1
|
Dowaidar M. Guidelines for the role of autophagy in drug delivery vectors uptake pathways. Heliyon 2024; 10:e30238. [PMID: 38707383 PMCID: PMC11066435 DOI: 10.1016/j.heliyon.2024.e30238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The process of autophagy refers to the intracellular absorption of cytoplasm (such as proteins, nucleic acids, tiny molecules, complete organelles, and so on) into the lysosome, followed by the breakdown of that cytoplasm. The majority of cellular proteins are degraded by a process called autophagy, which is both a naturally occurring activity and one that may be induced by cellular stress. Autophagy is a system that can save cells' integrity in stressful situations by restoring metabolic basics and getting rid of subcellular junk. This happens as a component of an endurance response. This mechanism may have an effect on disease, in addition to its contribution to the homeostasis of individual cells and tissues as well as the control of development in higher species. The main aim of this study is to discuss the guidelines for the role of autophagy in drug delivery vector uptake pathways. In this paper, we discuss the meaning and concept of autophagy, the mechanism of autophagy, the role of autophagy in drug delivery vectors, autophagy-modulating drugs, nanostructures for delivery systems of autophagy modulators, etc. Later in this paper, we talk about how to deliver chemotherapeutics, siRNA, and autophagy inducers and inhibitors. We also talk about how hard it is to make a drug delivery system that takes nanocarriers' roles as autophagy modulators into account.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Wang Z, Zhao J. Pathogenesis of Hypervirulent Fowl Adenovirus Serotype 4: The Contributions of Viral and Host Factors. Viruses 2019; 11:E741. [PMID: 31408986 PMCID: PMC6723092 DOI: 10.3390/v11080741] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
Since 2015, severe outbreaks of hepatitis-hydropericardium syndrome (HHS), caused by hypervirulent fowl adenovirus serotype 4 (FAdV-4), have emerged in several provinces in China, posing a great threat to poultry industry. So far, factors contributing to the pathogenesis of hypervirulent FAdV-4 have not been fully uncovered. Elucidation of the pathogenesis of FAdV-4 will facilitate the development of effective FAdV-4 vaccine candidates for the control of HHS and vaccine vector. The interaction between pathogen and host defense system determines the pathogenicity of the pathogen. Therefore, the present review highlights the knowledge of both viral and host factors contributing to the pathogenesis of hypervirulent FAdV-4 strains to facilitate the related further studies.
Collapse
Affiliation(s)
- Zeng Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jun Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China.
| |
Collapse
|
3
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:cells8070674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Melinek BJ, Dessoy S, Wright B, Bracewell DG, Mukhopadhyay TK. Ultra scale-down approaches to study the centrifugal harvest for viral vaccine production. Biotechnol Bioeng 2018; 115:1226-1238. [PMID: 29315484 DOI: 10.1002/bit.26546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
Large scale continuous cell-line cultures promise greater reproducibility and efficacy for the production of influenza vaccines, and adenovirus for gene therapy. This paper seeks to use an existing validated ultra scale-down tool, which is designed to mimic the commercial scale process environment using only milliliters of material, to provide some initial insight into the performance of the harvest step for these processes. The performance of industrial scale centrifugation and subsequent downstream process units is significantly affected by shear. The properties of these cells, in particular their shear sensitivity, may be changed considerably by production of a viral product, but literature on this is limited to date. In addition, the scale-down tool used here has not previously been applied to the clarification of virus production processes. The results indicate that virus infected cells do not actually show any increase in sensitivity to shear, and may indeed become less shear sensitive, in a similar manner to that previously observed in old or dead cell cultures. Clarification may be most significantly dependent on the virus release mechanism, with the budding influenza virus producing a much greater decrease in clarification than the lytic, non-enveloped adenovirus. A good match was also demonstrated to the industrial scale performance in terms of clarification, protein release, and impurity profile.
Collapse
Affiliation(s)
- Beatrice J Melinek
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | | | - Bernice Wright
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | - Dan G Bracewell
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| | - Tarit K Mukhopadhyay
- Department of Biochemical Engineering, Bernard Katz building, University College London, London, UK
| |
Collapse
|