1
|
Rahbarizadeh F, Ahmadvand D, Moghimi S. CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev 2019; 141:41-46. [PMID: 31004624 DOI: 10.1016/j.addr.2019.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
Redirecting the recognition specificity of T lymphocytes to designated tumour cell surface antigens by transferring chimeric antigen receptor (CAR) genes is becoming an effective strategy to combat cancer. Today, CAR T-cell therapy has proven successful in the treatment of haematological malignancies and the first CD19 CAR T-cell products has already entered the market. This success is expanding CAR design for broader malignancies including solid tumours. Nevertheless, CARs such as those built on antigen-specific single chain antibody variable fragment (scFv) may induce some adverse effects. Here, we briefly review CAR T-cell bioengineering and discuss selected important initiatives for improved T-cell reprogramming, function and safety. In this respect, we further elaborate on unconventional CARs structured on single variable domain of heavy chain (VHH) antibodies (single-domain antibodies) as an alternative to scFv, because of their interesting immunological and physicochemical characteristics and unique structure, which shows a high degree of homology with human VH3 gene family.
Collapse
|
2
|
Abstract
Cancer immunotherapy aims to harness the innate ability of the immune system to recognize and destroy malignant cells. Immunotherapy for malignant gliomas is an emerging field that promises the possibility of highly specific and less toxic treatment compared to conventional chemotherapy. In addition, immunotherapy has the added benefit of sustained efficacy once immunologic memory is induced. Although there are numerous therapeutic agents that boost general immune function and facilitate improved antitumor immunity, to date, immunotherapy for gliomas has focused primarily on active vaccination against tumor-specific antigens. The results of numerous early phase clinical trials demonstrate promising results for vaccine therapy, but no therapy has yet proven to improve survival in a randomized, controlled trial. The major barrier to immunotherapy in malignant gliomas is tumor-induced immunosuppression. The mechanisms of immunosuppression are only now being elucidated, but clearly involve a combination of factors including regulatory T cells, tumor-associated PD-L1 expression, and CTLA-4 signaling. Immunomodulatory agents have been developed to combat these immunosuppressive factors and have demonstrated efficacy in other cancers. The future of glioma immunotherapy likely lies in a combination of active vaccination and immune checkpoint inhibition.
Collapse
Affiliation(s)
- Orin Bloch
- Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA,
| |
Collapse
|
3
|
Elimination of progressive mammary cancer by repeated administrations of chimeric antigen receptor-modified T cells. Mol Ther 2014; 22:1029-38. [PMID: 24572294 DOI: 10.1038/mt.2014.28] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/18/2014] [Indexed: 12/11/2022] Open
Abstract
Continuous oncogenic processes that generate cancer require an on-going treatment approach to eliminate the transformed cells, and prevent their further development. Here, we studied the ability of T cells expressing a chimeric antibody-based receptor (CAR) to offer a therapeutic benefit for breast cancer induced by erbB-2. We tested CAR-modified T cells (T-bodies) specific to erbB-2 for their antitumor potential in a mouse model overexpressing a human erbB-2 transgene that develops mammary tumors. Comparing the antitumor reactivity of CAR-modified T cells under various therapeutic settings, either prophylactic, prior to tumor development, or therapeutically. We found that repeated administration of CAR-modified T cells is required to eliminate spontaneously developing mammary cancer. Systemic, as well as intratumoral administered CAR-modified T cells accumulated at tumor sites and eventually eliminated the malignant cells. Interestingly, within a few weeks after a single CAR T cells' administration, and rejection of primary lesion, tumors usually relapsed both in treated mammary gland and at remote sites; however, repeated injections of CAR-modified T cells were able to control the secondary tumors. Since spontaneous tumors can arise repeatedly, especially in the case of syndromes characterized by specific susceptibility to cancer, multiple administrations of CAR-modified T cells can serve to control relapsing disease.
Collapse
|
4
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|
5
|
Abstract
Gene therapy as a treatment for cancer is regarded as high in promise, but low in delivery, a deficiency that has become more obvious with ever-increasing reports of the successful correction of monogenic disorders by this approach. We review the commercial and scientific obstacles that have led to these delays and describe how they are progressively being overcome. Recent and striking successes and correspondingly increased commercial involvement suggest that gene transfer could finally become a powerful method for development of safe and effective cancer therapeutic drugs.
