1
|
Bumroongthai K, Kavanagh DPJ, Genever P, Kalia N. Improving vasculoprotective effects of MSCs in coronary microvessels - benefits of 3D culture, sub-populations and heparin. Front Immunol 2023; 14:1257497. [PMID: 37954606 PMCID: PMC10635425 DOI: 10.3389/fimmu.2023.1257497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Opening occluded coronary arteries in patients with myocardial infarction (MI) damages the delicate coronary microvessels through a process called myocardial ischaemia-reperfusion injury. Although mesenchymal stromal cells (MSCs) have the potential to limit this injury, clinical success remains limited. This may be due to (i) poor MSC homing to the heart (ii) infused MSCs, even if derived from the same site, being a heterogeneous population with varying therapeutic efficacy and (iii) conventional 2D culture of MSCs decreasing their homing and beneficial properties. This study investigated whether 3D culture of two distinctly different bone marrow (BM)-derived MSC sub-populations could improve their homing and coronary vasculoprotective efficacy. Methods Intravital imaging of the anaesthetised mouse beating heart was used to investigate the trafficking and microvascular protective effects of two clonally-derived BM-derived MSC lines, namely CD317neg MSCs-Y201 and CD317pos MSCs-Y202, cultured using conventional monolayer and 3D hanging drop methods. Results 3D culture consistently improved the adhesive behaviour of MSCs-Y201 to various substrates in vitro. However, it was their differential ability to reduce neutrophil events within the coronary capillaries and improve ventricular perfusion in vivo that was most remarkable. Moreover, dual therapy combined with heparin further improved the vasculoprotection afforded by 3D cultured MSCs-Y201 by also modifying platelet as well as neutrophil recruitment, which subsequently led to the greatest salvage of viable myocardium. Therapeutic benefit could mechanistically be explained by reductions in coronary endothelial oxidative stress and intercellular adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1 (VCAM-1) expression. However, since this was noted by both 2D and 3D cultured MSCs-Y201, therapeutic benefit is likely explained by the fact that 3D cultured MSCs-Y201 were the most potent sub-population at reducing serum levels of several pro-inflammatory cytokines. Conclusion This novel study highlights the importance of not only 3D culture, but also of a specific CD317neg MSC sub-population, as being critical to realising their full coronary vasculoprotective potential in the injured heart. Since the smallest coronary blood vessels are increasingly recognised as a primary target of reperfusion injury, therapeutic interventions must be able to protect these delicate structures from inflammatory cells and maintain perfusion in the heart. We propose that relatively feasible technical modifications in a specific BM-derived MSC sub-population could achieve this.
Collapse
Affiliation(s)
- Kobkaew Bumroongthai
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean P. J. Kavanagh
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, York, United Kingdom
| | - Neena Kalia
- Microcirculation Research Group, Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Zhao X, Chen D, Li X, Griffith L, Chang J, An P, Guo JT. Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. J Mol Biol 2022; 434:167438. [PMID: 34990653 PMCID: PMC8721920 DOI: 10.1016/j.jmb.2021.167438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.
