1
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Jannoo R, Walker W, Kanamarlapudi V. Targeting and Sensitization of Breast Cancer Cells to Killing with a Novel Interleukin-13 Receptor α2-Specific Hybrid Cytolytic Peptide. Cancers (Basel) 2023; 15:2772. [PMID: 37345109 PMCID: PMC10216279 DOI: 10.3390/cancers15102772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 06/23/2023] Open
Abstract
Highly metastatic breast cancers, such as triple-negative subtypes (TNBC), require the most effective treatments. Since interleukin-13 receptor (IL-13R)α2 is reportedly over-expressed in some cancers, we investigated here its expression and the feasibility of therapeutically targeting this receptor in breast cancer using a novel hybrid cytolytic peptide (Pep-1-Phor21) consisting of IL-13Rα2-binding (Pep-1) and cytolytic (Phor21) domains. This study demonstrates that particularly TNBC tissues and cells display the prominent expression of IL-13Rα2. Furthermore, Pep-1-Phor21 induced the rapid necrosis of tumor cells expressing cell-surface IL-13Rα2. Notably, IL-13Rα2 expression was found to be epigenetically regulated in breast cancer cells in that the inhibition of histone deacetylase (HDAC) or DNA methyltransferase (DNMT) upregulated IL-13Rα2 expression, thereby sensitizing them to Pep-1-Phor21. IL-13Rα2-negative non-malignant cells were refractory to these epigenetic effects. Consistent with its cytolytic activity, Pep-1-Phor21 readily destroyed IL-13Rα2-expressing breast cancer spheroids with HDAC or DNMT inhibition, further enhancing cytolytic activity. Therefore, the Pep-1-Phor21-mediated targeting of IL-13Rα2 is a potentially novel therapeutic strategy for TNBC. Given that tumor cells can be selectively sensitized to Pep-1-Phor21 via the epigenetic up-regulation of IL-13Rα2, a combined adjuvant approach involving Pep-1-Phor21 and epigenetic inhibitors may be an effective strategy.
Collapse
Affiliation(s)
- Riaz Jannoo
- UCL ECMC GCLP Facility, UCL Cancer Institute, University College London, London WC1E 6DD, UK;
| | - William Walker
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK;
| | | |
Collapse
|
3
|
Rechberger JS, Porath KA, Zhang L, Nesvick CL, Schrecengost RS, Sarkaria JN, Daniels DJ. IL-13Rα2 Status Predicts GB-13 (IL13.E13K-PE4E) Efficacy in High-Grade Glioma. Pharmaceutics 2022; 14:922. [PMID: 35631512 PMCID: PMC9143740 DOI: 10.3390/pharmaceutics14050922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
High-grade gliomas (HGG) are devastating diseases in children and adults. In the pediatric population, diffuse midline gliomas (DMG) harboring H3K27 alterations are the most aggressive primary malignant brain tumors. With no effective therapies available, children typically succumb to disease within one year of diagnosis. In adults, glioblastoma (GBM) remains largely intractable, with a median survival of approximately 14 months despite standard clinical care of radiation and temozolomide. Therefore, effective therapies for these tumors remain one of the most urgent and unmet needs in modern medicine. Interleukin 13 receptor subunit alpha 2 (IL-13Rα2) is a cell-surface transmembrane protein upregulated in many HGGs, including DMG and adult GBM, posing a potentially promising therapeutic target for these tumors. In this study, we investigated the pharmacological effects of GB-13 (also known as IL13.E13K-PE4E), a novel peptide-toxin conjugate that contains a targeting moiety designed to bind IL-13Rα2 with high specificity and a point-mutant cytotoxic domain derived from Pseudomonas exotoxin A. Glioma cell lines demonstrated a spectrum of IL-13Rα2 expression at both the transcript and protein level. Anti-tumor effects of GB-13 strongly correlated with IL-13Rα2 expression and were reflected in apoptosis induction and decreased cell proliferation in vitro. Direct intratumoral administration of GB-13 via convection-enhanced delivery (CED) significantly decreased tumor burden and resulted in prolonged survival in IL-13Rα2-upregulated orthotopic xenograft models of HGG. In summary, administration of GB-13 demonstrated a promising pharmacological response in HGG models both in vitro and in vivo in a manner strongly associated with IL-13Rα2 expression, underscoring the potential of this IL-13Rα2-targeted therapy in a subset of HGG with increased IL-13Rα2 levels.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Kendra A. Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (K.A.P.); (J.N.S.)
