1
|
Freudenreich M, Tischer J, Kroell T, Kremser A, Dreyßig J, Beibl C, Liepert A, Kolb HJ, Schmid C, Schmetzer H. In Vitro Generated Dendritic Cells of Leukemic Origin Predict Response to Allogeneic Stem Cell Transplantation in Patients With AML and MDS. J Immunother 2022; 45:104-118. [PMID: 34864807 DOI: 10.1097/cji.0000000000000404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
Allogeneic stem cell transplantation (alloSCT) is the treatment of choice for many patients with acute myeloid leukemia (AML) and myelodysplastic syndrome. The presentation of leukemic or allospecific antigens by malignant blasts is regarded as a crucial trigger for an effective allogeneic immune response. Conversely, insufficient stimulatory capacity by the leukemic blasts is thought to be a relevant escape mechanism from cellular immunotherapy (alloSCT). Our purpose was to test, whether the ability of malignant blasts to differentiate in vitro toward dendritic cells of leukemic origin (DCleu) is associated with clinical outcome. We isolated leukemic blasts from peripheral blood or bone marrow of AML and myelodysplastic syndrome patients before alloSCT (n=47) or at relapse after alloSCT (n=22). A panel of 6 different assays was used to generate DCleu in vitro. Results were correlated with clinical outcome. DCleu could be generated from all 69 samples. Significantly higher mean frequencies of DCleu were found in clinical long-term responders versus nonresponders to SCT (76.8% vs. 58.8%, P=0.006). Vice versa, the chance for response to SCT was significantly higher, if a DCleu+/dendritic cells (DC) ratio of >50% could be reached in vitro (P=0.004). Those patients were characterized by a longer time to relapse (P=0.04) and by a higher probability for leukemia-free survival (P=0.005). In vitro generation of DC and DCleu from leukemic blasts correlated with the clinical outcome. This observation may support a role of leukemic antigen presentation by "leukemia-derived DC" for the stimulation of an allogeneic immune response in AML.
Collapse
Affiliation(s)
- Markus Freudenreich
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Johanna Tischer
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Tanja Kroell
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Andreas Kremser
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Julia Dreyßig
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Christine Beibl
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Anja Liepert
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Hans J Kolb
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
| | - Christoph Schmid
- Department of Hematology and Oncology, Universitäts-Klinikum Augsburg, Augsburg, Germany
| | - Helga Schmetzer
- Medical Department III, University Hospital Großhadern, Ludwig-Maximilians-University
- Helmholtz Center Munich, German Research Center for Environmental Health/Clinical Cooperative Group Haematopoetic Cell Transplantation (CCG-HCT), Munich
| |
Collapse
|
2
|
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11:3. [PMID: 35074008 PMCID: PMC8784280 DOI: 10.1186/s40164-022-00257-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccines induce specific immune responses that can selectively eliminate target cells. In recent years, many studies have been conducted to explore DC vaccination in the treatment of hematological malignancies, including acute myeloid leukemia and myelodysplastic syndromes, as well as other nonleukemia malignancies. There are at least two different strategies that use DCs to promote antitumor immunity: in situ vaccination and canonical vaccination. Monocyte-derived DCs (mo-DCs) and leukemia-derived DCs (DCleu) are the main types of DCs used in vaccines for AML and MDS thus far. Different cancer-related molecules such as peptides, recombinant proteins, apoptotic leukemic cells, whole tumor cells or lysates and DCs/DCleu containing a vaster antigenic repertoire with RNA electroporation, have been used as antigen sources to load DCs. To enhance DC vaccine efficacy, new strategies, such as combination with conventional chemotherapy, monospecific/bispecific antibodies and immune checkpoint-targeting therapies, have been explored. After a decade of trials and tribulations, much progress has been made and much promise has emerged in the field. In this review we summarize the recent advances in DC vaccine immunotherapy for AML/MDS as well as other nonleukemia malignancies.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
3
|
