1
|
Akkoç T. Epithelial barrier dysfunction and microbial dysbiosis: exploring the pathogenesis and therapeutic strategies for Crohn's disease. Tissue Barriers 2024:2390705. [PMID: 39185541 DOI: 10.1080/21688370.2024.2390705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Crohn's disease (CD), a chronic gastrointestinal inflammatory disease, is becoming more widespread worldwide. Crohn's disease is caused by gut microbiota changes, genetics, environmental stresses, and immunological responses. Current treatments attempt to achieve long-term remission and avoid complications, delaying disease progression. Immunosuppressive measures and combination medicines should be started early for high-risk patients. These medicines monitor inflammatory indicators and adjust as needed. The epithelial barrier helps defend against physical, chemical, and immunological threats. When tissues' protective barrier breaks down, the microbiome may reach the layer underneath. Unbalanced microbial populations and inflammation impair healing and adjustment. Inflammatory cells infiltrating sensitive tissues aggravate the damage and inflammation. This approach promotes chronic inflammatory diseases. The epithelial barrier hypothesis states that hereditary and environmental variables cause epithelial tissue inflammation. This review focuses on how epithelial barrier break-down and microbial dysbiosis cause Crohn's disease and current advances in understanding the epithelial barrier, immune system, and microbiome. Additionally, investigate treatments that restore barrier integrity and promote microbial balance. Overall, it stresses the role of epithelial barrier failure and microbial dysbiosis in Crohn's disease development and discusses current advances in understanding the barrier, immunological responses, and microbiota.
Collapse
Affiliation(s)
- Tunç Akkoç
- Department of Immunology, Marmara University School of Medicine, İstanbul, Türkiye
- Division of Pediatric Allergy and Immunology, Marmara University School of Medicine, İstanbul, Türkiye
| |
Collapse
|
2
|
Hoseinzadeh A, Mahmoudi M, Rafatpanah H, Rezaieyazdi Z, Tavakol Afshari J, Hosseini S, Esmaeili SA. A new generation of mesenchymal stromal/stem cells differentially trained by immunoregulatory probiotics in a lupus microenvironment. Stem Cell Res Ther 2023; 14:358. [PMID: 38072921 PMCID: PMC10712058 DOI: 10.1186/s13287-023-03578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that multipotent mesenchymal stem/stromal cells (MSCs) are a promising intervention strategy in treating autoimmune inflammatory diseases. It should be stated that systemic immunoregulation is increasingly recognized among the beneficial effects of MSCs and probiotics in treating morbid autoimmune disorders such as lupus. This study aimed to determine if immunoregulatory probiotics L. rhamnosus or L. delbrueckii can change the immunomodulatory effects of MSCs in lupus-like disease. METHODS Pristane-induced lupus (PIL) mice model was created via intraperitoneal injection of Pristane and then confirmed. Naïve MSCs (N-MSCs) were coincubated with two Lactobacillus strains, rhamnosus (R-MSCs) or delbrueckii (D-MSCs), and/or a combination of both (DR-MSCs) for 48 h, then administrated intravenously in separate groups. Negative (PBS-treated normal mice) and positive control groups (PBS-treated lupus mice) were also investigated. At the end of the study, flow cytometry and enzyme-linked immunosorbent assay (ELISA) analysis were used to determine the percentage of Th cell subpopulations in splenocytes and the level of their master cytokines in sera, respectively. Moreover, lupus nephritis was investigated and compared. Analysis of variance (ANOVA) was used for multiple comparisons. RESULTS Abnormalities in serum levels of anti-dsDNA antibodies, creatinine, and urine proteinuria were significantly suppressed by MSCs transplantation, whereas engrafted MSCs coincubation with both L. strains did a lesser effect on anti-dsDNA antibodies. L. rhamnosus significantly escalated the ability of MSCs to scale down the inflammatory cytokines (IFN-ɣ, IL-17), while L. delbrueckii significantly elevated the capacity of MSCs to scale down the percentage of Th cell subpopulations. However, incubation with both strains induced MSCs with augmented capacity in introducing inflammatory cytokines (IFN-ɣ, IL-17). Strikingly, R-MSCs directly restored the serum level of TGF-β more effectively and showed more significant improvement in disease parameters than N-MSCs. These results suggest that R-MSCs significantly attenuate lupus disease by further skew the immune phenotype of MSCs toward increased immunoregulation. CONCLUSIONS Results demonstrated that Lactobacillus strains showed different capabilities in training/inducing new abilities in MSCs, in such a way that pretreated MSCs with L. rhamnosus might benefit the treatment of lupus-like symptoms, given their desirable properties.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Faculty of Medicine, Department of Immunology, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Eraslan M, Çerman E, Bozkurt S, Genç D, Virlan AT, Demir CS, Akkoç T, Karaöz E, Akkoç T. Mesenchymal stem cells differentiate to retinal ganglion-like cells in rat glaucoma model induced by polystyrene microspheres. Tissue Cell 2023; 84:102199. [PMID: 37633122 DOI: 10.1016/j.tice.2023.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
