1
|
Wang X, Niu Y, Bian F. The progress of tumor vaccines clinical trials in non-small cell lung cancer. Clin Transl Oncol 2025; 27:1062-1074. [PMID: 39179939 PMCID: PMC11914286 DOI: 10.1007/s12094-024-03678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains a significant global health challenge, with high mortality rates and limited treatment options. Tumor vaccines have emerged as a potential therapeutic approach, aiming to stimulate the immune system to specifically target tumor cells. METHODS This study screened 283 clinical trials registered on ClinicalTrials.gov through July 31, 2023. After excluding data that did not meet the inclusion criteria, a total of 108 trials were assessed. Data on registered number, study title, study status, vaccine types, study results, conditions, interventions, outcome measures, sponsor, collaborators, drug target, phases, enrollment, start date, completion date and locations were extracted and analyzed. RESULTS The number of vaccines clinical trials for NSCLC has continued to increase in recent years, the majority of which were conducted in the United States. Most of the clinical trials were at stages ranging from Phase I to Phase II. Peptide-based vaccines accounted for the largest proportion. Others include tumor cell vaccines, DNA/RNA vaccines, viral vector vaccines, and DC vaccines. Several promising tumor vaccine candidates have shown encouraging results in early-phase clinical trials. However, challenges such as heterogeneity of tumor antigens and immune escape mechanisms still need to be addressed. CONCLUSION Tumor vaccines represent a promising avenue in the treatment of NSCLC. Ongoing clinical trials are crucial for optimizing vaccine strategies and identifying the most effective combinations. Further research is needed to overcome existing limitations and translate these promising findings into clinical practice, offering new hope for NSCLC patients.
Collapse
Affiliation(s)
- Xiaomu Wang
- Department of Pharmacy, Xiangyang Key Laboratory of Special Preparation of Vitiligo, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yunping Niu
- Department of Laboratory Medicine, The First People's Hospital of Xiangyang, Xiangyang, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Xiangyang Key Laboratory of Special Preparation of Vitiligo, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
2
|
Mao W, Zhang H, Wang K, Geng J, Wu J. Research progress of MUC1 in genitourinary cancers. Cell Mol Biol Lett 2024; 29:135. [PMID: 39491020 PMCID: PMC11533421 DOI: 10.1186/s11658-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
MUC1 is a highly glycosylated transmembrane protein with a high molecular weight. It plays a role in lubricating and protecting mucosal epithelium, participates in epithelial cell renewal and differentiation, and regulates cell adhesion, signal transduction, and immune response. MUC1 is expressed in both normal and malignant epithelial cells, and plays an important role in the diagnosis, prognosis prediction and clinical monitoring of a variety of tumors and is expected to be a new therapeutic target. This article reviews the structural features, expression regulation mechanism, and research progress of MUC1 in the development of genitourinary cancers and its clinical applications.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Jiang Geng
- Department of Urology, Bengbu First People's Hospital, Bengbu, People's Republic of China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
3
|
Dhanisha SS, Guruvayoorappan C. Pathological Implications of Mucin Signaling in Metastasis. Curr Cancer Drug Targets 2023; 23:585-602. [PMID: 36941808 DOI: 10.2174/1568009623666230320121332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 03/23/2023]
Abstract
The dynamic mucosal layer provides a selective protective barrier for the epithelial cells lining the body cavities. Diverse human malignancies exploit their intrinsic role to protect and repair epithelia for promoting growth and survival. Aberrant expression of mucin has been known to be associated with poor prognosis of many cancers. However, the emergence of new paradigms in the study of metastasis recognizes the involvement of MUC1, MUC4, MUC5AC, MUC5B, and MUC16 during metastasis initiation and progression. Hence mucins can be used as an attractive target in future diagnostic and therapeutic strategies. In this review, we discuss in detail about mucin family and its domains and the role of different mucins in regulating cancer progression and metastasis. In addition, we briefly discuss insights into mucins as a therapeutic agent.