Conversion of AML-blasts to leukemia-derived dendritic cells (DCleu) in 'DC-culture-media' shifts correlations of released chemokines with antileukemic T-cell reactions. Immunobiology 2021; 226:152088. [PMID: 33838552 DOI: 10.1016/j.imbio.2021.152088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DC) and T-cells are mediators of CTL-responses. Autologous (from patients with acute myeloid leukaemia (AML) or myelodysplasia (MDS)) or allogeneic (donor)-T-cells stimulated by DCleu, gain an efficient lysis of naive blasts, although not in every case. CXCL8, -9, -10, CCL2, -5 and Interleukin (IL-12) were quantified by Cytometric Bead Array (CBA) in supernatants from 5 DC-generating methods and correlated with AML-/MDS-patients' serum-values, DC-/T-cell-interactions/antileukemic T-cell-reactions after mixed lymphocyte culture (MLC) and patients' clinical course. The blast-lytic activity of T-cells stimulated with DC or mononuclear cells (MNC) was quantified in a cytotoxicity assay. Despite great variations of chemokine-levels, correlations with post-stimulation (after stimulating T-cells with DC in MLC) improved antileukemic T-cell activity were seen: higher released chemokine-values correlated with improved T-cells' antileukemic activity (compared to stimulation with blast-containing MNC) - whereas with respect to the corresponding serum values higher CXCL8-, -9-, and -10- but lower CCL5- and -2-release correlated with improved antileukemic activity of DC-stimulated (vs. blast-stimulated) T-cells. In DC-culture supernatants higher chemokine-values correlated with post-stimulation improved antileukemic T-cell reactivity, whereas higher serum-values of CXCL8, -9, and -10 but lower serum-values of CCL5 and -2 correlated with post-stimulation improved antileukemic T-cell-reactivity. In a context of 'DC'-stimulation (vs serum) this might point to a change of (CCL5 and -2-associated) functionality from a more 'inflammatory' or 'tumor-promoting' to a more 'antitumor'-reactive functionality. This knowledge could contribute to develop immune-modifying strategies that promote antileukemic (adaptive) immune-responses.
Collapse
|
4
|
Amberger DC, Schmetzer HM. Dendritic Cells of Leukemic Origin: Specialized Antigen-Presenting Cells as Potential Treatment Tools for Patients with Myeloid Leukemia. Transfus Med Hemother 2021; 47:432-443. [PMID: 33442338 DOI: 10.1159/000512452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
The prognosis of elderly patients with acute myeloid leukemia (AML) and high-grade myelodysplastic syndrome (MDS) is limited due to the lack of therapy options and high relapse rates. Dendritic cell (DC)-based immunotherapy seems to be a promising treatment tool. DC are potent antigen-presenting cells and play a pivotal role on the interface of the innate and the adaptive immune system. Myeloid leukemia blasts can be converted to DC of leukemic origin (DCleu), expressing costimulatory molecules along with the whole leukemic antigen repertoire of individual patients. These generated DCleu are potent stimulators of various immune reactive cells and increase antileukemic immunity ex vivo. Here we review the generating process of DC/DCleu from leukemic peripheral blood mononuclear cells as well as directly from leukemic whole blood with "minimized" Kits to simulate physiological conditions ex vivo. The purpose of adoptive cell transfer of DC/DCleu as a vaccination strategy is discussed. A new potential therapy option with Kits for patients with myeloid leukemia, which would render an adoptive DC/DCleu transfer unnecessary, is presented. In summary, DC/DCleu-based therapies seem to be promising treatment tools for patients with AML or MDS but ongoing research including trials in animals and humans have to be performed.
Collapse
Affiliation(s)
| | - Helga Maria Schmetzer
- Department of Medicine III, University Hospital, Hematopoetic Cell Transplantation, Munich, Germany
| |
Collapse
|
5
|
Potential of immunotherapies in the mediation of antileukemic responses for patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) - With a focus on Dendritic cells of leukemic origin (DC leu). Clin Immunol 2020; 217:108467. [PMID: 32464186 DOI: 10.1016/j.clim.2020.108467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/11/2020] [Accepted: 05/16/2020] [Indexed: 11/23/2022]
Abstract
New (non-immunotherapeutic) treatment-strategies for AML/MDS-patients are under development. Dendritic cells (DCs) and 'leukemia-derived DC' (DCleu) connect the innate and the adaptive immunesystem and (re-)activate it, in their capacity as professional antigen-presenting cells (APCs). They can be generated ex vivo from peripheral blood mononuclear cells (PBMNCs) or whole blood (WB), containing the -physiological-cellular/soluble microenvironment of individual patients using various DC/DCleu-generating methods or (for WB) minimalized 'Kits', containing granulocyte-macrophage-colony-stimulating-factor (GM-CSF) and a second response-modifier. Proof for DC/DCleu-mediated activation of the immune-system after T-cell-enriched mixed lymphocyte culture (MLC) is done by flowcytometry, demonstrating increased fractions of certain activated, leukemia-specific or antileukemic cell-subsets of the innate and the adaptive immune-system. Generation of DC/DCleu is possible independent of patients' age, MHC-, mutation- or transplantation-status. In vivo-treatment of AML-/MDS-patients with blast-modulating, DC/DCleu- inducing 'Kits' could contribute to create migratory DCs, as well as antileukemically reactivated and memory-mediating immune-cells, which patrol tissue and blood and could contribute to stabilizing disease or remissions.
