1
|
Deng J, Zuo QK, Venugopal K, Hung J, Zubair A, Blais S, Porter V, Moskalyk M, Heybati K. Efficacy and Safety of Hydrocortisone, Ascorbic Acid, and Thiamine Combination Therapy for the Management of Sepsis and Septic Shock: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Int Arch Allergy Immunol 2024; 185:997-1018. [PMID: 38870923 PMCID: PMC11446305 DOI: 10.1159/000538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/14/2024] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION This systematic review aimed to assess the efficacy and safety of hydrocortisone, ascorbic acid, and thiamine (HAT) combination therapy in patients with sepsis and septic shock. METHODS We conducted a database search in MEDLINE, Embase, CENTRAL, Web of Science, and CNKI for randomised controlled trials (RCTs) comparing HAT against placebo/standard of care or against hydrocortisone in sepsis/septic shock patients. Outcomes included mortality, ICU/hospital length of stay (LOS), vasopressor durations, mechanical ventilation durations, change in SOFA at 72 h, and adverse events. RCT results were pooled in random-effects meta-analyses. Quality of evidence was assessed using GRADE. RESULTS Fifteen RCTs (N = 2,594) were included. At 72 h, HAT reduced SOFA scores from baseline (mean difference [MD] -1.16, 95% confidence interval [CI]: -1.58 to -0.74, I2 = 0%) compared to placebo/SoC, based on moderate quality of evidence. HAT also reduced the duration of vasopressor use (MD -18.80 h, 95% CI: -23.67 to -13.93, I2 = 64%) compared to placebo/SoC, based on moderate quality of evidence. HAT increased hospital LOS (MD 2.05 days, 95% CI: 0.15-3.95, I2 = 57%) compared to placebo/SoC, based on very low quality of evidence. HAT did not increase incidence of adverse events compared to placebo/SoC. CONCLUSIONS HAT appears beneficial in reducing vasopressor use and improving organ function in sepsis/septic shock patients. However, its advantages over hydrocortisone alone remain unclear. Future research should use hydrocortisone comparators and distinguish between sepsis-specific and comorbidity- or care-withdrawal-related mortality.
Collapse
Affiliation(s)
- Jiawen Deng
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Qi Kang Zuo
- UBC Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaden Venugopal
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Jay Hung
- Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Areeba Zubair
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Sara Blais
- UBC Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Victoria Porter
- UBC Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Myron Moskalyk
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Kiyan Heybati
- Mayo Clinic Alix School of Medicine (Jacksonville), Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
2
|
Shi Y, Strobl R, Apfelbacher C, Bahmer T, Geisler R, Heuschmann P, Horn A, Hoven H, Keil T, Krawczak M, Krist L, Lemhöfer C, Lieb W, Lorenz-Depiereux B, Mikolajczyk R, Montellano FA, Reese JP, Schreiber S, Skoetz N, Störk S, Vehreschild JJ, Witzenrath M, Grill E. Persistent symptoms and risk factors predicting prolonged time to symptom-free after SARS‑CoV‑2 infection: an analysis of the baseline examination of the German COVIDOM/NAPKON-POP cohort. Infection 2023; 51:1679-1694. [PMID: 37231313 PMCID: PMC10212223 DOI: 10.1007/s15010-023-02043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE We aimed to assess symptoms in patients after SARS-CoV-2 infection and to identify factors predicting prolonged time to symptom-free. METHODS COVIDOM/NAPKON-POP is a population-based prospective cohort of adults whose first on-site visits were scheduled ≥ 6 months after a positive SARS-CoV-2 PCR test. Retrospective data including self-reported symptoms and time to symptom-free were collected during the survey before a site visit. In the survival analyses, being symptom-free served as the event and time to be symptom-free as the time variable. Data were visualized with Kaplan-Meier curves, differences were tested with log-rank tests. A stratified Cox proportional hazard model was used to estimate adjusted hazard ratios (aHRs) of predictors, with aHR < 1 indicating a longer time to symptom-free. RESULTS Of 1175 symptomatic participants included in the present analysis, 636 (54.1%) reported persistent symptoms after 280 days (SD 68) post infection. 25% of participants were free from symptoms after 18 days [quartiles: 14, 21]. Factors associated with prolonged time to symptom-free were age 49-59 years compared to < 49 years (aHR 0.70, 95% CI 0.56-0.87), female sex (aHR 0.78, 95% CI 0.65-0.93), lower educational level (aHR 0.77, 95% CI 0.64-0.93), living with a partner (aHR 0.81, 95% CI 0.66-0.99), low resilience (aHR 0.65, 95% CI 0.47-0.90), steroid treatment (aHR 0.22, 95% CI 0.05-0.90) and no medication (aHR 0.74, 95% CI 0.62-0.89) during acute infection. CONCLUSION In the studied population, COVID-19 symptoms had resolved in one-quarter of participants within 18 days, and in 34.5% within 28 days. Over half of the participants reported COVID-19-related symptoms 9 months after infection. Symptom persistence was predominantly determined by participant's characteristics that are difficult to modify.