Collapse
Affiliation(s)
- Xuesen Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinglin Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lauren Griffith
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Ping An
- Basic Research Laboratory, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| |
Collapse
|
3
|
Singh H, Jadhav S, Arif Khan A, Aggarwal SK, Choudhari R, Verma S, Aggarwal S, Gupta V, Singh A, Nain S, Maan HS. APOBEC3, TRIM5α, and BST2 polymorphisms in healthy individuals of various populations with special references to its impact on HIV transmission. Microb Pathog 2022; 162:105326. [PMID: 34863878 DOI: 10.1016/j.micpath.2021.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
AIDS restriction genes (ARGs) like APOBEC3, TRIM5α, and BST2 can act as immunological detectors of the innate protective mechanism of the body. ARGs influence the course of viral pathogenesis and progression of the disease. The infection caused by different viruses including HIV activates the innate immune receptors leading to production of proinflammatory cytokines, interferons and signals that recruit and activate cells involved in the process of inflammation following induction of adaptive immunity. Differential expression of genes involved in viral infection decide the fate and subsequent susceptibility to infection and its clinical outcome. Nevertheless, comprehensive reports on the incidence of genetic polymorphism of APOBEC3s, TRIM5α, and BST-2 in the general population and its association with pathological conditions have not been described well. Therefore, the occurrence of APOBEC3, TRIM5α, and BST2 polymorphism in healthy individuals and its impact on HIV transmission was analyzed. We conducted an extensive search using the several databases including, EMBASE, PubMed (Medline), and Google Scholar. APOBEC3-D, -F, -G, and -H out of the seven human APOBEC3s, help in the control of viral infection. Amongst various restriction factors, TRIM5α and BST-2 also restrict the viral infection followed by the development of the disease. In the current review, a brief account of the polymorphism in the APOBEC3G, TRIM5α, and BST2 genes are explored among different populations along with the interaction of APOBEC3G with Vif protein. Furthermore, this review specifically focus on ARGs polymorphism (APOBEC3G, TRIM5α, and BST2) associated with HIV transmission.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India.
| | - Sushama Jadhav
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Abdul Arif Khan
- Department of Microbiology, ICMR-National AIDS Research Institute, Pune, India
| | - Shubham K Aggarwal
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Ranjana Choudhari
- Department of Molecular Biology, ICMR-National AIDS Research Institute, Pune, India
| | - Sheetal Verma
- Department of Microbiology, King George's Medical University, Lucknow, U.P, India
| | - Sumit Aggarwal
- Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Vivek Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Amita Singh
- District Women Hospital, Prayagraj, UP, 211003, India
| | - Sumitra Nain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali Newai, 304022, Rajasthan, India
| | - Harjeet Singh Maan
- State Virology Laboratory, Department of Microbiology Gandhi Medical College, Bhopal, 462001, India
| |
Collapse
|
4
|
Li X, Zhang G, Chen Q, Lin Y, Li J, Ruan Q, Chen Y, Yu G, Wan X. CD317 Promotes the survival of cancer cells through apoptosis-inducing factor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:117. [PMID: 27444183 PMCID: PMC4957287 DOI: 10.1186/s13046-016-0391-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/07/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Low nutrient environment is a major obstacle to solid tumor growth. However, many tumors have developed adaptive mechanisms to circumvent the requirement for exogenous growth factors. METHODS Here we used siRNA interference or plasmid transfection techniques to knockdown or enhance CD317 expression respectively, in mammalian cancer cells, and subjected these CD317-manipulated cells to serum deprivation to study the role of CD317 on stress-induced apoptosis and the underlying mechanism. RESULTS We report that CD317, an innate immune gene overexpressed in human cancers, protected cancer cells against serum deprivation-induced apoptosis. In tumor cells, loss of CD317 markedly enhanced their susceptibility to serum deprivation-induced apoptosis with no effect on autophagy or caspase activation, indicating an autophagy- and caspase-independent mechanism of CD317 function. Importantly, CD317 knockdown in serum-deprived tumor cells impaired mitochondria function and subsequently promoted apoptosis-inducing factor (AIF) release and nuclear translocation but had little effect on mitochondrial and cytoplasmic distributions of cytochrome C, a pro-apoptotic factor released from mitochondria that initiates caspase processing in response to death stimuli. Furthermore, overexpression of CD317 in HEK293T cells inhibits serum deprivation-induced apoptosis as well as the release and nuclear accumulation of AIF. CONCLUSION Our data suggest that CD317 functions as an anti-apoptotic factor through the mitochondria-AIF axis in malnourished condition and may serve as a potential drug target for cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- Division of Immunology, School of Fundamental Medicine, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | - Guizhong Zhang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qian Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yingxue Lin
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Junxin Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Qingguo Ruan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Youhai Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,713 Stellar-Chance Laboratories, Department of Pathology and Laboratory of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Guang Yu
- Division of Immunology, School of Fundamental Medicine, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| | - Xiaochun Wan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China. .,Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen University Town, 1068 Xueyuan Avenue, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
5
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|