < 0.05). These results suggest that KIPyV and WUPyV may behave as opportunistic respiratory pathogens. Additional investigations are needed to understand the epidemiology and the prevalence of respiratory polyomavirus in COVID-19 patients and whether KIPyV and WUPyV could potentially drive viral interference or influence disease outcomes by upregulating SARS-CoV-2 replicative potential.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Giuseppe Oliveto
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Gabriele Brazzini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
| | - Francesca Piacentini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
| | - Federica Frasca
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Agnese Viscido
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
| | - Mirko Scordio
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Giuliana Guerrizio
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
| | - Donatella Maria Rodio
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
| | - Ombretta Turriziani
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-49914439
| |
Collapse
|
7
|
Structural Analysis of Merkel Cell Polyomavirus (MCPyV) Viral Capsid Protein 1 (VP1) in HIV-1 Infected Individuals. Int J Mol Sci 2020; 21:ijms21217998. [PMID: 33121182 PMCID: PMC7663277 DOI: 10.3390/ijms21217998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) viral protein 1 (VP1) is the capsid protein that mediates virus attachment to host cell receptors and is the major immune target. Given the limited data on MCPyV VP1 mutations, the VP1 genetic variability was examined in 100 plasma and 100 urine samples from 100 HIV+ individuals. Sequencing of VP1 DNA in 17 urine and 17 plasma specimens, simultaneously MCPyV DNA positive, revealed that 27 samples displayed sequences identical to VP1 of MCC350 strain. VP1 from two urine specimens had either Thr47Ser or Ile115Phe substitution, whereas VP1 of one plasma contained Asp69Val and Ser251Phe substitutions plus deletion (∆) of Tyr79. VP1 DNA in the remaining samples had mutations encoding truncated protein. Three-dimensional prediction models revealed that Asp69Val, Ser251Phe, and Ile115Phe caused neutral effects while Thr47Ser and Tyr79∆ produced a deleterious effect reducing VP1 stability. A549 cells infected with urine or plasma samples containing full-length VP1 variants with substitutions, sustained viral DNA replication and VP1 expression. Moreover, medium harvested from these cells was able to infect new A549 cells. In cells infected by samples with truncated VP1, MCPyV replication was hampered. In conclusion, MCPyV strains with unique mutations in the VP1 gene are circulating in HIV+ patients. These strains display altered replication efficiency compared to the MCC350 prototype strain in A549 cells.
Collapse
|
8
|
Prezioso C, Obregon F, Ambroselli D, Petrolo S, Checconi P, Rodio DM, Coppola L, Nardi A, de Vito C, Sarmati L, Andreoni M, Palamara AT, Ciotti M, Pietropaolo V. Merkel Cell Polyomavirus (MCPyV) in the Context of Immunosuppression: Genetic Analysis of Noncoding Control Region (NCCR) Variability among a HIV-1-Positive Population. Viruses 2020; 12:v12050507. [PMID: 32375383 PMCID: PMC7291121 DOI: 10.3390/v12050507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Since limited data are available about the prevalence of Merkel cell polyomavirus (MCPyV) and the genetic variability of its noncoding control region (NCCR) in the context of immunosuppression, this study aimed to investigate the distribution of MCPyV in anatomical sites other than the skin and the behavior of NCCR among an HIV-1-positive population. Methods: Urine, plasma, and rectal swabs specimens from a cohort of 66 HIV-1-positive patients were collected and subjected to quantitative real-time polymerase chain reaction (qPCR) for MCPyV DNA detection. MCPyV-positive samples were amplified by nested PCR targeting the NCCR, and NCCRs alignment was carried out to evaluate the occurrence of mutations and to identify putative binding sites for cellular factors. Results: MCPyV DNA was detected in 10/66 urine, in 7/66 plasma, and in 23/66 rectal samples, with a median value of 5 × 102 copies/mL, 1.5 × 102 copies/mL, and 2.3 × 103 copies/mL, respectively. NCCR sequence analysis revealed a high degree of homology with the MCC350 reference strain in urine, whereas transitions, transversions, and single or double deletions were observed in plasma and rectal swabs. In these latter samples, representative GTT and GTTGA insertions were also observed. Search for putative binding sites of cellular transcription factors showed that in several strains, deletions, insertions, or single base substitutions altered the NCCR canonical configuration. Conclusions: Sequencing analysis revealed the presence of numerous mutations in the NCCR, including insertions and deletions. Whether these mutations may have an impact on the pathogenic features of the virus remains to be determined. qPCR measured on average a low viral load in the specimens analyzed, with the exception of those with the GTTGA insertion.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy; (C.P.); (A.T.P.)
