1
|
Jamadade P, Nupur N, Maharana KC, Singh S. Therapeutic Monoclonal Antibodies for Metabolic Disorders: Major Advancements and Future Perspectives. Curr Atheroscler Rep 2024; 26:549-571. [PMID: 39008202 DOI: 10.1007/s11883-024-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW Globally, the prevalence of metabolic disorders is rising. Elevated low-density lipoprotein (LDL) cholesterol is a hallmark of familial hypercholesterolemia, one of the most prevalent hereditary metabolic disorders and another one is Diabetes mellitus (DM) that is more common globally, characterised by hyperglycemia with low insulin-directed glucose by target cells. It is still known that low-density lipoprotein cholesterol (LDL-C) increases the risk of cardiovascular disease (CVD). LDL-C levels are thought to be the main therapeutic objectives. RECENT FINDINGS The primary therapy for individuals with elevated cholesterol levels is the use of statins and other lipid lowering drugs like ezetimibe for hypercholesterolemia. Even after taking statin medication to the maximum extent possible, some individuals still have a sizable residual cardiovascular risk. To overcome this proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors-monoclonal antibodies (mAbs) are a novel class of systemic macromolecules that have enhanced LDL-C-lowering efficacy. Along with this other inhibitor are used like Angiopoeitin like 3 inhibitors. Research on both humans and animals has shown that anti-CD3 antibodies can correct autoimmune disorders like diabetes mellitus. Individuals diagnosed with familial hypercholesterolemia (FH) may need additional treatment options beyond statins, especially when facing challenges such as statin tolerance or the inability of even the highest statin doses to reach the desired target cholesterol level. Here is the summary of PCSK9, ANGPTL-3 and CD3 inhibitors and their detailed information. In this review we discuss the details of PCSK9, ANGPTL-3 and CD3 inhibitors and the current therapeutic interventions of using the monoclonal antibodies in case of the metabolic disorder. We further present the present studies and the future prospective of the same.
Collapse
Affiliation(s)
- Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Vaishali, Hajipur, 844102, Bihar, India
| | - Neh Nupur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Vaishali, Hajipur, 844102, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Vaishali, Hajipur, 844102, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotions Industrial Park (EPIP), Vaishali, Hajipur, 844102, Bihar, India.
| |
Collapse
|
2
|
Liu Y, Li W, Chen Y, Wang X. Anti-CD3 monoclonal antibodies in treatment of type 1 diabetes: a systematic review and meta-analysis. Endocrine 2024; 83:322-329. [PMID: 37658243 DOI: 10.1007/s12020-023-03499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
PURPOSE This meta-analysis aimed to assess the efficacy and safety of anti-CD3 monoclonal antibodies (mAbs) for type 1 diabetes. METHODS We searched PubMed, Embase and Cochrane until 23 February 2023 for randomized controlled trials that compared anti-CD3 mAbs with placebo in type 1 diabetes. The primary outcome was the area under the curve (AUC) of C-peptide, daily insulin dose or HbA1c. RESULTS Totally 12 trials that included 1870 participants were eligible for inclusion in the review. Compared with the control group, anti-CD3 mAbs increased AUC of C-peptide at 1 year (P = 0.0005, MD 0.14, 95% CI [0.06, 0.22], I2 = 94%), and 2 years (P = 0.0003, MD 0.20, 95% CI [0.09, 0.30], I2 = 88%). The use of anti-CD3 mAbs decreased insulin use at 1 year (P = 0.001, MD -0.09, 95% CI [-0.15, -0.04], I2 = 90%), and 2 years (P < 0.00001, MD -0.18, 95% CI [-0.25, -0.12], I2 = 86%). But there was no statistically significant effect on HbA1c levels. Vomiting, nausea, rash, pyrexia and headache were reported more frequently with anti-CD3 mAbs than with placebo. However, incidence of total adverse events and serious adverse events was similar when comparing anti-CD3 mAbs with placebo. CONCLUSIONS Our results suggest that anti-CD3 mAbs were a potential therapy for improving AUC of C-peptide and insulin use in type 1 diabetes.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixia Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Wang
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine/the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
3
|
Patel SK, Ma CS, Fourlanos S, Greenfield JR. Autoantibody-Negative Type 1 Diabetes: A Neglected Subtype. Trends Endocrinol Metab 2021; 32:295-305. [PMID: 33712367 DOI: 10.1016/j.tem.2021.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Up to 15% of individuals with a clinical phenotype of type 1 diabetes (T1D) do not have evidence of seropositivity for pancreatic islet autoantibodies. On this basis, they are classified as nonimmune or idiopathic, and remain an understudied population, as they are excluded from T1D immunomodulatory trials. Our limited understanding of the disease aetiopathogenesis in autoantibody-negative T1D hinders our ability to improve diagnostic pathways and discover novel therapeutic agents; particularly as we progress towards an era of precision medicine. This review summarises the current understanding and challenges in studying autoantibody-negative T1D. We review the literature regarding T1D classification, and the role of autoimmunity and defects in the immunogenic pathway that may distinguish autoantibody-positive and -negative T1D.
