1
|
Pan W, Jia Z, Zhao X, Chang K, Liu W, Tan W. Identification of immunogenic cell death gene-related subtypes and risk model predicts prognosis and response to immunotherapy in ovarian cancer. PeerJ 2024; 12:e18690. [PMID: 39686988 PMCID: PMC11648682 DOI: 10.7717/peerj.18690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background Immunogenic cell death (ICD) has been associated with enhanced anti-tumor immunotherapy by stimulating adaptive immune responses and remodeling the immune microenvironment in tumors. Nevertheless, the role of ICD-related genes in ovarian cancer (OC) and tumor microenvironment remains unexplored. Methods In this study, high-throughput transcriptomic data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as training and validation sets separately were obtained and proceeded to explore ICD-related clusters, and an ICD-related risk signature was conducted based on the least absolute shrinkage and selection operator (LASSO) Cox regression model by iteration. Multiple tools including CIBERSORT, ESTIMATE, GSEA, TIDE, and immunohistochemistry were further applied to illustrate the biological roles of ICD-related genes as well as the prognostic capacity of ICD risk signature in OC. Results Two ICD-related subtypes were identified, with the ICD-high subtype showing more intense immune cell infiltration and higher activities of immune response signaling, along with a favorable prognosis. Additionally, four candidate ICD genes (IFNG, NLRP3, FOXP3, and IL1B) were determined to potentially impact OC prognosis, with an upregulated expression of NLRP3 in OC and metastatic omental tissues. A prognostic model based on these genes was established, which could predict overall survival (OS) and response to immunotherapy for OC patients, with lower-risk patients benefiting more from immunotherapy. Conclusion Our research conducted a prognostic and prediction of immunotherapy response model based on ICD genes, which could be instrumental in assessing prognosis and assigning immunotherapeutic strategies for OC patients. NLRP3 is a promising target for prognosis in OC.
Collapse
Affiliation(s)
- Wenjing Pan
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhaoyang Jia
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xibo Zhao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University of Medical Sciences, Guangzhou, China
| | - Kexin Chang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wei Liu
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenhua Tan
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Mahmoudi F, Jalayeri MHT, Montaseri A, MohamedKhosroshahi L, Baradaran B. Microbial natural compounds and secondary metabolites as Immunomodulators: A review. Int J Biol Macromol 2024; 278:134778. [PMID: 39153680 DOI: 10.1016/j.ijbiomac.2024.134778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Immunomodulatory therapies are beneficial strategies for the improvement of immune system function. Today, due to the increasing prevalence of immune disorders, cancer, and new viral diseases, there is a greater need to introduce immunomodulatory compounds with more efficiency and fewer side effects. Microbial derivatives are fertile and attractive grounds for discovering lots of novel compounds with various medical properties. The discovery of many natural compounds derived from bacterial sources, such as secondary metabolites with promising immunomodulating activities, represents the importance of this topic in drug discovery and emphasizes the necessity for a coherent source of study in this area. Considering this need, in this review, we aim to focus on the current information about the immunomodulatory effects of bacterial secondary metabolites and natural immunomodulators derived from microorganisms.
Collapse
Affiliation(s)
- Fariba Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hadi Tajik Jalayeri
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital Golestan University of Medical Sciences, Gorgan, Iran
| | - Azadeh Montaseri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy.
| | - Leila MohamedKhosroshahi
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Sarkar S, Saha SA, Swarnakar A, Chakrabarty A, Dey A, Sarkar P, Banerjee S, Mitra P. The molecular prognostic score, a classifier for risk stratification of high-grade serous ovarian cancer. J Ovarian Res 2024; 17:159. [PMID: 39095849 PMCID: PMC11296390 DOI: 10.1186/s13048-024-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The clinicopathological parameters such as residual tumor, grade, the International Federation of Gynecology and Obstetrics (FIGO) score are often used to predict the survival of ovarian cancer patients, but the 5-year survival of high grade serous ovarian cancer (HGSOC) still remains around 30%. Hence, the relentless pursuit of enhanced prognostic tools for HGSOC, this study introduces an unprecedented gene expression-based molecular prognostic score (mPS). Derived from a novel 20-gene signature through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression, the mPS stands out for its predictive prowess. RESULTS Validation across diverse datasets, including training and test sets (n = 491 each) and a large HGSOC patient cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium (n = 7542), consistently shows an area-under-curve (AUC) around 0.7 for predicting 5-year overall survival. The mPS's impact on prognosis resonates profoundly, yielding an adjusted hazard-ratio (HR) of 6.1 (95% CI: 3.65-10.3; p < 0.001), overshadowing conventional parameters-FIGO score, residual disease, and age. Molecular insights gleaned from mPS stratification uncover intriguing pathways, with focal-adhesion, Wnt, and Notch signaling upregulated, and antigen processing and presentation downregulated (p < 0.001) in high-risk HGSOC cohorts. CONCLUSION Positioned as a robust prognostic marker, the 20-gene signature-derived mPS emerges as a potential game-changer in clinical settings. Beyond its role in predicting overall survival, its implications extend to guiding alternative therapies, especially targeting Wnt/Notch signaling pathways and immune evasion-a promising avenue for improving outcomes in high-risk HGSOC patients.