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
| | | | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (K.A.P.); (J.N.S.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
4
|
IL-13Rα2 Is a Biomarker of Diagnosis and Therapeutic Response in Human Pancreatic Cancer. Diagnostics (Basel) 2021; 11:diagnostics11071140. [PMID: 34201539 PMCID: PMC8303581 DOI: 10.3390/diagnostics11071140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
IL-13Rα2 is a high-affinity binding protein for its ligand IL-13 and a cancer-testis antigen as it is expressed in the testis. IL-13Rα2 is highly expressed in various cancers, including pancreatic cancer, and consists of three domains: extracellular, transmembrane, and cytoplasmic. The extracellular domain binds to the ligand to form a biologically active complex, which initiates signaling through AP-1 and other pathways. IL-13Rα2 is also expressed in diseased cells such as fibroblasts that are involved in various inflammatory diseases, including cancer. We have reported that IL-13Rα2 is a prognostic biomarker for malignant glioma, adrenocortical cancer, and pancreatic cancer. In pancreatic cancer, a small sample of tissue could be examined for the expression of IL-13Rα2 by using the endoscopic ultrasound-fine needle aspiration technique (EUS-FNA). In addition, a peptide-based targeted approach using Pep-1L peptide could be used to study the biodistribution and whole-body cancer imaging for the screening of pancreatic cancer in suspected subjects.
Collapse
|
5
|
Kumar A, Bellayr IH, Singh HS, Puri RK. IL-13Rα2 gene expression is a biomarker of adverse outcome in patients with adrenocortical carcinoma. PLoS One 2021; 16:e0246632. [PMID: 33591997 PMCID: PMC7886164 DOI: 10.1371/journal.pone.0246632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/24/2021] [Indexed: 11/29/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but aggressive endocrine malignancy that usually results in a fatal outcome. To allow the better clinical management and reduce mortality, we searched for clinical and molecular markers that are reliable predictor of disease severity and clinical outcome in ACC patients. We determined a correlation between the overexpression of IL-13Rα2 and the clinical outcome in ACC patients using comprehensive data available in The Cancer Genome Atlas (TCGA) database. The dataset of 79 ACC subjects were divided into groups of low, medium, or high expression of IL-13Rα2 as determined by RNA-seq. These patients were also stratified by length of survival, overall survival, incidence of a new tumor event, incidence of metastasis, and production of excess hormones. We report a correlation between IL-13Rα2 expression and survival of subjects with ACC. High expression of IL-13Rα2 in ACC tumors was significantly associated with a lower patient survival rate and period of survival compared to low expression (p = 0.0084). In addition, high IL-13Rα2 expression was significantly associated with a higher incidence of new tumor events and excess hormone production compared to low or medium IL-13Rα2 expression. Within the cohort of patients that produced excess hormone, elevated IL-13Rα2 expression was significantly associated with a lower survival rate. Additionally, IL-13Rα1 had a potential relationship between transcript level and ACC survival. Our results and promising antitumor activity in preclinical models and trials indicate that IL-13Rα2 expression is an important prognostic biomarker of ACC disease outcome and a promising target for therapeutic treatment of ACC.