Collapse
Affiliation(s)
- Shivani K Patel
- Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Diabetes and Endocrinology, St. Vincent's Hospital, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Cindy S Ma
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia; Human Immune Disorders, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Spiros Fourlanos
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jerry R Greenfield
- Diabetes and Metabolism, Garvan Institute of Medical Research, Sydney, NSW, Australia; Department of Diabetes and Endocrinology, St. Vincent's Hospital, Sydney, NSW, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Helegbe GK, Huy NT, Yanagi T, Shuaibu MN, Kikuchi M, Cherif MS, Hirayama K. Elevated IL-17 levels in semi-immune anaemic mice infected with Plasmodium berghei ANKA. Malar J 2018; 17:169. [PMID: 29665817 PMCID: PMC5905139 DOI: 10.1186/s12936-018-2257-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alterations in inflammatory cytokines and genetic background of the host contribute to the outcome of malaria infection. Despite the promising protective role of IL-17 in infections, little attention is given to further understand its importance in the pathogenesis of severe malaria anaemia in chronic/endemic situations. The objective of this study, therefore, was to evaluate IL-17 levels in anaemic condition and its association with host genetic factors. METHODS Two mice strains (Balb/c and CBA) were crossed to get the F1 progeny, and were (F1, Balb/c, CBA) taken through 6 cycles of Plasmodium berghei (ANKA strain) infection and chloroquine/pyrimethamine treatment to generate semi-immune status. Cytokine levels and kinetics of antibody production, CD4+CD25+T regulatory cells were evaluated by bead-based multiplex assay kit, ELISA and FACs, respectively. RESULTS High survival with high Hb loss at significantly low parasitaemia was observed in Balb/c and F1. Furthermore, IgG levels were two times higher in Balb/c, F1 than CBA. While CD4+CD25+ Treg cells were lower in CBA; IL-4, IFN-γ, IL-12α and IL-17 were significantly higher (p < 0.05) in Balb/c, F1. CONCLUSIONS In conclusion, elevated IL-17 levels together with high IL-4, IL-12α and IFN-γ levels may be a marker of protection, and the mechanism may be controlled by host factor (s). Further studies of F2 between the F1 and Balb/c will be informative in evaluating if these genes are segregated or further apart.
Collapse
Affiliation(s)
- Gideon Kofi Helegbe
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana.,West Africa Center for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Nguyen Tien Huy
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tetsuo Yanagi
- National Bio-Resource Center (NBRC), NEKKEN, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Mohammed Nasir Shuaibu
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Mahamoud Sama Cherif
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,National Bio-Resource Center (NBRC), NEKKEN, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
5
|
Skyler JS. Prevention and reversal of type 1 diabetes--past challenges and future opportunities. Diabetes Care 2015; 38:997-1007. [PMID: 25998292 DOI: 10.2337/dc15-0349] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over the past three decades there have been a number of clinical trials directed at interdicting the type 1 diabetes (T1D) disease process in an attempt to prevent the development of the disease in those at increased risk or to stabilize-potentially even reverse-the disease in people with T1D, usually of recent onset. Unfortunately, to date there has been no prevention trial that has resulted in delay or prevention of T1D. And, trials in people with T1D have had mixed results with some showing promise with at least transient improvement in β-cell function compared with randomized control groups, while others have failed to slow the decline in β-cell function when compared with placebo. This Perspective will assess the past and present challenges in this effort and provide an outline for potential future opportunities.
Collapse
Affiliation(s)
- Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
6
|
Chang JT, Sandborn WJ, Ernst PB. Studies in human intestinal tissues: is it time to reemphasize research in human immunology? Gastroenterology 2014; 147:26-30. [PMID: 24877864 DOI: 10.1053/j.gastro.2014.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- John T Chang
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California.