Collapse
Affiliation(s)
- Yanyan Shi
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-Universität München (LMU Munich), Marchioninistr. 15, 81377, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ralf Strobl
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-Universität München (LMU Munich), Marchioninistr. 15, 81377, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Christian Apfelbacher
- Institute of Social Medicine and Health Systems Research, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Bahmer
- Internal Medicine Department I, University Hospital Schleswig-Holstein Campus Kiel (UKSH Kiel), Kiel, Germany
| | - Ramsia Geisler
- Department II of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt Am Main, Germany
| | - Peter Heuschmann
- Institute for Clinical Epidemiology and Biometry, Julius-Maximilians-University, Würzburg, Würzburg, Germany
- Clinical Trial Center, University Hospital Würzburg, Würzburg, Germany
| | - Anna Horn
- Institute for Clinical Epidemiology and Biometry, Julius-Maximilians-University, Würzburg, Würzburg, Germany
| | - Hanno Hoven
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Keil
- Institute for Clinical Epidemiology and Biometry, Julius-Maximilians-University, Würzburg, Würzburg, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- State Institute of Health I, Bavarian Health and Food Safety Authority, Erlangen, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Lilian Krist
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christina Lemhöfer
- Institute of Physical and Rehabilitation Medicine, University Hospital Jena, Jena, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Bettina Lorenz-Depiereux
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Center Munich, Munich, Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics, and Informatics, Interdisciplinary Center for Health Sciences, Medical Faculty of the Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Mental Health, Site Jena-Magdeburg-Halle, Halle, Germany
| | - Felipe A Montellano
- Institute for Clinical Epidemiology and Biometry, Julius-Maximilians-University, Würzburg, Würzburg, Germany
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Jens Peter Reese
- Institute for Clinical Epidemiology and Biometry, Julius-Maximilians-University, Würzburg, Würzburg, Germany
| | - Stefan Schreiber
- Internal Medicine Department I, University Hospital Schleswig-Holstein Campus Kiel (UKSH Kiel), Kiel, Germany
| | - Nicole Skoetz
- Evidence-Based Medicine, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Störk
- Department of Clinical Research and Epidemiology, Comprehensive Heart Failure Center and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Jörg Janne Vehreschild
- Department II of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt Am Main, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn‑Cologne, Cologne, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Giessen, Germany
| | - Eva Grill
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Ludwig-Maximilians-Universität München (LMU Munich), Marchioninistr. 15, 81377, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany.
| |
Collapse
|
3
|
Kapusta J, Babicki M, Pieniawska-Śmiech K, Kałuzińska-Kołat Ż, Kołat D, Jankowski P, Kasprzak JD, Wejner-Mik P, Bianek-Bodzak A, Chudzik M. Clinical and electrocardiographic correlates of myocardial dysfunction after COVID-19 in nonhospitalised patients in long-term follow-up. Data from the polish long-covid cardiovascular study. J Med Virol 2023; 95:e29331. [PMID: 38112151 DOI: 10.1002/jmv.29331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Clinical evidence indicates that COVID-19 is a multiorgan disease that significantly impacts the cardiovascular system. However, little is known about the predictors of myocardial dysfunction after SARS-CoV-2 infection. Therefore, this research aimed to evaluate the clinical and electrocardiographic correlates of myocardial dysfunction after SARS-CoV-2 infection in nonhospitalised patients without previously diagnosed cardiovascular disease. This observational study included 448 patients selected from the database of 4142 patients in the Polish Long-Covid Cardiovascular study. All patients underwent a 12-lead electrocardiogram (ECG); 24-h Holter ECG monitoring, 24/7 ambulatory blood pressure monitoring, echocardiography, and cardiac magnetic resonance imaging. According to the results of diagnostic tests, patients were divided into two groups depending on the occurrence of myocardial dysfunction after COVID-19. Group 1-without myocardial dysfunction after COVID-19-consisted of 419 patients, with a mean age of 48.82 (SD ± 11.91), and Group 2 (29 patients)-with myocardial dysfunction after COVID-19, with a mean age of 51.45 (SD ± 12.92). When comparing the analysed groups, there were significantly more men in Group 2 (p = 0.006). QRS (corresponds to the time of ventricular contraction in an electrocardiographic examination) fragmentation (p = 0.031), arrhythmias (atrial fibrillation, supraventricular extrasystole, ventricular extrasystole) (p = 0.008), and male gender (p = 0.007) were independently associated with myocardial dysfunction after COVID-19. The study showed that myocardial damage after COVID-19 affects men more often and is independent of typical clinical factors and the severity of the disease course. The QRS fragmentation and arrhythmias observed in the ECG indicate the possibility of myocardial dysfunction in patients after COVID-19, which may be a valuable marker for physicians.