Collapse
|
6
|
Role of Interferon (IFN)α in “Cocktails” for the Generation of (Leukemia-derived) Dendritic Cells (DCleu) From Blasts in Blood From Patients (pts) With Acute Myeloid Leukemia (AML) and the Induction of Antileukemic Reactions. J Immunother 2019; 42:143-161. [DOI: 10.1097/cji.0000000000000266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Ansprenger C, Vogt V, Schick J, Hirn-Lopez A, Vokac Y, Harabacz I, Braeu M, Kroell T, Karenberg A, Kolb HJ, Schmetzer H. Paramunity-inducing Factors (PINDs) in dendritic cell (DC) cultures lead to impaired antileukemic functionality of DC-stimulated T-cells. Cell Immunol 2018; 328:33-48. [PMID: 29580554 DOI: 10.1016/j.cellimm.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/14/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Paramunity-inducing-Factors (PINDs) consist of attenuated/inactivated viruses of various poxvirus-genera, used in veterinary medicine as non-antigen-specific, non-immunising stimulators of the innate immune system against infectious and malignant diseases. Their danger-signaling-interactions were tested for their capacity to improve leukemic antigen-presentation on DC generated from AML-patients' blasts ('DCleu') and DC-stimulation/activation of antileukemic T-cells. METHODS We analyzed, whether the addition of PINDs during DC cultures (15 healthy, 22 leukemic donors) and mixed lymphocyte culture (MLC, n = 15) with autologous (n = 6), allogeneic (n = 2) or T-cells after stem cell transplantation (SCT; n = 7) would alter the quality and quantity of DC, the composition of T-cell-subsets, and/or their antileukemic functionality (AF) as studied by FACS and functional Fluorolysis-cytotoxicity-assays. RESULTS Effects on 1. DC-cultures: PINDs in DC-cultures lead to increased proportions of mature DC and DCleu, but reduced proportions of viable and overall, as well as TLR4- and TLR9-expressing DC. 2. MLC: PINDs increased early (CD8+) T-cell activation (CD69+), but reduced proportions of effector-T-cells after MLC 3. AF: Presence of PINDs in DC- and MLC-cultures reduced T-cells' as well as innate cells' antileukemic functionality. 4. Cytokine-release profile: Supernatants from PIND-treated DC- and MLC-cultures resembled an inhibitory microenvironment, correlating with impaired blast lysis. CONCLUSIONS Our data shows that addition of PINDs to DC-cultures and MLC result in a "blast-protective-capacity" leading to impaired AF, likely due to changes in the composition of T-/innate effector cells and the induction of an inhibitory microenvironment. PINDs might be promising in treating infectious diseases, but cannot be recommended for the treatment of AML-patients due to their inhibitory influence on antileukemic functionality.
Collapse
Affiliation(s)
| | - Valentin Vogt
- Dept for Hematopoetic Transplantations, MED3, University of Munich, Germany
| | - Julia Schick
- Dept for Hematopoetic Transplantations, MED3, University of Munich, Germany
| | - Annika Hirn-Lopez
- Dept for Hematopoetic Transplantations, MED3, University of Munich, Germany
| | - Yvonne Vokac
- Dept for Hematopoetic Transplantations, MED3, University of Munich, Germany
| | | | - Marion Braeu
- Helmholtz Center Munich, CCG-HCT, Munich, Germany
| | - Tanja Kroell
- Dept for Hematopoetic Transplantations, MED3, University of Munich, Germany
| | - Axel Karenberg
- Institute for the History of Medicine and Medical Ethics, University of Cologne, Germany
| | | | - Helga Schmetzer
- Dept for Hematopoetic Transplantations, MED3, University of Munich, Germany; Helmholtz Center Munich, CCG-HCT, Munich, Germany.