Collapse
Affiliation(s)
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, University of Kerala, Thiruvananthapuram, Kerala, 695011, India
| |
Collapse
|
4
|
Qi R, Yu Y, Shen M, Lv D, He S. Current status and challenges of immunotherapy in ALK rearranged NSCLC. Front Oncol 2022; 12:1016869. [PMID: 36591504 PMCID: PMC9795041 DOI: 10.3389/fonc.2022.1016869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Rearrangements of the anaplastic lymphoma kinase (ALK) gene account for 5-6% in non-small cell lung cancer (NSCLC). ALK rearranged NSCLC is sensitive to ALK tyrosine kinase inhibitors (TKIs) but prone to drug resistance. Meanwhile, ALK rearranged NSCLC has poor response to single immunotherapy. Here we mainly describe the immune escape mechanisms of ALK mutated NSCLC and the role of related biomarkers. Additionally, we collate and evaluate preclinical and clinical studies of novel immune combination regimens, and describe the prospects and perspectives for the in vivo application of novel immune technologies in patients with ALK rearranged NSCLC.
Collapse
Affiliation(s)
- Rongbin Qi
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yingying Yu
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Mo Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongqing Lv
- Department of Respiratory Medicine, At Enze Hospital, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Susu He
- Department of Respiratory Medicine, TaiZhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
5
|
Dondulkar A, Akojwar N, Katta C, Khatri DK, Mehra NK, Singh SB, Madan J. Inhalable polymeric micro and nano-immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer. Curr Pharm Des 2021; 28:395-409. [PMID: 34736378 DOI: 10.2174/1381612827666211104155604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of death in millions of cancer patients. Lack of diagnosis at an early stage in addition to no specific guidelines for its treatment, and a higher rate of treatment-related toxicity further deteriorate the conditions. Current therapies encompass surgery, chemotherapy, radiation therapy, and immunotherapy according to the pattern and the stage of lung cancer. Among all, with a longlasting therapeutic action, reduced side-effects, and a higher rate of survival, therapeutic cancer vaccine is a new, improved strategy for treating NSCLC. Immunoadjuvants are usually incorporated into the therapeutic vaccines to shield the antigen against environmental and physiological harsh conditions in addition to boosting the immune potential. Conventional immunoadjuvants are often associated with an inadequate cellular response, poor target specificity, and low antigen load. Recently, inhalable polymeric nano/micro immunoadjuvants have exhibited immense potential in the development of therapeutic vaccines for the treatment of NSCLC with improved mucosal immunization. The development of polymeric micro/nano immunoadjuvants brought a new era for vaccines with increased strength and efficiency. Therefore, in the present review, we explained the potential application of micro/nano immunoadjuvants for augmenting the stability and efficacy of inhalable vaccines in the treatment of NSCLC. In addition, the role of biodegradable, biocompatible, and non-toxic polymers has also been discussed with case studies.
Collapse
Affiliation(s)
- Ayusha Dondulkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Natasha Akojwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Chanti Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Dharmendra K Khatri
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Neelesh K Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Shashi B Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| |
Collapse
|
6
|
Immunotherapy for non-small cell lung cancer (NSCLC), as a stand-alone and in combination therapy. Crit Rev Oncol Hematol 2021; 164:103417. [PMID: 34242772 DOI: 10.1016/j.critrevonc.2021.103417] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/05/2021] [Accepted: 07/04/2021] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is of major concern for society as it is associated with high mortality and is one of the most commonly occurring of all cancers. Due to the number of mutational variants and general heterogeneity of this type of cancer, treatment using conventional modalities has been challenging. Therefore, it is important to have improved therapeutic treatments like immunotherapy, that can specifically treat the disease while causing minimal damage to healthy tissue and additionally provide systemic immunity. Cancer vaccines are an important element of cancer immunotherapy and have been approved for treatment of a limited number of cancers, including NSCLC. This article highlights scientific evidence for several therapeutic treatment strategies for NSCLC, alone or in combination, which offers new hope for those suffering. Although cancer vaccines have had some success as a monotherapy, their potential in a combination therapy needs to be critically analyzed for future applications.
Collapse
|
7
|
Ballester B, Milara J, Cortijo J. Mucins as a New Frontier in Pulmonary Fibrosis. J Clin Med 2019; 8:jcm8091447. [PMID: 31514468 PMCID: PMC6780288 DOI: 10.3390/jcm8091447] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pulmonary disease with a median survival of 3–5 years after diagnosis. Recent evidence identifies mucins as key effectors in cell growth and tissue remodeling processes compatible with the processes observed in IPF. Mucins are classified in two groups depending on whether they are secreted (secreted mucins) or tethered to cell membranes (transmembrane mucins). Secreted mucins (MUC2, MUC5AC, MUC5B, MUC6-8 and MUC19) are released to the extracellular medium and recent evidence has shown that a promoter polymorphism in the secreted mucin MUC5B is associated with IPF risk. Otherwise, transmembrane mucins (MUC1, MUC3, MUC4, MUC12-17 and MUC20) have a receptor-like structure, sensing the external environment and activating intracellular signal transduction pathways essential for mucosal maintenance and damage repair. In this context, the extracellular domain can be released to the external environment by metalloproteinase action, increased in IPF, thus activating fibrotic processes. For example, several studies have reported increased serum extracellular secreted KL6/MUC1 during IPF acute exacerbation. Moreover, MUC1 and MUC4 overexpression in the main IPF cells has been observed. In this review we summarize the current knowledge of mucins as promising druggable targets for IPF.