Collapse
Affiliation(s)
- Joanna Kapusta
- Department of Internal Diseases, Rehabilitation, and Physical Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Babicki
- Department of Family Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Pieniawska-Śmiech
- Department of Immunology and Pediatrics, The J. Gromkowski Provincial Specialist Hospital, Wroclaw, Poland
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Jarosław D Kasprzak
- I Chair and Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | - Paulina Wejner-Mik
- I Chair and Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | | | - Michał Chudzik
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, Warsaw, Poland
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Hashim Z, Nath A, Khan A, Gupta M, Kumar A, Chatterjee R, Dhiman RK, Hoenigl M, Tripathy NK. Effect of glucocorticoids on the development of COVID-19-associated pulmonary aspergillosis: A meta-analysis of 21 studies and 5174 patients. Mycoses 2023; 66:941-952. [PMID: 37551043 DOI: 10.1111/myc.13637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) remains a high mortality mycotic infection throughout the pandemic, and glucocorticoids (GC) may be its root cause. Our aim was to evaluate the effect of systemic GC treatment on the development of CAPA. We systematically searched the PubMed, Google Scholar, Scopus and Embase databases to collect eligible studies published until 31 December 2022. The pooled outcome of CAPA development was calculated as the log odds ratio (LOR) with 95% confidence intervals (CI) using a random effect model. A total of 21 studies with 5174 patients were included. Of these, 20 studies with 4675 patients consisting of 2565 treated with GC but without other immunomodulators (GC group) and 2110 treated without GC or other immunomodulators (controls) were analysed. The pooled LOR of CAPA development was higher for the GC group than for the controls (0.54; 95% CI: 0.22, 0.86; p < .01). In the subgroups, the pooled LOR was higher for high-dose GC (0.90; 95% CI: 0.17, 1.62: p = .01) and dexamethasone (0.71; 95% CI: 0.35, 1.07; p < .01) but had no significant difference for low-dose GC (0.41; 95% CI: -0.07, 0.89; p = .09), and non-dexamethasone GC (0.21; 95% CI: -0.36, 0.79; p = .47), treated patients versus controls. GC treatment increases the risk of CAPA development, and this risk is particularly associated with the use of high-dose GC or dexamethasone treatment.
Collapse
Affiliation(s)
- Zia Hashim
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ajmal Khan
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anup Kumar
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Riksoam Chatterjee
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Radha Krishan Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Naresh Kumar Tripathy
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
5
|
Bahsoun A, Fakih Y, Zareef R, Bitar F, Arabi M. Corticosteroids in COVID-19: pros and cons. Front Med (Lausanne) 2023; 10:1202504. [PMID: 37644981 PMCID: PMC10461317 DOI: 10.3389/fmed.2023.1202504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
The wide and rapid spread of the COVID-19 pandemic has placed an unanticipated burden on the global healthcare sector. This necessitated a swift response from the international community to reach a solution. Efforts were made in parallel to develop preventative and therapeutic modalities. Since then, drug repurposing has blossomed as a potentially rapid resolution and has included various agents with anti-viral and anti-inflammatory properties. Corticosteroids, being potent anti-inflammatory agents, have been placed under extensive investigation. Various trials have recorded the beneficial outcome of corticosteroids in decreasing the mortality and morbidity of COVID-19. With the high pace of escalating events, the quality and study design of clinical trials are varied. Therefore, this study aims to explore the role of corticosteroids in COVID-19 disease. It inspects the molecular, pharmacologic, and clinical proof behind this theory.
Collapse
Affiliation(s)
- Aymen Bahsoun
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yeva Fakih
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rana Zareef
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fadi Bitar
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mariam Arabi
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, American University of Beirut Medical Center, Beirut, Lebanon
- Pediatric Department, Division of Pediatric Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
6
|
Haddad F, Dokmak G, Karaman R. A Comprehensive Review on the Efficacy of Several Pharmacologic Agents for the Treatment of COVID-19. Life (Basel) 2022; 12:1758. [PMID: 36362912 PMCID: PMC9692303 DOI: 10.3390/life12111758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2, the coronavirus disease-2019 (COVID-19), and the cause of the pandemic is extremely contagious among people and has spread around the world. Antivirals, immunomodulators, and other medications, such as antibiotics, stem cells, and plasma therapy, have all been utilized in the treatment of COVID-19. To better understand the clinical efficacy of these agents and to aid in the selection of effective COVID-19 therapies in various countries, this study reviewed the effectiveness of the various pharmacologic agents that have been used for COVID-19 therapy globally by summarizing the clinical outcomes that have been obtained from the clinical trials published on each drug related to COVID-19 infection. The Food and Drug Administration (FDA) has authorized the use of remdesivir, paxlovid, molnupiravir, baricitinib, tixagevimab-cilgavimab, and bebtelovimab for the management of COVID-19. On the other hand, most research advises against using chloroquine and hydroxychloroquine to treat COVID-19 patients because they are not beneficial. Although the FDA has given emergency use authorization for some monoclonal antibodies, including bamlanivimab, etesevimab, casirivimab, and imdevimab for managing COVID-19, they are not currently approved for use because the Omicron variant has significantly reduced their in vitro susceptibility. In this study, we also included a wide range of alternative therapy strategies that effectively treat COVID-19 patients, although further randomized studies are necessary to support and assess their applicability.
Collapse
Affiliation(s)
- Fatma Haddad
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
- Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Ghadeer Dokmak
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem 9103401, Palestine
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|