Collapse
Affiliation(s)
- Siddik Sarkar
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| | - Sarbar Ali Saha
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Abhishek Swarnakar
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Arnab Chakrabarty
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Avipsa Dey
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
| | - Poulomi Sarkar
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
| | - Sarthak Banerjee
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
| | - Pralay Mitra
- Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
4
|
Stiegeler N, Garsed DW, Au-Yeung G, Bowtell DDL, Heinzelmann-Schwarz V, Zwimpfer TA. Homologous recombination proficient subtypes of high-grade serous ovarian cancer: treatment options for a poor prognosis group. Front Oncol 2024; 14:1387281. [PMID: 38894867 PMCID: PMC11183307 DOI: 10.3389/fonc.2024.1387281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 50% of tubo-ovarian high-grade serous carcinomas (HGSCs) have functional homologous recombination-mediated (HR) DNA repair, so-called HR-proficient tumors, which are often associated with primary platinum resistance (relapse within six months after completion of first-line therapy), minimal benefit from poly(ADP-ribose) polymerase (PARP) inhibitors, and shorter survival. HR-proficient tumors comprise multiple molecular subtypes including cases with CCNE1 amplification, AKT2 amplification or CDK12 alteration, and are often characterized as "cold" tumors with fewer infiltrating lymphocytes and decreased expression of PD-1/PD-L1. Several new treatment approaches aim to manipulate these negative prognostic features and render HR-proficient tumors more susceptible to treatment. Alterations in multiple different molecules and pathways in the DNA damage response are driving new drug development to target HR-proficient cancer cells, such as inhibitors of the CDK or P13K/AKT pathways, as well as ATR inhibitors. Treatment combinations with chemotherapy or PARP inhibitors and agents targeting DNA replication stress have shown promising preclinical and clinical results. New approaches in immunotherapy are also being explored, including vaccines or antibody drug conjugates. Many approaches are still in the early stages of development and further clinical trials will determine their clinical relevance. There is a need to include HR-proficient tumors in ovarian cancer trials and to analyze them in a more targeted manner to provide further evidence for their specific therapy, as this will be crucial in improving the overall prognosis of HGSC and ovarian cancer in general.
Collapse
Affiliation(s)
| | - Dale W. Garsed
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - George Au-Yeung
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - David D. L. Bowtell
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tibor A. Zwimpfer
- Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Gynecological Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Balan D, Kampan NC, Plebanski M, Abd Aziz NH. Unlocking ovarian cancer heterogeneity: advancing immunotherapy through single-cell transcriptomics. Front Oncol 2024; 14:1388663. [PMID: 38873253 PMCID: PMC11169633 DOI: 10.3389/fonc.2024.1388663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Ovarian cancer, a highly fatal gynecological cancer, warrants the need for understanding its heterogeneity. The disease's prevalence and impact are underscored with statistics on mortality rates. Ovarian cancer is categorized into distinct morphological groups, each with its characteristics and prognosis. Despite standard treatments, survival rates remain low due to relapses and chemoresistance. Immune system involvement is evident in ovarian cancer's progression, although the tumor employs immune evasion mechanisms. Immunotherapy, particularly immune checkpoint blockade therapy, is promising, but ovarian cancer's heterogeneity limits its efficacy. Single-cell sequencing technology could be explored as a solution to dissect the heterogeneity within tumor-associated immune cell populations and tumor microenvironments. This cutting-edge technology has the potential to enhance diagnosis, prognosis, and personalized immunotherapy in ovarian cancer, reflecting its broader application in cancer research. The present review focuses on recent advancements and the challenges in applying single-cell transcriptomics to ovarian cancer.