Collapse
Affiliation(s)
- Abhinav Kumar
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ian H. Bellayr
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hridaya S. Singh
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Raj K. Puri
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Front Microbiol 2019; 10:2340. [PMID: 31681205 PMCID: PMC6813239 DOI: 10.3389/fmicb.2019.02340] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional therapeutic strategies usually offer limited specificity, resulting in severe side effects and toxicity to normal tissues. Targeted cancer therapy, on the other hand, can improve the therapeutic potential of anti-cancer agents and decrease unwanted side effects. Targeted applications of cytolethal bacterial toxins have been found to be especially useful for the specific eradication of cancer cells. Targeting is either mediated by peptides or by protein-targeting moieties, such as antibodies, antibody fragments, cell-penetrating peptides (CPPs), growth factors, or cytokines. Together with a toxin domain, these molecules are more commonly referred to as immunotoxins. Targeting can also be achieved through gene delivery and cell-specific expression of a toxin. Of the available cytolethal toxins, diphtheria toxin (DT) is one of the most frequently used for these strategies. Of the many DT-based therapeutic strategies investigated to date, two immunotoxins, OntakTM and TagraxofuspTM, have gained FDA approval for clinical application. Despite some success with immunotoxins, suicide-gene therapy strategies, whereby controlled tumor-specific expression of DT is used for the eradication of malignant cells, are gaining prominence. The first part of this review focuses on DT-based immunotoxins, and it then discusses recent developments in tumor-specific expression of DT.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Han J, Puri RK. Analysis of the cancer genome atlas (TCGA) database identifies an inverse relationship between interleukin-13 receptor α1 and α2 gene expression and poor prognosis and drug resistance in subjects with glioblastoma multiforme. J Neurooncol 2017; 136:463-474. [PMID: 29168083 PMCID: PMC5805806 DOI: 10.1007/s11060-017-2680-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/11/2017] [Indexed: 01/29/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. A variety of targeted agents are being tested in the clinic including cancer vaccines, immunotoxins, antibodies and T cell immunotherapy for GBM. We have previously reported that IL-13 receptor subunits α1 and α2 of IL-13R complex are overexpressed in GBM. We are investigating the significance of IL-13Rα1 and α2 expression in GBM tumors. In order to elucidate a possible relationship between IL-13Rα1 and α2 expression with severity and prognoses of subjects with GBM, we analyzed gene expression (by microarray) and clinical data available at the public The Cancer Genome Atlas (TCGA) database (Currently known as Global Data Commons). More than 40% of GBM samples were highly positive for IL-13Rα2 mRNA (Log2 ≥ 2) while only less than 16% samples were highly positive for IL-13Rα1 mRNA. Subjects with high IL-13Rα1 and α2 mRNA expressing tumors were associated with a significantly lower survival rate irrespective of their treatment compared to subjects with IL-13Rα1 and α2 mRNA negative tumors. We further observed that IL-13Rα2 gene expression is associated with GBM resistance to temozolomide (TMZ) chemotherapy. The expression of IL-13Rα2 gene did not seem to correlate with the expression of genes for other chains involved in the formation of IL-13R complex (IL-13Rα1 or IL-4Rα) in GBM. However, a positive correlation was observed between IL-4Rα and IL-13Rα1 gene expression. The microarray data of IL-13Rα2 gene expression was verified by RNA-Seq data. In depth analysis of TCGA data revealed that immunosuppressive genes (such as FMOD, CCL2, OSM, etc.) were highly expressed in IL-13Rα2 positive tumors, but not in IL-13Rα2 negative tumors. These results indicate a direct correlation between high level of IL-13R mRNA expression and poor patient prognosis and that immunosuppressive genes associated with IL-13Rα2 may play a role in tumor progression. These findings have important implications in understanding the role of IL-13R in the pathogenesis of GBM and potentially other cancers.
Collapse
Affiliation(s)
- Jing Han
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, WO Bldg. 71, Rm 5342, CBER/FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA
| | - Raj K Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, WO Bldg. 71, Rm 5342, CBER/FDA, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA.
| |
Collapse
|
8
|
Tu M, Wange W, Cai L, Zhu P, Gao Z, Zheng W. IL-13 receptor α2 stimulates human glioma cell growth and metastasis through the Src/PI3K/Akt/mTOR signaling pathway. Tumour Biol 2016; 37:14701-14709. [PMID: 27623944 DOI: 10.1007/s13277-016-5346-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
