1
|
Abstract
Invasive fusariosis is a serious invasive fungal disease, affecting immunocompetent and, more frequently, immunocompromised patients. Localized disease is the typical clinical form in immunocompetent patients. Immunocompromised hosts at elevated risk of developing invasive fusariosis are patients with acute leukemia receiving chemotherapeutic regimens for remission induction, and those undergoing allogeneic hematopoietic cell transplant. In this setting, the infection is usually disseminated with positive blood cultures, multiple painful metastatic skin lesions, and lung involvement. Currently available antifungal agents have poor in vitro activity against Fusarium species, but a clear-cut correlation between in vitro activity and clinical effectiveness does not exist. The outcome of invasive fusariosis is largely dependent on the resolution of immunosuppression, especially neutrophil recovery in neutropenic patients.
Collapse
Affiliation(s)
- Marcio Nucci
- University Hospital, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Grupo Oncoclínicas, Rio de Janeiro, Brazil
| | - Elias Anaissie
- CTI Clinical Trial and Consulting, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Chen M, Jiang Y, Cai X, Lu X, Chao H. Combination of Gemcitabine and Thymosin alpha 1 exhibit a better anti-tumor effect on nasal natural killer/T-cell lymphoma. Int Immunopharmacol 2021; 98:107829. [PMID: 34119916 DOI: 10.1016/j.intimp.2021.107829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Nasal natural killer/T-cell lymphoma (NNKTL) is an aggressive and poor prognostic malignant tumor along with high-level infection of Epstein-Barr virus (EBV). Gemcitabine (Gem) and Thymosin alpha 1 (Tα1) exert an anti-tumor effect in various cancers. However, the effect of the combination of Gem and Tα1 in NNKTL remains unknown. METHODS SNK6 cells were treated with Gem, Tα1 and Gem plus Tα1 for 48 h. The expression levels of EBV and inflammatory factors were measured by qRT-PCR assay. The effect of Gem and Tα1 on cell viability, proliferation, apoptosis, autophagy was detected by CCK-8, colony formation, flow cytometry, autophagic flux measurement, respectively. Western blot was used to evaluate the expression of proteins related to epithelial-mesenchymal transition (EMT), apoptosis and autophagy. In vivo xenograft models were used to further verify the roles of Gem and Tα1. Tumors were removed for weight measurement, H&E and IHC staining. RESULTS We identified that the half maximal inhibitory concentration (IC50) of Gem and Tα1 was 116.5 μmol/ml and 1.334 μmol/ml. Alone or combined administration of Gem and Tα1 dramatically attenuated the EBV viral load and promoted inflammatory factors expression in SNK6 cells, among which the combination of Gem and Tα1 treatment showed the most significant effect. Besides, combination treatment with Gem and Tα1 markedly inhibited cell growth and EMT progress, and enhanced apoptosis and autophagy. Similarly, Gem combined with Tα1 suppressed tumor growth, promoted apoptosis and autophagy in vivo. Additionally, combination treatment with Gem and Tα1 inhibited PI3K/AKT/mTOR pathway. CONCLUSION In summary, combination administration of Gem and Tα1 suppressed the progression of NNKTL in vivo and in vitro. Our study provided an effective therapeutic strategy potentially for the clinical treatment of NNKTL.
Collapse
Affiliation(s)
- Meiyu Chen
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China.
| | - Yu Jiang
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China.
| | - Xiaohui Cai
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Xuzhang Lu
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China
| | - Hongying Chao
- Department of Hematology, Affiliated Changzhou Second Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
3
|
Chaves AFA, Xander P, Romera LMD, Fonseca FLA, Batista WL. What is the elephant in the room when considering new therapies for fungal diseases? Crit Rev Microbiol 2021; 47:275-289. [PMID: 33513315 DOI: 10.1080/1040841x.2021.1876632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The global scenario of antimicrobial resistance is alarming, and the development of new drugs has not appeared to make substantial progress. The constraints on drug discovery are due to difficulties in finding new targets for therapy, the high cost of development, and the mismatch between the time of drug introduction in a clinic and microorganism adaptation to a drug. Policies to address neglected diseases miss the broad spectrum of mycosis. Society is not aware of the actual threat represented by fungi to human health, food security, and biodiversity. The evidence discussed here is critical for warning governments to establish effective surveillance policies for fungi.HIGHLIGHTSFungal diseases are ignored even among neglected disease classifications.There are few options to treat mycoses, which is an increasing concern regarding fungal resistance to drugs, as evidenced by the spread of Candida auris.Fungal diseases represent a real threat to human health and food security.Investment in research to investigate the potential of repurposing drugs already in use could obtain results in the short term.