| |
Collapse
|
8
|
Fischbacher D, Merle M, Liepert A, Grabrucker C, Kroell T, Kremser A, Dreyßig J, Freudenreich M, Schuster F, Borkhardt A, Kraemer D, Koehne CH, Kolb HJ, Schmid C, Schmetzer HM. Cytokine Release Patterns in Mixed Lymphocyte Culture (MLC) of T-Cells with Dendritic Cells (DC) Generated from AML Blasts Contribute to Predict anti-Leukaemic T-Cell Reactions and Patients’ Response to Immunotherapy. ACTA ACUST UNITED AC 2016; 22:49-65. [DOI: 10.1080/15419061.2016.1223634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Dorothea Fischbacher
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Marion Merle
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Anja Liepert
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Christine Grabrucker
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Tanja Kroell
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Andreas Kremser
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Julia Dreyßig
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Markus Freudenreich
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
| | - Friedhelm Schuster
- Department for pediatric Haematology and Oncology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department for pediatric Haematology and Oncology, University Hospital of Düsseldorf, Düsseldorf, Germany
| | | | | | - Hans-Jochem Kolb
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
- Helmholtz Center, Munich, Clinical cooperative group Human Cell Transplantation (CCG-HCT), Munich, Germany
| | | | - Helga Maria Schmetzer
- Department for Haematopoietic Transplantations, University Hospital of Munich, Munich, Germany
- Helmholtz Center, Munich, Clinical cooperative group Human Cell Transplantation (CCG-HCT), Munich, Germany
| |
Collapse
|
9
|
Ru YX, Dong SX, Zhao SX, Liang HY, Wang HJ, Hu X, Mi YC, Wang JX. Histiocytic differentiation in acute monocytic leukemia. Ultrastruct Pathol 2016; 40:18-23. [PMID: 26771450 DOI: 10.3109/01913123.2015.1120838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myeloid histocytes of dendritic cells (DCs), Langerhans cells (LCs), and macrophages in varied tissues, as leukemic blasts in acute monoblastic and monocytic leukemia (AML-M5a and M5b), are derived from monocyte progenitors in bone marrow. Based on DC induction from hematopoietic stem cells, myeloid progenitors, and monocytes, and occasional expressions of histocyte-related antigens (HRAs) in M5, we presume some M5 cases share histiocytic phenotypes originally. To clarify the conception, 93 M5 cases were tested with antibodies for HRAs, CD1a, CD163, S100, fascin, and langerin by immunostaining, and their morphologic characteristics were studied by light and transmission electron microscopy. The study revealed that 23 M5 cases were positive for two or more kinds of HRAs and shared a serial of histocytic immunophenotype and morphologic features, which were closely associated with M5b subtype and expression of CD14 in M5.
Collapse
Affiliation(s)
- Yong-xin Ru
- a Institute of Hematology & Blood Diseases Hospital , State Key Laboratory of Experimental Hematology, Peking Union Medical College , Tianjin , China
| | - Shu-xu Dong
- a Institute of Hematology & Blood Diseases Hospital , State Key Laboratory of Experimental Hematology, Peking Union Medical College , Tianjin , China
| | - Shi-xuan Zhao
- a Institute of Hematology & Blood Diseases Hospital , State Key Laboratory of Experimental Hematology, Peking Union Medical College , Tianjin , China
| | - Hao-yue Liang
- a Institute of Hematology & Blood Diseases Hospital , State Key Laboratory of Experimental Hematology, Peking Union Medical College , Tianjin , China
| | - Hui-jun Wang
- a Institute of Hematology & Blood Diseases Hospital , State Key Laboratory of Experimental Hematology, Peking Union Medical College , Tianjin , China
| | - Xiao Hu
- a Institute of Hematology & Blood Diseases Hospital , State Key Laboratory of Experimental Hematology, Peking Union Medical College , Tianjin , China
| | - Ying-chang Mi
- a Institute of Hematology & Blood Diseases Hospital , State Key Laboratory of Experimental Hematology, Peking Union Medical College , Tianjin , China
| | - Jian-xiang Wang
- a Institute of Hematology & Blood Diseases Hospital , State Key Laboratory of Experimental Hematology, Peking Union Medical College , Tianjin , China
| |
Collapse
|
10
|