Collapse
Affiliation(s)
- Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain.
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain.
| | - Javier Milara
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain.
- Institute of Health Research-INCLIVA, 46010 Valencia, Spain.
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBERES, Health Institute Carlos III, 46010 Valencia, Spain
- Research and teaching Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| |
Collapse
|
8
|
Shahrabi S, Zayeri ZD, Ansari N, Hadad EH, Rajaei E. Flip-flops of natural killer cells in autoimmune diseases versus cancers: Immunologic axis. J Cell Physiol 2019; 234:16998-17010. [PMID: 30864163 DOI: 10.1002/jcp.28421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/25/2022]
Abstract
Natural killer (NK) cells play an essential role in the immune response to infections, inflammations, and malignancies. Recent studies suggest that NK cell surface receptors and cytokines are the key points of the disease development and protection. We hypothesized that the interactions between NK cell receptors and targeted cells construct an eventual niche, and this niche has an eventual profile in various autoimmune diseases and cancers. The NK cells preactivated with cytokines, such as interleukin-2 (IL-2), IL-12, IL-15, and IL-18 can have higher cytotoxicity; however, the toxic side effect of IL-2 should be considered. The vicissitudes of NK cell profile and its receptors obey the environmental communications and cell interactions. Our vision around the NK cells as an immune axis remained dual, and we still cannot judge the immune responses based on the NK cell flip-flop. A design of eventual niche to monitor the NK cell and targeted cell interaction is needed to strengthen our ability in diagnosis and treatment approaches based on the NK cells. Here, we have reviewed the shifts in the NK cells and their surface receptors in autoimmune diseases, solid tumors, and leukemia, and also discussed the effective chemokines that affect NK cell activation and proliferation. The main aim of this review is to present a broader vision of the NK cell changes in autoimmune disease and cancers.
Collapse
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zeinab D Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Ansari
- Isfahan Bone Metabolic Disorders Research Center, Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham H Hadad
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Rajaei
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Saltos A, Khalil F, Smith M, Li J, Schell M, Antonia SJ, Gray JE. Clinical associations of mucin 1 in human lung cancer and precancerous lesions. Oncotarget 2018; 9:35666-35675. [PMID: 30479696 PMCID: PMC6235019 DOI: 10.18632/oncotarget.26278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/06/2018] [Indexed: 12/18/2022] Open
Abstract
Mucin 1 (MUC1) is a cell membrane glycoprotein overexpressed in non-small cell lung cancer (NSCLC) and has been implicated in carcinogenesis of premalignant lung lesions. Thus, MUC1 has been a target of interest for vaccine strategies for lung cancer treatment and prevention. Here, we assessed MUC1 expression by immunohistochemistry using tumor samples from patients with biopsy-proven NSCLC. Levels of expression in areas of dysplasia, metaplasia, adenocarcinoma in situ, and carcinoma within the same tissue sample were characterized independently on a scale of 0-3 for paired comparison. We also assessed clinical data for correlations with MUC1 expression. Our analysis included 16 samples from patients with squamous lesions and 19 from patients with adenocarcinoma lesions. Among squamous lesions, MUC1 expression score was significantly increased in dysplastic compared with metaplastic areas (mean difference = 0.83, 95% confidence interval [CI], 0.21-infinity; P = 0.021). MUC1 expression was also increased among areas of squamous cell carcinoma versus dysplastic areas (mean difference = 0.44, 95% CI, -0.006-infinity; P = 0.052). In the adenocarcinoma lesions, MUC1 expression was increased in adenocarcinoma versus adenocarcinoma in situ, although not significantly (mean difference = 0.20, 95% CI, -0.055-infinity; P = 0.094). The increase in MUC1 expression with the progression of premalignant lung lesions to invasive carcinoma in patients with NSCLC supports MUC1 as a possible therapeutic target for the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Andreas Saltos
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Farah Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michelle Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jiannong Li
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Michael Schell
- Department of Biostatistics/Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Scott J Antonia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
10
|
Recombinant Viruses for Cancer Therapy. Biomedicines 2018; 6:biomedicines6040094. [PMID: 30257488 PMCID: PMC6316473 DOI: 10.3390/biomedicines6040094] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
Recombinant viruses are novel therapeutic agents that can be utilized for treatment of various diseases, including cancers. Recombinant viruses can be engineered to express foreign transgenes and have a broad tropism allowing gene expression in a wide range of host cells. They can be selected or designed for specific therapeutic goals; for example, recombinant viruses could be used to stimulate host immune response against tumor-specific antigens and therefore overcome the ability of the tumor to evade the host's immune surveillance. Alternatively, recombinant viruses could express immunomodulatory genes which stimulate an anti-cancer immune response. Oncolytic viruses can replicate specifically in tumor cells and induce toxic effects leading to cell lysis and apoptosis. However, each of these approaches face certain difficulties that must be resolved to achieve maximum therapeutic efficacy. In this review we discuss actively developing approaches for cancer therapy based on recombinant viruses, problems that need to be overcome, and possible prospects for further development of recombinant virus based therapy.