Glioma is a malignant tumor that affects all kinds of people all over the world. It demonstrates remarkable infiltrative and invasive features. The high expression of interleukin-13 receptor subunit alpha-2 (IL-13Rα2) reportedly plays a pivotal role in some cancers. However, whether IL-13Rα2 contributes to glioma remains unknown. This study demonstrates that IL-13Rα2 is significantly up-regulated in human glioma tissue samples. It is also associated with late stages of disease progression and diminished survival in glioma patients. Gain- and loss-of-function studies demonstrate that IL-13Rα2 promotes the growth, migration, and invasion of glioma cells. In addition, mechanistic investigations show that IL-13Rα2 activates Scr, phosphatidylinositol 3 kinase (PI3K), Akt, and mTOR. Also, restraining Scr in glioma cells attenuates the activation of Scr/PI3K/Akt/mTOR pathway by IL-13Rα2, whereas the silencing of Scr markedly rescues the pro-invasive effect of IL-13Rα2. In conclusion, our results suggest that the high expression of IL-13Rα2 is significantly associated with the growth and metastasis of human glioma cells via the Scr/PI3K/Akt/mTOR pathway, while IL-13Rα2 may be a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Wange
- Department of Emergency, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Cai
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Penglei Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhichao Gao
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiming Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
9
|
Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene 2016; 36:639-651. [PMID: 27345402 PMCID: PMC5419051 DOI: 10.1038/onc.2016.229] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/14/2016] [Accepted: 05/22/2016] [Indexed: 12/13/2022]
Abstract
Acquired resistance to chemotherapy remains a major stumbling block in cancer treatment. Chronic inflammation plays a crucial role in induction of chemo resistance, and results in part from the induction and expansion of inflammatory cells that include myeloid derived suppressor cells (MDSC) and IL-13+Th2 cells. The mechanisms that lead to induction of activated MDSCs and IL-13+Th2 cells have not yet been identified. Here we demonstrated that doxorubicin treatment of 4T1 breast tumor bearing mice led to the induction of IL-13R+miR-126a+MDSC (DOX-MDSC). DOX-MDSC promote breast tumor lung metastasis through MDSC miR-126a+exosomal mediated induction of IL-13+Th2 cells and tumor angiogenesis. The induction of DOX-MDSC is regulated in a paracrine manner. DOX treatment not only increases IL-33 released from breast tumor cells, which is crucial for the induction of IL-13+Th2 cells, but it also participates in the induction of IL-13 receptors and miR-126a expressed on/in the MDSCs. IL-13 released from IL-13+Th2 cells then promotes the production of DOX-MDSC and MDSC miR-126a+exosomes via MDSC IL-13R. MDSC miR-126a+exosomes further induce IL13+Th2 cells in a positive feed-back loop manner. We also showed that MDSC miR-126a rescues doxorubicin induced MDSC death in a S100A8/A9 dependent manner and promotes tumor angiogenesis. Our findings provide insight into the MDSC exosomal mediated chemo resistance mechanism, which will be useful for the design of inhibitors targeting the blocking of induction of miR-126a+MDSC.
Collapse
|
10
|
Suzuki A, Leland P, Joshi BH, Puri RK. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015; 75:79-88. [DOI: 10.1016/j.cyto.2015.05.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
|
11
|
IL-13Rα2 mediates PNR-induced migration and metastasis in ERα-negative breast cancer. Oncogene 2014; 34:1596-607. [PMID: 24747967 DOI: 10.1038/onc.2014.53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Emerging evidence has linked photoreceptor cell-specific nuclear receptor (PNR/NR2E3), an orphan nuclear hormone receptor, to human breast cancer. PNR was shown to be a transcriptional activator of estrogen receptor-α (ERα) in ERα-positive breast cancer cell lines and high-level expression of PNR correlates with favorable response of ERα-positive breast cancer patients to tamoxifen. Interestingly, gene expression microarray study shows that PNR regulates distinct genes from those regulated by ERα, suggesting that PNR could have ERα-independent functions. Herein, we investigated the function of PNR in ERα-negative breast cancer cells. Our results showed that PNR-induced cell migration and metastasis of ERα-negative breast cancer cells both in vitro and in vivo, and the effect was attributed to the upregulation of interleukin (IL)-13Rα2, a high-affinity receptor for IL-13 that regulates tumor growth, invasion and metastasis of various human cancers. Mechanistically, PNR activated transcription of IL-13Rα2 through direct recruitment to IL-13Rα2 promoter. Upon stimulation with IL-13, IL-13Rα2 increased the extracellular signal-regulated kinases 1 and 2 phosphorylation, which led to breast cancer migration and metastasis. The IL-13 triggered signal cascade was specific to IL-13Rα2, as the closely related IL-13Rα1 was not regulated by PNR. IL-13Rα2 is a novel tumor antigen that is overexpressed in a variety of solid tumor types. This study presents the first evidence that PNR could promote ERα-negative breast cancer metastasis through activation of IL-13Rα2-mediated signaling pathway.