Collapse
Affiliation(s)
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Wagner Luiz Batista
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Dominari A, III DH, Pandav K, Matos W, Biswas S, Reddy G, Thevuthasan S, Khan MA, Mathew A, Makkar SS, Zaidi M, Fahem MMM, Beas R, Castaneda V, Paul T, Halpern J, Baralt D. Thymosin alpha 1: A comprehensive review of the literature. World J Virol 2020; 9:67-78. [PMID: 33362999 PMCID: PMC7747025 DOI: 10.5501/wjv.v9.i5.67] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Thymosin alpha 1 is a peptide naturally occurring in the thymus that has long been recognized for modifying, enhancing, and restoring immune function. Thymosin alpha 1 has been utilized in the treatment of immunocompromised states and malignancies, as an enhancer of vaccine response, and as a means of curbing morbidity and mortality in sepsis and numerous infections. Studies have postulated that thymosin alpha 1 could help improve the outcome in severely ill corona virus disease 2019 patients by repairing damage caused by overactivation of lymphocytic immunity and how thymosin alpha 1 could prevent the excessive activation of T cells. In this review, we discuss key literature on the background knowledge and current clinical uses of thymosin alpha 1. Considering the known biochemical properties including antibacterial and antiviral properties, time-honored applications, and the new promising findings regarding the use of thymosin, we believe that thymosin alpha 1 deserves further investigation into its antiviral properties and possible repurposing as a treatment against severe acute respiratory syndrome coronavirus-2.
Collapse
Affiliation(s)
- Asimina Dominari
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Donald Hathaway III
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Krunal Pandav
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Wanessa Matos
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Sharmi Biswas
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Gowry Reddy
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Sindhu Thevuthasan
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Muhammad Adnan Khan
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Anoopa Mathew
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Sarabjot Singh Makkar
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Madiha Zaidi
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | | | - Renato Beas
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Valeria Castaneda
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Trissa Paul
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - John Halpern
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Diana Baralt
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| |
Collapse
|
5
|
Tortorano AM, Richardson M, Roilides E, van Diepeningen A, Caira M, Munoz P, Johnson E, Meletiadis J, Pana ZD, Lackner M, Verweij P, Freiberger T, Cornely OA, Arikan-Akdagli S, Dannaoui E, Groll AH, Lagrou K, Chakrabarti A, Lanternier F, Pagano L, Skiada A, Akova M, Arendrup MC, Boekhout T, Chowdhary A, Cuenca-Estrella M, Guinea J, Guarro J, de Hoog S, Hope W, Kathuria S, Lortholary O, Meis JF, Ullmann AJ, Petrikkos G, Lass-Flörl C. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect 2014; 20 Suppl 3:27-46. [PMID: 24548001 DOI: 10.1111/1469-0691.12465] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 01/03/2023]
Abstract
Mycoses summarized in the hyalohyphomycosis group are heterogeneous, defined by the presence of hyaline (non-dematiaceous) hyphae. The number of organisms implicated in hyalohyphomycosis is increasing and the most clinically important species belong to the genera Fusarium, Scedosporium, Acremonium, Scopulariopsis, Purpureocillium and Paecilomyces. Severely immunocompromised patients are particularly vulnerable to infection, and clinical manifestations range from colonization to chronic localized lesions to acute invasive and/or disseminated diseases. Diagnosis usually requires isolation and identification of the infecting pathogen. A poor prognosis is associated with fusariosis and early therapy of localized disease is important to prevent progression to a more aggressive or disseminated infection. Therapy should include voriconazole and surgical debridement where possible or posaconazole as salvage treatment. Voriconazole represents the first-line treatment of infections due to members of the genus Scedosporium. For Acremonium spp., Scopulariopsis spp., Purpureocillium spp. and Paecilomyces spp. the optimal antifungal treatment has not been established. Management usually consists of surgery and antifungal treatment, depending on the clinical presentation.