Collapse
|
11
|
Brooks N, Hsu J, Esparon S, Pouniotis D, Pietersz GA. Immunogenicity of a Tripartite Cell Penetrating Peptide Containing a MUC1 Variable Number of Tandem Repeat (VNTR) and A T Helper Epitope. Molecules 2018; 23:molecules23092233. [PMID: 30200528 PMCID: PMC6225367 DOI: 10.3390/molecules23092233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Peptide-based vaccines for cancer have many advantages however, for optimization these immunogens should incorporate peptide epitopes that induce CD8, as well as CD4 responses, antibody and long term immunity. Cell penetrating peptides (CPP) with a capacity of cytosolic delivery have been used to deliver antigenic peptides and proteins to antigen presenting cells to induce cytotoxic T cell, helper T cell and humoral responses in mice. For this study, a tripartite CPP including a mucin 1 (MUC1) variable number of tandem repeat (VNTR) containing multiple T cell epitopes and tetanus toxoid universal T helper epitope peptide (tetCD4) was synthesised (AntpMAPMUC1tet) and immune responses investigated in mice. Mice vaccinated with AntpMAPMUC1tet + CpG show enhanced antigen-specific interferon-gamma (IFN-γ) and IL-4 T cell responses compared with AntpMAPMUC1tet vaccination alone and induced a Th1 response, characterised by a higher ratio of IgG2a antibody/IgG1 antibodies. Furthermore, vaccination generated long term MUC1-specific antibody and T cell responses and delayed growth of MUC1+ve tumours in mice. This data demonstrates the efficient delivery of branched multiple antigen peptides incorporating CPP and that the addition of CpG augments immune responses.
Collapse
Affiliation(s)
- Nicole Brooks
- School of Medical Sciences, RMIT University, Plenty Road, Bundoora 3083, Victoria, Australia.
| | - Jennifer Hsu
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
- Dendritic Cell Biology and Therapeutics Group, ANZAC Medical Research Institute, Institute of Haematology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW 2050, Australia.
| | - Sandra Esparon
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
| | - Dodie Pouniotis
- School of Medical Sciences, RMIT University, Plenty Road, Bundoora 3083, Victoria, Australia.
| | - Geoffrey A Pietersz
- Bio-Organic and Medicinal Chemistry Laboratory, Burnet Institute, 85 Commercial Rd, Melbourne 3004, Australia.
- Department of Pathology, University of Melbourne, Parkville, Victoria 3010, Australia.
- Department of Immunology, Monash University, Clayton, Victoria 3800, Australia.
- Baker Heart and Diabetes Institute, Melbourne 3004, Australia.
- College of Health and Biomedicine, Victoria University, Melbourne 3021, Australia.
| |
Collapse
|
12
|
Dhanisha SS, Guruvayoorappan C, Drishya S, Abeesh P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit Rev Oncol Hematol 2017; 122:98-122. [PMID: 29458795 DOI: 10.1016/j.critrevonc.2017.12.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Mucins are the main structural components of mucus that create a selective protective barrier for epithelial surface and also execute wide range of other physiological functions. Mucins can be classified into two types, namely secreted mucins and membrane bounded mucins. Alterations in mucin expression or glycosylation and mislocalization have been seen in various types of pathological conditions such as cancers, inflammatory bowel disease and ocular disease, which highlight the importance of mucin in maintaining homeostasis. Hence mucins can be used as attractive target for therapeutic intervention. In this review, we discuss in detail about the structural diversity of mucins; their biosynthesis; its role in pathogenesis; regulation and as possible therapeutic targets.