| | - William J Sandborn
- Division of Gastroenterology, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Peter B Ernst
- Department of Pathology, Division of Comparative Pathology and Medicine, University of California, San Diego, California
| |
Collapse
|
7
|
|
8
|
Hagopian W, Ferry RJ, Sherry N, Carlin D, Bonvini E, Johnson S, Stein KE, Koenig S, Daifotis AG, Herold KC, Ludvigsson J. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial. Diabetes 2013; 62:3901-8. [PMID: 23801579 PMCID: PMC3806608 DOI: 10.2337/db13-0236] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protégé was a phase 3, randomized, double-blind, parallel, placebo-controlled 2-year study of three intravenous teplizumab dosing regimens, administered daily for 14 days at baseline and again after 26 weeks, in new-onset type 1 diabetes. We sought to determine efficacy and safety of teplizumab immunotherapy at 2 years and to identify characteristics associated with therapeutic response. Of 516 randomized patients, 513 were treated, and 462 completed 2 years of follow-up. Teplizumab (14-day full-dose) reduced the loss of C-peptide mean area under the curve (AUC), a prespecified secondary end point, at 2 years versus placebo. In analyses of prespecified and post hoc subsets at entry, U.S. residents, patients with C-peptide mean AUC >0.2 nmol/L, those randomized ≤6 weeks after diagnosis, HbA1c <7.5% (58 mmol/mol), insulin use <0.4 units/kg/day, and 8-17 years of age each had greater teplizumab-associated C-peptide preservation than their counterparts. Exogenous insulin needs tended to be reduced versus placebo. Antidrug antibodies developed in some patients, without apparent change in drug efficacy. No new safety or tolerability issues were observed during year 2. In summary, anti-CD3 therapy reduced C-peptide loss 2 years after diagnosis using a tolerable dose.
Collapse
Affiliation(s)
- William Hagopian
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
- Corresponding author: William Hagopian,
| | - Robert J. Ferry
- Division of Pediatric Endocrinology and Metabolism, Le Bonheur Children’s Hospital and University of Tennessee Health Science Center, Memphis, Tennessee
| | - Nicole Sherry
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
9
|
Daifotis AG, Koenig S, Chatenoud L, Herold KC. Anti-CD3 clinical trials in type 1 diabetes mellitus. Clin Immunol 2013; 149:268-78. [PMID: 23726024 DOI: 10.1016/j.clim.2013.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022]
Abstract
Two humanized, anti-CD3 mAbs with reduced FcR binding, teplizumab and otelixizumab, have been evaluated in over 1500 subjects, ages 7-45, with new and recently diagnosed T1D with a range of intravenous doses (3-48mg) and regimens (6-14 days, single or repeat courses). In general, studies that used adequate dosing demonstrated improvement in stimulated C-peptide responses and reduced need for exogenous insulin for two years and even longer after diagnosis. Drug treatment causes a transient reduction in circulating T cells, but the available data suggest that the mechanism of action may involve induction of regulatory mechanisms. The adverse effects of anti-CD3 treatment are infusion-related and transient. The studies have identified significant differences in efficacy among patient groups suggesting that a key aspect for development of this immune therapy is identification of the demographic, metabolic, and immunologic features that distinguish subjects who are most likely to show beneficial clinical responses.
Collapse
|
10
|
Dépis F, Hatterer E, Ballet R, Daubeuf B, Cons L, Glatt S, Reith W, Kosco-Vilbois M, Dean Y. Characterization of a surrogate murine antibody to model anti-human CD3 therapies. MAbs 2013; 5:555-64. [PMID: 23751612 DOI: 10.4161/mabs.24736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fc-modified anti-human CD3ε monoclonal antibodies (mAbs) are in clinical development for the treatment of autoimmune diseases. These next generation mAbs have completed clinical trials in patients with type-1 diabetes and inflammatory bowel disease demonstrating a narrow therapeutic window. Lowered doses are ineffective, yet higher pharmacologically-active doses cause an undesirable level of adverse events. Thus, there is a critical need for a return to bench research to explore ways of improving clinical outcomes. Indeed, we recently reported that a short course of treatment affords synergy, providing long-term disease amelioration when combining anti-mouse CD3 and anti-mouse tumor necrosis factor mAbs in experimental arthritis. Such strategies may widen the window between risk and benefit; however, to more accurately assess experimentally the biology and pharmacology, reagents that mimic the current development candidates were required. Consequently, we engineered an Fc-modified anti-mouse CD3ε mAb, 2C11-Novi. Here, we report the functional characterization of 2C11-Novi demonstrating that it does not bind FcγR in vitro and elicits little cytokine release in vivo, while maintaining classical pharmacodynamic effects (CD3-TCR downregulation and T cell killing). Furthermore, we observed that oral administration of 2C11-Novi ameliorated progression of remitting-relapsing experimental autoimmune encephalitis in mice, significantly reducing the primary acute and subsequent relapse phase of the disease. With innovative approaches validated in two experimental models of human disease, 2C11-Novi represents a meaningful tool to conduct further mechanistic studies aiming at exploiting the immunoregulatory properties of Fc-modified anti-CD3 therapies via combination therapy using parenteral or oral routes of administration.
Collapse
|
11
|
Spoerl D, Bircher AJ. Drugs that act on the immune system: cytokines and monoclonal antibodies. SIDE EFFECTS OF DRUGS ANNUAL 2012:579-607. [DOI: 10.1016/b978-0-444-59499-0.00037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|