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Francisco Obregon
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Donatella Ambroselli
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Sara Petrolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Donatella Maria Rodio
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Luigi Coppola
- Infectious Diseases Clinic, Policlinic Tor Vergata, 00133 Rome, Italy; (L.C.); (L.S.); (M.A.)
| | - Angelo Nardi
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Corrado de Vito
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Loredana Sarmati
- Infectious Diseases Clinic, Policlinic Tor Vergata, 00133 Rome, Italy; (L.C.); (L.S.); (M.A.)
- Department of System Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Diseases Clinic, Policlinic Tor Vergata, 00133 Rome, Italy; (L.C.); (L.S.); (M.A.)
- Department of System Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Anna Teresa Palamara
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy; (C.P.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Ciotti
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy;
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
- Correspondence: ; Tel.: +39-06-4991-4439
| |
Collapse
|
9
|
Prezioso C, Zingaropoli MA, Iannetta M, Rodio DM, Altieri M, Conte A, Vullo V, Ciardi MR, Palamara AT, Pietropaolo V. Which is the best PML risk stratification strategy in natalizumab-treated patients affected by multiple sclerosis? Mult Scler Relat Disord 2020; 41:102008. [PMID: 32087593 DOI: 10.1016/j.msard.2020.102008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The risk of progressive multifocal leukoencephalopathy (PML), a brain infection caused by John Cunningham virus (JCPyV), is the main limitation to the use of natalizumab, highly effective in the treatment of relapsing remitting multiple sclerosis (RRMS) patients. Establishing the PML risk against expected benefits represents an obligatory requirement of MS treatment algorithm. In order to achieve this goal, the aims of this study were to establish if JCPyV-DNA detection and non-coding control region (NCCR) arrangements could play a role of biomarkers, supporting anti-JCPyV antibodies measurement, actually the only parameter for PML risk stratification. METHODS Thirty RRMS patients in treatment with natalizumab were enrolled. Urine and blood samples were collected according to this calendar: baseline (T0), 4 (T1), 8 (T2), 12 (T3), 16 (T4), 20 months (T5) after beginning of natalizumab therapy. After JCPyV DNA extraction, a specific quantitative-PCR (Q-PCR) and arrangements' analysis of NCCR and Viral Capsid Protein 1 (VP1) were carried out. RESULTS Q-PCR detected JCPyV DNA in urine and blood from baseline (T0) to 20 natalizumab infusions (T5), although JC viral load in urine was significantly higher compared to viremia, at all selected time points. A contextual analysis of the anti-JCPyV-antibodies versus JCPyV-DNA detection revealed that viral DNA preceded the antibodies' presence in the serum. During the first year of natalizumab treatment, sequences isolated from blood displayed an archetype JCPyV NCCR structure with the occurrence of point mutations, whereas after one year NCCR re-organizations were observed in plasma and PBMC with duplication of NF-1 binding site in box F, duplication of box C and partial or total deletion of box D. VP1 analysis showed the amino acid change mutation S269F in plasma and S267L in PBMC, involving the receptor-binding region of VP1. Phylogenetic analysis suggested a stability and a similarity across different isolates of the JCPyV VP1. CONCLUSIONS We highly recommend considering JCPyV-DNA detection and NCCR re-organizations as viral biomarkers in order to accurately identify JCPyV-infected patients with a specific humoral response not yet detectable and to identify NCCR arrangements correlated with the onset of neurovirulent variants.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro, 5, 00185 Rome, Italy; IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-degenerative Pathologies, Rome, Italy
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Marco Iannetta
- Department of System Medicine Infectious Disease Clinic, Tor Vergata University, Rome, Italy
| | - Donatella Maria Rodio
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza University, Rome, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University, Rome, Italy; IRCCS Neuromed, Pozzilli, IS, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Anna Teresa Palamara
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-degenerative Pathologies, Rome, Italy; Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci-Bolognetti Foundation, Sapienza University of Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|