1
|
Pang K, Dong S, Zhu Y, Zhu X, Zhou Q, Gu B, Jin W, Zhang R, Fu Y, Yu B, Sun D, Duanmu Z, Wei X. Advanced flow cytometry for biomedical applications. JOURNAL OF BIOPHOTONICS 2023; 16:e202300135. [PMID: 37263969 DOI: 10.1002/jbio.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.
Collapse
Affiliation(s)
- Kai Pang
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Sihan Dong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuxi Zhu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quanyu Zhou
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jin
- International Cancer Institute, Peking University, Beijing, China
| | - Rui Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuting Fu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Bingchen Yu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Da Sun
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xunbin Wei
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
2
|
Aghamirza Moghim Aliabadi H, Eivazzadeh‐Keihan R, Beig Parikhani A, Fattahi Mehraban S, Maleki A, Fereshteh S, Bazaz M, Zolriasatein A, Bozorgnia B, Rahmati S, Saberi F, Yousefi Najafabadi Z, Damough S, Mohseni S, Salehzadeh H, Khakyzadeh V, Madanchi H, Kardar GA, Zarrintaj P, Saeb MR, Mozafari M. COVID-19: A systematic review and update on prevention, diagnosis, and treatment. MedComm (Beijing) 2022; 3:e115. [PMID: 35281790 PMCID: PMC8906461 DOI: 10.1002/mco2.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/09/2023] Open
Abstract
Since the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions in assessments from the other side necessitates instantaneous updates on the progress of clinical investigations. There is also growing public anxiety from time to time mutation of COVID-19, as reflected in considerable mortality and transmission, respectively, from delta and Omicron variants. We comprehensively review and summarize different aspects of prevention, diagnosis, and treatment of COVID-19. First, biological characteristics of COVID-19 were explained from diagnosis standpoint. Thereafter, the preclinical animal models of COVID-19 were discussed to frame the symptoms and clinical effects of COVID-19 from patient to patient with treatment strategies and in-silico/computational biology. Finally, the opportunities and challenges of nanoscience/nanotechnology in identification, diagnosis, and treatment of COVID-19 were discussed. This review covers almost all SARS-CoV-2-related topics extensively to deepen the understanding of the latest achievements (last updated on January 11, 2022).
Collapse
Affiliation(s)
- Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry LaboratoryDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
- Advance Chemical Studies LaboratoryFaculty of ChemistryK. N. Toosi UniversityTehranIran
| | | | - Arezoo Beig Parikhani
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | - Ali Maleki
- Department of ChemistryIran University of Science and TechnologyTehranIran
| | | | - Masoume Bazaz
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | | | | | - Saman Rahmati
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Fatemeh Saberi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Yousefi Najafabadi
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Shadi Damough
- Department of Medical BiotechnologyBiotechnology Research CenterPasteur InstituteTehranIran
| | - Sara Mohseni
- Non‐metallic Materials Research GroupNiroo Research InstituteTehranIran
| | | | - Vahid Khakyzadeh
- Department of ChemistryK. N. Toosi University of TechnologyTehranIran
| | - Hamid Madanchi
- School of MedicineSemnan University of Medical SciencesSemnanIran
- Drug Design and Bioinformatics UnitDepartment of Medical BiotechnologyBiotechnology Research CenterPasteur Institute of IranTehranIran
| | - Gholam Ali Kardar
- Department of Medical BiotechnologySchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
- ImmunologyAsthma & Allergy Research InstituteTehran University of Medical SciencesTehranIran
| | - Payam Zarrintaj
- School of Chemical EngineeringOklahoma State UniversityStillwaterOklahomaUSA
| | - Mohammad Reza Saeb
- Department of Polymer TechnologyFaculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Hussain R, Ongaro AE, Rodriguez de la Concepción ML, Wajs E, Riveira-Muñoz E, Ballana E, Blanco J, Toledo R, Chamorro A, Massanella M, Mateu L, Grau E, Clotet B, Carrillo J, Pruneri V. Small form factor flow virometer for SARS-CoV-2. BIOMEDICAL OPTICS EXPRESS 2022; 13:1609-1619. [PMID: 35415002 PMCID: PMC8973178 DOI: 10.1364/boe.450212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 05/20/2023]
Abstract
Current diagnostics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection heavily rely on reverse transcription-polymerase chain reaction (RT-PCR) or on rapid antigen detection tests. The former suffers from long time-to-result and high cost while the latter from poor sensitivity. Therefore, it is crucial to develop rapid, sensitive, robust, and inexpensive methods for SARS-CoV-2 testing. Herein, we report a novel optofluidic technology, a flow-virometry reader (FVR), for fast and reliable SARS-CoV-2 detection in saliva samples. A small microfluidic chip together with a laser-pumped optical head detects the presence of viruses tagged with fluorescent antibodies directly from saliva samples. The technology has been validated using clinical samples with high sensitivity (91.2%) and specificity (90%). Thanks also to its short time-to-result (<30 min) and small size (25 × 30 × 13 cm), which can be further reduced in the future, it is a strong alternative to existing tests, especially for point-of-care (POC) and low resource settings.