Collapse
|
12
|
Expression of interleukin-4 and interleukin-13 and their receptors in colorectal cancer. Int J Colorectal Dis 2012; 27:1369-76. [PMID: 22441356 DOI: 10.1007/s00384-012-1456-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Interleukin-4 (IL-4) and interleukin-13 (IL-13) are anti-inflammatory and immunomodulatory cytokines which can influence cancer-directed immunosurveillance. Nothing is presently known about expression of these cytokines and their receptors (IL-4R and IL-13R) in colorectal cancer. The aim of this study was to characterize their expression in primary colorectal cancer specimens and to evaluate possible functions for this disease. METHODS Expression of IL-4, IL-13, IL-4R, and IL-13R protein was characterized by immunohistochemistry in 359 patients with Union for International Cancer Control stage I-III colorectal cancer and evaluated by uni- and multivariate analysis for their prognostic relevance. RESULTS All four proteins were expressed in colorectal cancer specimens. In the cancer cells, high IL-4, IL-13, IL-4R, and IL-13R immunoreactivity were present in 33 % (118/359), 50 % (181/359), 36 % (129/359), and 42 % (152/359), respectively. Patients with high expression of IL-4, IL-4R, and IL-13R had a lower frequency of lymph node metastases. Expression of IL-13 did not influence the frequency of lymph node metastases. However, high IL-13-immunoreactivity was associated with a better overall survival (p = 0.041). Expression of IL-4, IL-4R, or IL-13R did not influence survival. Multivariate analysis revealed that besides pT classification and tumor recurrence, IL-13 expression was an independent prognostic factor for overall survival. CONCLUSIONS Expression of IL-4, IL-4R, and IL-13R are involved in the process of local metastases in colorectal cancer, while IL-13 expression has an impact on survival. These interleukins and their receptors may become attractive targets for the treatment of colorectal cancer.
Collapse
|
13
|
Ou W, Marino MP, Suzuki A, Joshi B, Husain SR, Maisner A, Galanis E, Puri RK, Reiser J. Specific targeting of human interleukin (IL)-13 receptor α2-positive cells with lentiviral vectors displaying IL-13. Hum Gene Ther Methods 2012; 23:137-47. [PMID: 22612657 PMCID: PMC3848083 DOI: 10.1089/hgtb.2012.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/16/2012] [Indexed: 11/13/2022] Open
Abstract
The ability to selectively and efficiently target transgene delivery to specific cell types in vitro and in vivo remains one of the formidable challenges in gene therapy. Lentiviral vectors have several advantages that make them attractive as gene delivery vehicles and their tropism can be altered through pseudotyping, allowing transgene delivery to specific populations of cells. The human interleukin-13 receptor α2 (IL-13Rα2) is uniquely overexpressed in many different human tumors, making it an attractive target for cancer therapy. In this study, we examined whether IL-13Rα2-positive tumor cells can be specifically targeted with lentiviral vector pseudotypes containing a truncated fusion (F) protein derived from measles virus (MV) and a tail-truncated and receptor-blind MV hemagglutinin (H) protein bearing IL-13 at the C terminus. The retargeted lentiviral vector efficiently transduced cells that express high levels of IL-13Rα2, but not cells expressing low levels of IL-13Rα2 in vitro. In vivo, it specifically targeted IL-13Rα2-positive glioma cell xenografts in immunodeficient mice in the context of subcutaneous and intracranial glioma models. Similar lentiviral vectors may be developed for targeting other tumors expressing specific cell surface receptors.
Collapse
Affiliation(s)
- Wu Ou
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Michael P. Marino
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Akiko Suzuki
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Bharat Joshi
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Syed R. Husain
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Andrea Maisner
- Institute of Virology, Philipps University of Marburg, 35043 Marburg, Germany
| | | | - Raj K. Puri
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| | - Jakob Reiser
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, 20892
| |
Collapse
|
14
|
Marr LA, Gilham DE, Campbell JDM, Fraser AR. Immunology in the clinic review series; focus on cancer: double trouble for tumours: bi-functional and redirected T cells as effective cancer immunotherapies. Clin Exp Immunol 2012; 167:216-25. [PMID: 22235997 PMCID: PMC3278687 DOI: 10.1111/j.1365-2249.2011.04517.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2011] [Indexed: 01/04/2023] Open
Abstract
Cancer is one of the most important pathological conditions facing mankind in the 21st century, and is likely to become the most important cause of death as improvements continue in health, diet and life expectancy. The immune response is responsible for controlling nascent cancer through immunosurveillance. If tumours escape this control, they can develop into clinical cancer. Although surgery and chemo- or radiotherapy have improved survival rates significantly, there is a drive to reharness immune responses to treat disease. As T cells are one of the key immune cells in controlling cancer, research is under way to enhance their function and improve tumour targeting. This can be achieved by transduction with tumour-specific T cell receptor (TCR) or chimaeric antigen receptors (CAR) to generate redirected T cells. Virus-specific cells can also be transduced with TCR or CAR to create bi-functional T cells with specificity for both virus and tumour. In this review we outline the development and optimization of redirected and bi-functional T cells, and outline the results from current clinical trials using these cells. From this we discuss the challenges involved in generating effective anti-tumour responses while avoiding concomitant damage to normal tissues and organs.