Collapse
Affiliation(s)
- A M Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schmidt S, Tramsen L, Schneider A, Balan A, Lehrnbecher T. Immunotherapeutic strategies against mucormycosis in haematopoietic stem cell transplantation. Mycoses 2014; 57 Suppl 3:8-12. [PMID: 25231156 DOI: 10.1111/myc.12241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/22/2013] [Accepted: 01/31/2014] [Indexed: 11/26/2022]
Abstract
Mucormycoses remain a serious complication in patients undergoing allogeneic haematopoietic stem cell transplantation (HSCT). In these patients, mortality rates of mucormycosis reach up to 90%, which is due, at least in part, to the severe and prolonged immunosuppression after transplantation. Although prolonged neutropaenia is one of the most important risk factors for mucormycosis, other cell populations, such as CD4(+) T cells may also provide critical defence mechanisms against this infection. The management of mucormycosis includes antifungal therapy, surgery and, most importantly, the control of the underlying predisposing conditions, such as the correction of an impaired immune system. Here, we review the current data of granulocytes, antifungal T cells and natural killer cells regarding their activity against mucormycetes and regarding a potential immunotherapeutic approach. It is hoped that further animal studies and clinical trials assessing immunotherapeutic strategies will ultimately improve the poor prognosis of allogeneic HSCT recipients suffering from mucormycosis.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Pediatric Hematology and Oncology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | | | | | |
Collapse
|
7
|
Muszewska A, Pawłowska J, Krzyściak P. Biology, systematics, and clinical manifestations of Zygomycota infections. Eur J Clin Microbiol Infect Dis 2014; 33:1273-87. [PMID: 24615580 PMCID: PMC4077243 DOI: 10.1007/s10096-014-2076-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/31/2014] [Indexed: 01/13/2023]
Abstract
Fungi cause opportunistic, nosocomial, and community-acquired infections. Among fungal infections (mycoses) zygomycoses are exceptionally severe, with a mortality rate exceeding 50%. Immunocompromised hosts, transplant recipients, and diabetic patients with uncontrolled keto-acidosis and high iron serum levels are at risk. Zygomycota are capable of infecting hosts immune to other filamentous fungi. The infection often follows a progressive pattern, with angioinvasion and metastases. Moreover, current antifungal therapy frequently has an unfavorable outcome. Zygomycota are resistant to some of the routinely used antifungals, among them azoles (except posaconazole) and echinocandins. The typical treatment consists of surgical debridement of the infected tissues accompanied by amphotericin B administration. The latter has strong nephrotoxic side effects, which make it unsuitable for prophylaxis. Delayed administration of amphotericin and excision of mycelium-containing tissues worsens survival prognoses. More than 30 species of Zygomycota are involved in human infections, among them Mucorales is the most abundant. Prognosis and treatment suggestions differ for each species, which makes fast and reliable diagnosis essential. Serum sample PCR-based identification often gives false-negative results; culture-based identification is time-consuming and not always feasible. With the dawn of Zygomycota sequencing projects significant advancement is expected, as in the case of treatment of Ascomycota infections.
Collapse
Affiliation(s)
- A Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawiskiego 5a, 02-106, Warsaw, Poland,
| | | | | |
Collapse
|
8
|
Tsoulas C, Tragiannidis A, Groll AH. Medical and Adjunctive Treatment of Mucormycosis in Children: Scientific Rationale and Analysis of Cases Reported in the Literature. CURRENT FUNGAL INFECTION REPORTS 2013. [DOI: 10.1007/s12281-013-0166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Lyons JL. CNS Mold Infections. Curr Infect Dis Rep 2013; 15:569-575. [PMID: 24122369 DOI: 10.1007/s11908-013-0376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mold infections of the central nervous system (CNS) present as abscesses, infarcts, hemorrhages, and, less commonly, meningitis. These invasive infections are difficult both to identify and to eradicate given low-sensitivity diagnostics and high-toxicity, low-efficacy antifungal therapies, hence resulting in high rates of morbidity and mortality. Herein, the recent literature on CNS mold infections is reviewed, and updates in diagnosis and management are discussed.
Collapse
Affiliation(s)
- Jennifer L Lyons
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,
| |
Collapse
|