Collapse
Affiliation(s)
- Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Digiusto DL, Kiem HP. Current translational and clinical practices in hematopoietic cell and gene therapy. Cytotherapy 2013; 14:775-90. [PMID: 22799276 DOI: 10.3109/14653249.2012.694420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Clinical trials over the last 15 years have demonstrated that cell and gene therapies for cancer, monogenic and infectious disease are feasible and can lead to long-term benefit for patients. However, these trials have been limited to proof-of-principle and were conducted on modest numbers of patients or over long periods of time. In order for these studies to move towards standard practice and commercialization, scalable technologies for the isolation, ex vivo manipulation and delivery of these cells to patients must be developed. Additionally, regulatory strategies and clinical protocols for the collection, creation and delivery of cell products must be generated. In this article we review recent progress in hematopoietic cell and gene therapy, describe some of the current issues facing the field and discuss clinical, technical and regulatory approaches used to navigate the road to product development.
Collapse
Affiliation(s)
- David L Digiusto
- Department of Virology and Laboratory for Cellular Medicine, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.
| | | |
Collapse
|
7
|
Maliar A, Servais C, Waks T, Chmielewski M, Lavy R, Altevogt P, Abken H, Eshhar Z. Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 2012; 143:1375-1384.e5. [PMID: 22819865 DOI: 10.1053/j.gastro.2012.07.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 07/03/2012] [Accepted: 07/09/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Pancreatic adenocarcinoma (PAC) is often diagnosed at an advanced and inoperable stage, and standard systemic treatments are generally ineffective. We investigated the effects of adoptive transfer of tumor-specific T cells that express chimeric antibody-based receptors (CAR) to mice with primary and metastatic PAC xenografts. METHODS Human effector T cells were genetically modified to express CAR against Her2/neu or CD24, a putative PAC stem cell antigen. The antitumor reactivity of the engineered T cells (T-bodies) was evaluated in SCID mice with different PAC xenografts. A total of 1 × 10(7) T-bodies were injected via the tail vein or directly administered to the subcutaneous tumor on 3 or 4 alternating days. Mice were then given twice-daily intraperitoneal injections of interleukin-2 for 10 days. RESULTS Intratumor injection of human CD24 and Her2/neu-specific T-bodies completely eliminated the tumors from most animals. Intravenous injection of T-bodies reduced tumor size and prolonged survival of mice with orthotopically transplanted tumors; more than 50% of animals appeared to be disease-free more than 2 months later. Additional systemic administration of T-bodies 8 weeks after the initial injection eliminated primary tumors, along with liver and draining lymph node metastases. A single administration of the Her2/neu-specific T-bodies prolonged the survival of mice with tumors in which most of the cells expressed the target antigen. In contrast, the CD24-specific T-bodies prolonged survival of mice in which only a subpopulation of the tumor cells expressed the antigen. CONCLUSIONS CAR-redirected T cells stop growth and metastasis of PAC xenografts in mice. T-bodies specific to CD24, a putative cancer stem cell antigen, were effective against PAC xenografts that had only a subset of antigen-expressing cells.
Collapse
Affiliation(s)
- Amit Maliar
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; Gastroenterology and Liver Diseases Institute, Assaf Harofeh Medical Center, Zriffin, Israel
| | - Charlotte Servais
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Tova Waks
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Markus Chmielewski
- Center for Molecular Medicine Cologne and Tumor Genetics, Department I Internal Medicine, Köln, Germany
| | - Ron Lavy
- Department of Surgery B, Assaf Harofeh Medical Center, Zriffin, Israel
| | - Peter Altevogt
- Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne and Tumor Genetics, Department I Internal Medicine, Köln, Germany
| | - Zelig Eshhar
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol 2012; 32:1059-70. [PMID: 22526592 DOI: 10.1007/s10875-012-9689-9] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Chimeric antigen receptor (CAR) engineered T-cells occupy an increasing niche in cancer immunotherapy. In this context, CAR-mediated CD3ζ signaling is sufficient to elicit cytotoxicity and interferon-γ production while the additional provision of CD28-mediated signal 2 promotes T-cell proliferation and interleukin (IL)-2 production. This compartmentalisation of signaling opens the possibility that complementary CARs could be used to focus T-cell activation within the tumor microenvironment. METHODS Here, we have tested this principle by co-expressing an ErbB2- and MUC1-specific CAR that signal using CD3ζ and CD28 respectively. Stoichiometric co-expression of transgenes was achieved using the SFG retroviral vector containing an intervening Thosea asigna peptide. RESULTS We found that "dual-targeted" T-cells kill ErbB2(+) tumor cells efficiently and proliferate in a manner that requires co-expression of MUC1 and ErbB2 by target cells. Notably, however, IL-2 production was modest when compared to control CAR-engineered T-cells in which signaling is delivered by a fused CD28 + CD3ζ endodomain. CONCLUSIONS These findings demonstrate the principle that dual targeting may be achieved using genetically targeted T-cells and pave the way for testing of this strategy in vivo.
Collapse
|