Collapse
Affiliation(s)
- Rubaiya Hussain
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
- Contributed equally
| | - Alfredo E Ongaro
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
- Contributed equally
| | - Maria L Rodriguez de la Concepción
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
- Contributed equally
| | - Ewelina Wajs
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Ruth Toledo
- Infectious Diseases Department, Fight against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, 08916, Badalona, Catalonia, Spain
| | - Anna Chamorro
- Infectious Diseases Department, Fight against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, 08916, Badalona, Catalonia, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Lourdes Mateu
- Infectious Diseases Department, Fight against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, 08916, Badalona, Catalonia, Spain
| | - Eulalia Grau
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
- Infectious Diseases Department, Fight against AIDS Foundation (FLS), Germans Trias i Pujol Hospital, 08916, Badalona, Catalonia, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, UAB, 08916, Badalona, Catalonia, Spain
| | - Valerio Pruneri
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels (Barcelona), Spain
- ICREA- Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| |
Collapse
|
4
|
Kudlay D, Kofiadi I, Khaitov M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines (Basel) 2022; 10:242. [PMID: 35214700 PMCID: PMC8877307 DOI: 10.3390/vaccines10020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the T cell response to SARS-CoV-2 is critical to vaccine development, epidemiological surveillance, and control strategies for this disease. This review provides data from studies of the immune response in coronavirus infections. It describes general mechanisms of immunity, its T cell components, and presents a detailed scheme of the T cell response in SARS-CoV-2 infection, including from the standpoint of determining the most promising targets for assessing its level. In addition, we reviewed studies investigating post-vaccination immunity in the development of vaccines against COVID-19. This review also includes the peculiarities of immunity in different age and gender groups, and in the presence of a number of factors, for example, comorbidity or disease severity. This study summarizes the most informative methods for assessing the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dmitry Kudlay
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ilya Kofiadi
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Immunology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Immunology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
5
|
Sabalza M, Heckler I, Elhage A, Venkataraman I, Henry B. COVID-19: Testing Landscape Post-Infection, -Vaccination, and Future Perspectives. Viral Immunol 2022; 35:5-14. [PMID: 35020523 DOI: 10.1089/vim.2021.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19) outbreak a global pandemic. Although molecular testing remains the gold standard for COVID-19 diagnosis, serological testing enables the evaluation of the immune response to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection and vaccination, and can be used to assess community viral spread. This review summarizes and analyzes the current landscape of SARS-CoV-2 testing in the United States and includes guidance on both when and why it is important to use direct pathogen detection and/or serological testing. The usefulness of monitoring humoral and cellular immune responses in infected and vaccinated patients is also addressed. Finally, this review considers current challenges, future perspectives for SARS-CoV-2 testing, and how diagnostics are being adapted as the virus evolves.
Collapse
Affiliation(s)
| | | | - Aya Elhage
- EUROIMMUN US, Mountain Lakes, New Jersey, USA
| | | | - Brandon Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|