Zhang X, Su Y, Song H, Yu Z, Zhang B, Chen H. Attenuated A20 expression of acute myeloid leukemia-derived dendritic cells increased the anti-leukemia immune response of autologous cytolytic T cells. Leuk Res 2014; 38:673-81. [DOI: 10.1016/j.leukres.2014.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 11/26/2022]
|
11
|
Steger B, Milosevic S, Doessinger G, Reuther S, Liepert A, Braeu M, Schick J, Vogt V, Schuster F, Kroell T, Busch DH, Borkhardt A, Kolb HJ, Tischer J, Buhmann R, Schmetzer H. CD4(+)and CD8(+)T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT. Immunobiology 2013; 219:247-60. [PMID: 24315637 DOI: 10.1016/j.imbio.2013.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 01/08/2023]
Abstract
T-cells play an important role in the remission-maintenance in AML-patients (pts) after SCT, however the role of LAA- (WT1, PR1, PRAME) or minor-histocompatibility (mHag, HA1) antigen-specific CD4(+) and CD8(+)T-cells is not defined. A LAA/HA1-peptide/protein stimulation, cloning and monitoring strategy for specific CD8(+)/CD4(+)T-cells in AML-pts after SCT is given. Our results show that (1) LAA-peptide-specific CD8+T-cells are detectable in every AML-pt after SCT. CD8(+)T-cells, recognizing two different antigens detectable in 5 of 7 cases correlate with long-lasting remissions. Clonal TCR-Vβ-restriction exemplarily proven by spectratyping in PRAME-specific CD8(+)T-cells; high PRAME-peptide-reactivity was CD4(+)-associated, as shown by IFN-γ-release. (2) Two types of antigen-presenting cells (APCs) were tested for presentation of LAA/HA1-proteins to CD4(+)T-cells: miniEBV-transduced lymphoblastoid cells (B-cell-source) and CD4-depleted MNC (source for B-cell/monocyte/DC). We provide a refined cloning-system for proliferating, CD40L(+)CD4(+)T-cells after LAA/HA1-stimulation. CD4(+)T-cells produced cytokines (GM-CSF, IFN-γ) upon exposure to LAA/HA1-stimulation until after at least 7 restimulations and demonstrated cytotoxic activity against naive blasts, but not fibroblasts. Antileukemic activity of unstimulated, stimulated or cloned CD4(+)T-cells correlated with defined T-cell-subtypes and the clinical course of the disease. In conclusion we provide immunological tools to enrich and monitor LAA/HA1-CD4(+)- and CD8(+)T-cells in AML-pts after SCT and generate data with relevant prognostic value. We were able to demonstrate the presence of LAA-peptide-specific CD8(+)T-cell clones in AML-pts after SCT. In addition, we were also able to enrich specific antileukemic reactive CD4(+)T-cells without GvH-reactivity upon repeated LAA/HA1-protein stimulation and limiting dilution cloning.
Collapse
Affiliation(s)
- Brigitte Steger
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany; University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Slavoljub Milosevic
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany
| | - Georg Doessinger
- Institute for Medical Microbiology, Immunology and Hygiene, and Focus Group'Clinical Cell Processing and Purification', Institute for Advanced Study, Technical University Munich, 81675 Munich, Germany
| | - Susanne Reuther
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Anja Liepert
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Marion Braeu
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany
| | - Julia Schick
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Valentin Vogt
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Friedhelm Schuster
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Tanja Kroell
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, and Focus Group'Clinical Cell Processing and Purification', Institute for Advanced Study, Technical University Munich, 81675 Munich, Germany; Clinical Cooperation Groups "Antigen-specific Immunotherapy" and "Immune Monitoring", Helmholtz Center Munich and Technical University Munich, 81675 Munich, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Duesseldorf, 40225 Duesseldorf, Germany
| | - Hans-Jochem Kolb
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany; University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Johanna Tischer
- University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Raymund Buhmann
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany; University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany
| | - Helga Schmetzer
- Helmholtz Center Munich (German Research Center for Environmental Health and Clinical Cooperative Group Hematopoetic Cell-Transplantation), 81377 Munich, Germany; University Hospital of Munich, Department for Hematopoetic Cell Transplantation, Med. Dept. 3, 81377 Munich, Germany.