AIM The study aimed to evaluate the differentiation ability of intravitreally injected rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) to retinal ganglion-like cells in a polystyrene microsphere induced rat glaucoma model. MATERIALS AND METHODS The glaucoma rat model was generated via intracameral injection of 7 microliter polystyrene microspheres. Green fluorescence protein-labeled (GFP) rBM-MSCs were transplanted intravitreally at or after induction of ocular hypertension (OHT), depending on the groups. By the end of the fourth week, flat-mount retinal dissection was performed, and labeled against Brn3a, CD90, GFAP, CD11b, Vimentin, and localization of GFP positive rBM-MSCs was used for evaluation through immunofluorescence staining and to count differentiated retinal cells by flow cytometry. From 34 male Wistar albino rats, 56 eyes were investigated. RESULTS Flow cytometry revealed significantly increased CD90 and Brn3a positive cells in glaucoma induced and with rBM-MSC injected groups compared to control(P = 0.006 and P = 0.003 respectively), sham-operated (P = 0.007 and P < 0.001 respectively), and only rBM-MSCs injected groups (P = 0.002 and P = 0.009 respectively). Immunofluorescence microscopy revealed differentiation of GFP labeled stem cells to various retinal cells, including ganglion-like cells. rBM-MSCs were observable in ganglion cells, inner and outer nuclear retinal layers in rBM-MSCs injected eyes. CONCLUSION Intravitreally transplanted rBM-MSCs differentiated into retinal cells, including ganglion-like cells, which successfully created a glaucoma model damaged with polystyrene microspheres. Promisingly, MSCs may have a role in neuro-protection and neuro-regeneration treatment of glaucoma in the future.
Collapse
Affiliation(s)
- Muhsin Eraslan
- Department of Ophthalmology, Marmara University Faculty of Medicine, Istanbul, Turkey.
| | - Eren Çerman
- Department of Ophthalmology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Süheyla Bozkurt
- Department of Pathology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Deniz Genç
- Department of Pediatric Diseases, Faculty of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Aysın Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, UK
| | - Cansu Subaşı Demir
- Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Istanbul, Turkey
| | - Tolga Akkoç
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey
| | - Erdal Karaöz
- Department of Histology & Embryology, Istinye University Faculty of Medicine, Istanbul, Turkey; Center for Stem Cell and Tissue Engineering Research & Practice, Istinye University, Istanbul, Turkey
| | - Tunç Akkoç
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey; Department of Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey; Marstem Cell Technologies, Marmara University Technopark, İstanbul, Turkey
| |
Collapse
|
4
|
MacFarlane PM, Mayer CA, Caplan AI, Raffay TM, Mayer AJ, Bonfield TL. Human bone marrow-derived mesenchymal stem cells rescue neonatal CPAP-induced airway hyperreactivity. Respir Physiol Neurobiol 2022; 302:103913. [PMID: 35436602 PMCID: PMC9936817 DOI: 10.1016/j.resp.2022.103913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2022]
Abstract
Continuous positive airway pressure (CPAP) is a primary non-invasive mode of respiratory support for preterm infants. However, emerging evidence suggests CPAP could be an underlying contributor to the unintended pathophysiology of wheezing and associated airway hyperreactivity (AHR) in former preterm infants. The therapeutic benefits of mesenchymal stem cells (MSCs) have been demonstrated in a variety of animal models and several clinical trials are currently underway to assess their safety profiles in the setting of prematurity and bronchopulmonary dysplasia (BPD). In the present study, using a mouse model of neonatal CPAP, we investigated whether conditioned medium harvested from cultures of human bone-marrow derived mesenchymal stem cells (hMSC) could rescue the CPAP-induced AHR, based upon previous observations of their anti-AHR properties. Newborn mice (male and female) were fitted with a custom-made mask for delivery of daily CPAP 3 h/day for the first 7 postnatal days. At postnatal day 21 (two weeks after CPAP ended), lungs were removed, precision-cut lung slices were sectioned and incubated for 48 h in vitro in conditioned medium collected from cultures of three different hMSC donors. As expected, CPAP resulted in AHR to methacholine compared to untreated control mice. hMSC conditioned medium from the cultures of all three donors completely reversed AHR. These data reveal potential therapeutic benefits of hMSC therapy, which may be capable of rescuing the long-term adverse effects of neonatal CPAP on human airway function.