Collapse
Affiliation(s)
- Dharvind Balan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ebott J, McAdams J, Kim C, Jansen C, Woodman M, De La Cruz P, Schrol C, Ribeiro J, James N. Enhanced amphiregulin exposure promotes modulation of the high grade serous ovarian cancer tumor immune microenvironment. Front Pharmacol 2024; 15:1375421. [PMID: 38831884 PMCID: PMC11144882 DOI: 10.3389/fphar.2024.1375421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
High grade serous ovarian cancer (HGSOC) is a lethal gynecologic malignancy in which chemoresistant recurrence rates remain high. Furthermore, HGSOC patients have demonstrated overall low response rates to clinically available immunotherapies. Amphiregulin (AREG), a low affinity epidermal growth factor receptor ligand is known to be significantly upregulated in HGSOC patient tumors following neoadjuvant chemotherapy exposure. While much is known about AREG's role in oncogenesis and classical immunity, it is function in tumor immunology has been comparatively understudied. Therefore, the objective of this present study was to elucidate how increased AREG exposure impacts the ovarian tumor immune microenvironment (OTIME). Using NanoString IO 360 and protein analysis, it was revealed that treatment with recombinant AREG led to prominent upregulation of genes associated with ovarian pathogenesis and immune evasion (CXCL8, CXCL1, CXCL2) along with increased STAT3 activation in HGSOC cells. In vitro co-culture assays consisting of HGSOC cells and peripheral blood mononuclear cells (PBMCs) stimulated with recombinant AREG (rAREG) led to significantly enhanced tumor cell viability. Moreover, PBMCs stimulated with rAREG exhibited significantly lower levels of IFNy and IL-2. In vivo rAREG treatment promoted significant reductions in circulating levels of IL-2 and IL-5. Intratumoral analysis of rAREG treated mice revealed a significant reduction in CD8+ T cells coupled with an upregulation of PD-L1. Finally, combinatorial treatment with an AREG neutralizing antibody and carboplatin led to a synergistic reduction of cell viability in HGSOC cell lines OVCAR8 and PEA2. Overall, this study demonstrates AREG's ability to modulate cytotoxic responses within the OTIME and highlights its role as a novel HGSOC immune target.
Collapse
Affiliation(s)
- Jasmine Ebott
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Julia McAdams
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
| | - Chloe Kim
- School of Public Health, Brown University, Providence, RI, United States
| | - Corrine Jansen
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Morgan Woodman
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Payton De La Cruz
- Pathobiology Graduate Program, Brown University, Providence, RI, United States
| | - Christoph Schrol
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Jennifer Ribeiro
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Nicole James
- Women and Infants Hospital, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Roy Choudhury M, Pappas TC, Twiggs LB, Caoili E, Fritsche H, Phan RT. Ovarian Cancer surgical consideration is markedly improved by the neural network powered-MIA3G multivariate index assay. Front Med (Lausanne) 2024; 11:1374836. [PMID: 38756943 PMCID: PMC11097110 DOI: 10.3389/fmed.2024.1374836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Background Surgery remains the main treatment option for an adnexal mass suspicious of ovarian cancer. The malignancy rate is, however, only 10-15% in women undergoing surgery. This results in a high number of unnecessary surgeries. A surveillance-based approach is recommended to form the basis for surgical referrals. We have previously reported the clinical performance of MIA3G, a deep neural network-based algorithm, for assessing ovarian cancer risk. In this study, we show that MIA3G markedly improves the surgical selection for women presenting with adnexal masses. Methods MIA3G employs seven serum biomarkers, patient age, and menopausal status. Serum samples were collected from 785 women (IQR: 39-55 years) across 12 centers that presented with adnexal masses. MIA3G risk scores were calculated for all subjects in this cohort. Physicians had no access to the MIA3G risk score when deciding upon a surgical referral. The performance of MIA3G for surgery referral was compared to clinical and surgical outcomes. MIA3G was also tested in an independent cohort comprising 29 women across 14 study sites, in which the physicians had access to and utilized MIA3G prior to surgical consideration. Results When compared to the actual number of surgeries (n = 207), referrals based on the MIA3G score would have reduced surgeries by 62% (n = 79). The reduction was higher in premenopausal patients (77%) and in patients ≤55 years old (70%). In addition, a 431% improvement in malignancy prediction would have been observed if physicians had utilized MIA3G scores for surgery selection. The accuracy of MIA3G referral was 90.00% (CI 87.89-92.11), while only 9.18% accuracy was observed when the MIA3G score was not used. These results were corroborated in an independent multi-site study of 29 patients in which the physicians utilized MIA3G in surgical consideration. The surgery reduction was 87% in this cohort. Moreover, the accuracy and concordance of MIA3G in this independent cohort were each 96.55%. Conclusion These findings demonstrate that MIA3G markedly augments the physician's decisions for surgical intervention and improves malignancy prediction in women presenting with adnexal masses. MIA3G utilization as a clinical diagnostic tool might help reduce unnecessary surgeries.