Collapse
Affiliation(s)
- Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India.
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
13
|
Tosch C, Bastien B, Barraud L, Grellier B, Nourtier V, Gantzer M, Limacher JM, Quemeneur E, Bendjama K, Préville X. Viral based vaccine TG4010 induces broadening of specific immune response and improves outcome in advanced NSCLC. J Immunother Cancer 2017; 5:70. [PMID: 28923084 PMCID: PMC5604422 DOI: 10.1186/s40425-017-0274-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Advanced non-small cell lung cancer patients receiving TG4010, a therapeutic viral vaccine encoding human Mucin 1 and interleukin-2 in addition to standard chemotherapy, displayed longer overall survival in comparison to that of patients treated with standard chemotherapy alone. Our study intended to establish the association between overall survival and vaccine-induced T cell responses against tumor associated antigens (TAA) targeted by the vaccine. METHOD The TIME trial was a placebo-controlled, randomized phase II study aimed at assessing efficacy of TG4010 with chemotherapy in NSCLC. 78 patients from the TIME study carrying the HLA-A02*01 haplotype were analyzed using combinatorial encoding of MHC multimers to detect low frequencies of cellular immune responses to TG4010 and other unrelated TAA. RESULTS We report that improvement of survival under TG4010 treatment correlated with development of T cell responses against MUC1. Interestingly, responses against MUC1 were associated with broadening of CD8 responses against non-targeted TAA, thus demonstrating induction of epitope spreading. CONCLUSION Our results support the causality of specific T-cell response in improved survival in NSCLC. Additionally, vaccine induced epitope spreading to other TAA participates to the enrichment of the diversity of the anti-tumor response. Hence, TG4010 appears as a useful therapeutic option to maximize response rate and clinical benefit in association with other targeted immuno-modulators. TRIAL REGISTRATION Registered on ClinicalTrials.gov under identifier NCT01383148 on June 23rd, 2011.
Collapse
Affiliation(s)
- Caroline Tosch
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France
| | - Bérangère Bastien
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France
| | - Luc Barraud
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France
| | - Benoit Grellier
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France
| | - Virginie Nourtier
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France
| | - Murielle Gantzer
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France
| | - Jean Marc Limacher
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France.,Current address: Department of Medical Oncology and Clinical Hematology, Louis Pasteur Hospital, 39 Av de la Liberté, 68000, Colmar, France
| | - Eric Quemeneur
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France
| | - Kaïdre Bendjama
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France.
| | - Xavier Préville
- Transgene SA, 400 Bld Gonthier d'Andernach, Parc d'Innovation, CS80166, 67405, Illkirch Graffenstaden, Cedex, France.,Current address: Amoneta Diagnostics, 17 rue du Fort, 68330, Huningue, France
| |
Collapse
|
14
|
Sousa AM, Grandgenett PM, David L, Almeida R, Hollingsworth MA, Santos-Silva F. Reflections on MUC1 glycoprotein: the hidden potential of isoforms in carcinogenesis. APMIS 2016; 124:913-924. [PMID: 27538373 DOI: 10.1111/apm.12587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
Abstract
Mucin 1 (MUC1) has been described as the renaissance molecule due to the large set of functions it displays in both normal and neoplastic cells. This membrane-tethered glycoprotein is overexpressed and aberrantly glycosylated in most epithelial cancers, being involved in several processes related with malignant phenotype acquisition. With a highly polymorphic structure, both in the polypeptide and glycan counterparts, MUC1 variability has been associated with susceptibility to several diseases, including cancer. Biochemical features and biological functions have been characterized upon the full-length MUC1 protein, remaining to clarify the real impact on cell dynamics of the plethora of MUC1 isoforms. This review aims to encompass a detailed characterization of MUC1 role in carcinogenesis, highlighting recent findings in cell differentiation and uncovering new evidences of MUC1 isoforms involvement in malignant phenotype.
Collapse
Affiliation(s)
- Andreia M Sousa
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal. .,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Disease, Omaha, NE, USA
| | - Leonor David
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | | | - Filipe Santos-Silva
- i3S-Institute of Research and Innovation in Health, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|