Collapse
Affiliation(s)
- PM MacFarlane
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH 44106, USA, Correspondence to: Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children’s Hospital, 11100 Euclid Ave, Cleveland, OH 44106-6010, USA. (P. MacFarlane)
| | - CA Mayer
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH 44106, USA
| | - AI Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - TM Raffay
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH 44106, USA
| | - AJ Mayer
- Department of Pediatrics, Rainbow Babies & Children’s Hospital, Case Western Reserve University, Cleveland, OH 44106, USA
| | - TL Bonfield
- Department of Genetics and Genome Sciences, Department of Pediatrics and National Center of Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Mo Y, Kim Y, Bang JY, Jung J, Lee CG, Elias JA, Kang HR. Mesenchymal Stem Cells Attenuate Asthmatic Inflammation and Airway Remodeling by Modulating Macrophages/Monocytes in the IL-13-Overexpressing Mouse Model. Immune Netw 2022; 22:e40. [DOI: 10.4110/in.2022.22.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yujin Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Young Bang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jiung Jung
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chun-Geun Lee
- Brown University, Molecular Microbiology and Immunology, Providence, Rhode Island, United States
| | - Jack A. Elias
- Brown University, Molecular Microbiology and Immunology, Providence, Rhode Island, United States
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Akkoc T, O'Mahony L, Ferstl R, Akdis C, Akkoc T. Mouse Models of Asthma: Characteristics, Limitations and Future Perspectives on Clinical Translation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1376:119-133. [PMID: 34398449 DOI: 10.1007/5584_2021_654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Asthma is a complex and heterogeneous inflammatory airway disease primarily characterized by airway obstruction, which affects up to 15% of the population in Westernized countries with an increasing prevalence. Descriptive laboratory and clinical studies reveal that allergic asthma is due to an immunological inflammatory response and is significantly influenced by an individual's genetic background and environmental factors. Due to the limitations associated with human experiments and tissue isolation, direct mouse models of asthma provide important insights into the disease pathogenesis and in the discovery of novel therapeutics. A wide range of asthma models are currently available, and the correct model system for a given experimental question needs to be carefully chosen. Despite recent advances in the complexity of murine asthma models, for example humanized murine models and the use of clinically relevant allergens, the limitations of the murine system should always be acknowledged, and it remains to be seen if any single murine model can accurately replicate all the clinical features associated with human asthmatic disease.
Collapse
Affiliation(s)
- Tolga Akkoc
- Genetic Engineering and Biotechnology Institute, Tubitak Marmara Research Center, Kocaeli, Turkey.
| | - Liam O'Mahony
- Department of Medicine and Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ruth Ferstl
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Tunc Akkoc
- Department of Pediatric Allergy-Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
7
|
Zibandeh N, Genc D, Ozgen Z, Duran Y, Goker K, Baris S, Ergun T, Akkoc T. Mesenchymal stem cells derived from human dental follicle modulate the aberrant immune response in atopic dermatitis. Immunotherapy 2021; 13:825-840. [PMID: 33955241 DOI: 10.2217/imt-2020-0257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Atopic dermatitis (AD) is an inflammatory cutaneous disorder. The advancements in the understanding of AD immunological pathogenesis have caused the development of therapies that suppress the dysregulated immune response. We aimed to evaluate the immunomodulatory effect of dental stem cells (dental follicle-mesenchymal stem cells [DF-MSCs]) on AD patients. Materials & methods: We investigated the immunoregulatory potential of DF-MSCs on T cell response in AD and compared them with psoriasis and healthy individuals and the underlying mechanisms. Results: DF-MSCs significantly reduced Fas, FasL and TNFR II frequency in T cells, increased naive T cell population while reducing memory T cell, decreased inflammatory cytokine levels and promoted Tregs frequency in the AD population. Conclusion: These results imply that DF-MSCs are modulating inflammation through decreasing T cell apoptosis, inducing Treg expansion and stabilizing cytokine levels.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Deniz Genc
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Zuleyha Ozgen
- Department of Dermatology, Marmara University, Istanbul, Turkey
| | - Yazgul Duran
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Kamil Goker
- Department of Oral & Maxillofacial Surgery, Marmara University, Istanbul, Turkey
| | - Safa Baris
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| | - Tulin Ergun
- Department of Dermatology, Marmara University, Istanbul, Turkey
| | - Tunc Akkoc
- Division of Pediatric Allergy & Immunology, Marmara University, Istanbul, Turkey
| |
Collapse
|