| |
Collapse
|
12
|
Bone marrow dendritic cells are reduced in patients with high-risk myelodysplastic syndromes. Leuk Res 2013; 37:266-73. [DOI: 10.1016/j.leukres.2012.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
|
13
|
Kremser A, Kufner S, Konhaeuser E, Kroell T, Hausmann A, Tischer J, Kolb HJ, Zitzelsberger H, Schmetzer H. Combined immunophenotyping and fluorescence in situ hybridization with chromosome-specific DNA probes allows quantification and differentiation of ex vivo generated dendritic cells, leukemia-derived dendritic cells and clonal leukemic cells in patients with acute myeloid leukemia. Leuk Lymphoma 2012; 54:1297-308. [PMID: 23163701 DOI: 10.3109/10428194.2012.751490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antileukemic T-cell responses induced by leukemia-derived dendritic cells (DC(leu)) are variable, due to varying DC/DC(leu) composition/quality. We studied DC/DC(leu) composition/quality after blast culture in four DC media by flow cytometry (FC) and combined fluorescence in situ hybridization/immunophenotyping analysis (FISH-IPA). Both methods showed that DC methods produce variable proportions of DC subtypes. FISH-IPA is an elaborate method to study clonal aberrations in blast/DC cells on slides, however without preselection of distinct cell populations for FISH analysis. FISH-IPA data proved previous FC data: not every clonal/blast cell is converted to DC(leu) (resulting in various proportions of DC(leu)) and not every detectable DC is of clonal/leukemic origin. Preselection of the best of four DC methods for "best" DC/DC(leu) generation is necessary. DC(leu) proportions correlate with the antileukemic functionality of DC/DC(leu)-stimulated T-cells, thereby proving the necessity of studying the quality of DC/DC(leu) after culture. FC is the superior method to quantify DC/DC(leu), since a blast phenotype is available in every given patient, even with low/no proportions of clonal aberrations, and can easily be used to study cellular compositions after DC culture.
Collapse
Affiliation(s)
- Andreas Kremser
- Department of Hematopoietic Cell Transplantations, University Hospital of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Reuther S, Schmetzer H, Schuster FR, Krell P, Grabrucker C, Liepert A, Kroell T, Kolb HJ, Borkhardt A, Buhmann R. In vitro-induced response patterns of antileukemic T cells: characterization by spectratyping and immunophenotyping. Clin Exp Med 2012; 13:29-48. [PMID: 22441559 DOI: 10.1007/s10238-012-0180-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 02/28/2012] [Indexed: 11/24/2022]
Abstract
Myeloid leukemic cells can be induced to differentiate into leukemia-derived dendritic cells (DCleu) regaining the stimulatory capacity of professional DCs while presenting the leukemic antigen repertoire. But so far, the induced antileukemic T-cell responses are variable both in specificity and in efficacy. In an attempt to elucidate the underlying causes of different T-cell response patterns, T-cell receptor (TR) Vβ chain rearrangements were correlated with the T cells corresponding immunophenotypic profile, as well as their proliferative response and cytolytic capacities. In three different settings, donor T cells, either human leukocyte antigen matched or mismatched (haploidentical), or autologous T cells were repeatedly stimulated with myeloid blasts or leukemia-derived DC/DCleus from the corresponding patients diseased from acute myeloid leukemia (AML). Although no significant differences in T-cell proliferation were observed, the T-cell-mediated cytolytic response pattern varied considerably and even caused blast proliferation in two cases. Spectratyping revealed a remarkable restriction (>75% of normal level) of the CD4+ or CD8+-TR repertoire of blast- or DC/DCleu-stimulated T cells. Although in absolute terms, DC/DCleu stimulation induced the highest grade of restriction in the CD8+ T-cell subset, the CD4+ T-cell compartment seemed to be relatively more affected. But most importantly, in vitro stimulation with DC/DCleu resulted into an identical TR restriction pattern (β chain) that could be identified in vivo in a patient sample 3 months after allo-SCT. Thus, in vitro tests combining functional flow cytometry with spectratyping might provide predictive information about T cellular response patterns in vivo.
Collapse
Affiliation(s)
- Susanne Reuther
- Faculty of Medical, Department of Paediatric Oncology, Haematology and Immunology, University Dusseldorf, 40225, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|