1
|
Lefin N, Herrera-Belén L, Farias JG, Beltrán JF. Review and perspective on bioinformatics tools using machine learning and deep learning for predicting antiviral peptides. Mol Divers 2024; 28:2365-2374. [PMID: 37626205 DOI: 10.1007/s11030-023-10718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Viruses constitute a constant threat to global health and have caused millions of human and animal deaths throughout human history. Despite advances in the discovery of antiviral compounds that help fight these pathogens, finding a solution to this problem continues to be a task that consumes time and financial resources. Currently, artificial intelligence (AI) has revolutionized many areas of the biological sciences, making it possible to decipher patterns in amino acid sequences that encode different functions and activities. Within the field of AI, machine learning, and deep learning algorithms have been used to discover antimicrobial peptides. Due to their effectiveness and specificity, antimicrobial peptides (AMPs) hold excellent promise for treating various infections caused by pathogens. Antiviral peptides (AVPs) are a specific type of AMPs that have activity against certain viruses. Unlike the research focused on the development of tools and methods for the prediction of antimicrobial peptides, those related to the prediction of AVPs are still scarce. Given the significance of AVPs as potential pharmaceutical options for human and animal health and the ongoing AI revolution, we have reviewed and summarized the current machine learning and deep learning-based tools and methods available for predicting these types of peptides.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Temuco, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, University of La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
2
|
Szotowska I, Ledwoń A. Antiviral Chemotherapy in Avian Medicine-A Review. Viruses 2024; 16:593. [PMID: 38675934 PMCID: PMC11054683 DOI: 10.3390/v16040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This review article describes the current knowledge about the use of antiviral chemotherapeutics in avian species, such as farm poultry and companion birds. Specific therapeutics are described in alphabetical order including classic antiviral drugs, such as acyclovir, abacavir, adefovir, amantadine, didanosine, entecavir, ganciclovir, interferon, lamivudine, penciclovir, famciclovir, oseltamivir, ribavirin, and zidovudine, repurposed drugs, such as ivermectin and nitazoxanide, which were originally used as antiparasitic drugs, and some others substances showing antiviral activity, such as ampligen, azo derivates, docosanol, fluoroarabinosylpyrimidine nucleosides, and novel peptides. Most of them have only been used for research purposes and are not widely used in clinical practice because of a lack of essential pharmacokinetic and safety data. Suggested future research directions are also highlighted.
Collapse
Affiliation(s)
- Ines Szotowska
- Department of Pathology and Veterinary Diagnostics, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | | |
Collapse
|
3
|
Chen X, Wei Q, Si F, Wang F, Lu Q, Guo Z, Chai Y, Zhu R, Xing G, Jin Q, Zhang G. Design and Identification of a Novel Antiviral Affinity Peptide against Fowl Adenovirus Serotype 4 (FAdV-4) by Targeting Fiber2 Protein. Viruses 2023; 15:v15040821. [PMID: 37112802 PMCID: PMC10146638 DOI: 10.3390/v15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Outbreaks of hydropericardium hepatitis syndrome caused by fowl adenovirus serotype 4 (FAdV-4) with a novel genotype have been reported in China since 2015, with significant economic losses to the poultry industry. Fiber2 is one of the important structural proteins on FAdV-4 virions. In this study, the C-terminal knob domain of the FAdV-4 Fiber2 protein was expressed and purified, and its trimer structure (PDB ID: 7W83) was determined for the first time. A series of affinity peptides targeting the knob domain of the Fiber2 protein were designed and synthesized on the basis of the crystal structure using computer virtual screening technology. A total of eight peptides were screened using an immunoperoxidase monolayer assay and RT-qPCR, and they exhibited strong binding affinities to the knob domain of the FAdV-4 Fiber2 protein in a surface plasmon resonance assay. Treatment with peptide number 15 (P15; WWHEKE) at different concentrations (10, 25, and 50 μM) significantly reduced the expression level of the Fiber2 protein and the viral titer during FAdV-4 infection. P15 was found to be an optimal peptide with antiviral activity against FAdV-4 in vitro with no cytotoxic effect on LMH cells up to 200 μM. This study led to the identification of a class of affinity peptides designed using computer virtual screening technology that targeted the knob domain of the FAdV-4 Fiber2 protein and may be developed as a novel potential and effective antiviral strategy in the prevention and control of FAdV-4.
Collapse
Affiliation(s)
- Xiao Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fangyu Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingxia Lu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenhua Guo
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongxiao Chai
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Rongfang Zhu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Sharma D, Sharma N, Manchanda N, Prasad SK, Sharma PC, Thakur VK, Rahman MM, Dhobi M. Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight. Biomolecules 2022; 13:17. [PMID: 36671402 PMCID: PMC9856122 DOI: 10.3390/biom13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Viruses are widely recognized as the primary cause of infectious diseases around the world. The ongoing global pandemic due to the emergence of SARS-CoV-2 further added fuel to the fire. The development of therapeutics becomes very difficult as viruses can mutate their genome to become more complex and resistant. Medicinal plants and phytocompounds could be alternative options. Isoquinoline and their related alkaloids are naturally occurring compounds that interfere with multiple pathways including nuclear factor-κB, mitogen-activated protein kinase/extracellular-signal-regulated kinase, and inhibition of Ca2+-mediated fusion. These pathways play a crucial role in viral replication. Thus, the major goal of this study is to comprehend the function of various isoquinoline and related alkaloids in viral infections by examining their potential mechanisms of action, structure-activity relationships (SAR), in silico (particularly for SARS-CoV-2), in vitro and in vivo studies. The current advancements in isoquinoline and related alkaloids as discussed in the present review could facilitate an in-depth understanding of their role in the drug discovery process.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Neetika Sharma
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Namish Manchanda
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Prabodh Chander Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, 11 West Mains Road, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - M. Mukhlesur Rahman
- Pharmaceutical and Natural Products Chemistry, School of Health, Sports and Bioscience, University of East London, Stratford Campus, London E15 4LZ, UK
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
5
|
Apostolopoulos V, Bojarska J, Feehan J, Matsoukas J, Wolf W. Smart therapies against global pandemics: A potential of short peptides. Front Pharmacol 2022; 13:914467. [PMID: 36046832 PMCID: PMC9420997 DOI: 10.3389/fphar.2022.914467] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Joanna Bojarska
- Technical University of Lodz, Department of Chemistry, Institute of General and Ecological Chemistry, Lodz, Poland
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- NewDrug, Patras Science Park, Patras, Greece
| | - Wojciech Wolf
- Technical University of Lodz, Department of Chemistry, Institute of General and Ecological Chemistry, Lodz, Poland
| |
Collapse
|