Collapse
Affiliation(s)
- L A Marr
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
15
|
Fujisawa T, Joshi BH, Puri RK. IL-13 regulates cancer invasion and metastasis through IL-13Rα2 via ERK/AP-1 pathway in mouse model of human ovarian cancer. Int J Cancer 2011; 131:344-56. [PMID: 21858811 DOI: 10.1002/ijc.26366] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 07/22/2011] [Indexed: 12/12/2022]
Abstract
Previously, we have demonstrated that a variety of human cancers including the ovarian cancer express IL-13Rα2, a high affinity receptor for IL-13. Herein, we have examined if IL-13 regulates invasion and metastasis of ovarian cancer through IL-13Rα2 in vitro and in vivo in animal models of human ovarian cancer. We tested cell invasion and protease activity in IL-13Rα2-overexpressing and IL-13Rα2-negative ovarian tumor cell lines. IL-13 treatment significantly augmented both cell invasion and enzyme activities in only IL-13Rα2-positive cells but not in IL-13Rα2-negative cells in vitro. Mechanistically, IL-13 enhanced ERK1/2, AP-1 and MMP activities only in IL-13Rα2-positive cells but not in IL-13Rα2-negative cells. In contrast, other signaling pathways such as IRS1/2, PI3K and AKT do not seem to be involved in IL-13 induced signaling in ovarian cancer cell lines. Highly specific inhibitors for MMP and AP-1 efficiently inhibited both invasion and protease activities without impacting the basal level invasion and protease activities in vitro. In orthotopic animal model of human ovarian cancer, IL-13Rα2-positive tumors metastasized to lymph nodes and peritoneum earlier than IL-13Rα2-negative tumors. Interestingly, the IL-13Rα2-positive tumor bearing mice died earlier than mice with IL-13Rα2-negative tumor. Intraperitoneal injection of IL-13 further shortened survival of IL-13Rα2-positive tumor bearing mice compared to IL-13Rα2-negative tumor mice. IL-13Rα2-positive tumors and lymph node metastasis expressed higher levels of MMPs and higher ERK1/2 activation compared to IL-13Rα2-negative tumors. Taken together, IL-13Rα2 is involved in cancer metastasis through activation of ERK/AP-1 and that targeting IL-13Rα2 might not only directly kill primary tumors but also prevent cancer metastasis.
Collapse
Affiliation(s)
- Toshio Fujisawa
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
16
|
Yoon DJ, Liu CT, Quinlan DS, Nafisi PM, Kamei DT. Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer. Ann Biomed Eng 2011; 39:1235-51. [PMID: 21350890 PMCID: PMC3069328 DOI: 10.1007/s10439-011-0280-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/12/2011] [Indexed: 12/01/2022]
Abstract
Overexpressed receptors, characteristic of many cancers, have been targeted by various researchers to achieve a more specific treatment for cancer. A common approach is to use the natural ligand for the overexpressed receptor as a cancer-targeting agent which can deliver a chemically or genetically conjugated toxic molecule. However, it has been found that the therapeutic efficacy of such ligand-drug molecular conjugates can be limited, since they naturally follow the intracellular trafficking pathways of the endogenous ligands. Therefore, a thorough understanding of the intracellular trafficking properties of these ligands can lead to novel design criteria for engineering ligands to be more effective drug carriers. This review presents a few commonly used ligand/receptor systems where intracellular trafficking considerations can potentially improve the therapeutic efficacy of the ligand-drug molecular conjugates.
Collapse
Affiliation(s)
- Dennis J. Yoon
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Christina T. Liu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Devin S. Quinlan
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Parsa M. Nafisi
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Daniel T. Kamei
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|