Collapse
Affiliation(s)
- Manjusha Roy Choudhury
- Department of Research and Development, Aspira Women’s Health, Austin, TX, United States
| | - Todd C. Pappas
- Department of Research and Development, Aspira Women’s Health, Austin, TX, United States
| | - Leo B. Twiggs
- Division of Clinical Operations and Medical Affairs, Aspira Women's Health, Austin, TX, United States
| | - Emma Caoili
- Department of Regulatory Affairs and Quality Assurance, Aspira Women’s Health, Shelton, CT, United States
| | | | - Ryan T. Phan
- Department of Research and Development, Aspira Women’s Health, Austin, TX, United States
- Division of Clinical Operations and Medical Affairs, Aspira Women's Health, Austin, TX, United States
- Aspira Labs, Aspira Women's Health, Austin, TX, United States
| |
Collapse
|
8
|
Giancontieri P, Turetta C, Barchiesi G, Pernazza A, Pignataro G, D’Onghia G, Santini D, Tomao F. High-grade serous carcinoma of unknown primary origin associated with STIC clinically presented as isolated inguinal lymphadenopathy: a case report. Front Oncol 2024; 13:1307573. [PMID: 38370346 PMCID: PMC10870410 DOI: 10.3389/fonc.2023.1307573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024] Open
Abstract
Serous tubal intraepithelial carcinoma (STIC) is a precancerous lesion of high-grade serous ovarian carcinoma (HGSOC). Usually, it arises from the fimbrial end of the tube, and it is associated with metastatic potential. On average, the time to progress from STIC to HGSOC is 6.5 years. Therefore, whenever a STIC lesion is found, surgical staging and prophylactic salpingectomy are recommended in order to prevent ovarian cancer. We report a rare case of a 45-year-old female patient who clinically presented an isolated right inguinal lymphadenopathy. The remaining clinical examination was normal. Therefore, an excisional biopsy of the lymph node was performed. Pathological analysis revealed a high-grade serous carcinoma, most likely of gynecological origin. Due to histological evidence, a computed tomography (CT) scan was carried out. There was no CT evidence of ovarian disease, pelvic involvement, intra-abdominal lymphadenopathies, metastatic disease, or ascites. All tumor markers were negative. The patient underwent laparoscopic hysterectomy and bilateral salpingo-oophorectomy followed by surgical staging. Surprisingly, pathological examination showed a STIC lesion in the fimbria of the left fallopian tube. We aim to report the potential capability of STIC to spread particularly through lymphatic pathways rather than peritoneal dissemination.
Collapse
Affiliation(s)
- Paola Giancontieri
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Camilla Turetta
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giacomo Barchiesi
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Angelina Pernazza
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Gemma Pignataro
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | | | - Daniele Santini
- Department of Radiological, Oncological and Anatomo-Pathological Science, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Tomao
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Kumar S, Acharya S, Karthikeyan M, Biswas P, Kumari S. Limitations and potential of immunotherapy in ovarian cancer. Front Immunol 2024; 14:1292166. [PMID: 38264664 PMCID: PMC10803592 DOI: 10.3389/fimmu.2023.1292166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Ovarian cancer (OC) is the third most common gynecological cancer and alone has an emergence rate of approximately 308,069 cases worldwide (2020) with dire survival rates. To put it into perspective, the mortality rate of OC is three times higher than that of breast cancer and it is predicted to only increase significantly by 2040. The primary reasons for such a high rate are that the physical symptoms of OC are detectable only during the advanced phase of the disease when resistance to chemotherapies is high and around 80% of the patients that do indeed respond to chemotherapy initially, show a poor prognosis subsequently. This highlights a pressing need to develop new and effective therapies to tackle advanced OC to improve prognosis and patient survival. A major advance in this direction is the emergence of combination immunotherapeutic methods to boost CD8+ T cell function to tackle OC. In this perspective, we discuss our view of the current state of some of the combination immunotherapies in the treatment of advanced OC, their limitations, and potential approaches toward a safer and more effective response.
Collapse
Affiliation(s)
| | | | | | | | - Sudha Kumari
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
10
|
Marks ZRC, Campbell NK, Mangan NE, Vandenberg CJ, Gearing LJ, Matthews AY, Gould JA, Tate MD, Wray-McCann G, Ying L, Rosli S, Brockwell N, Parker BS, Lim SS, Bilandzic M, Christie EL, Stephens AN, de Geus E, Wakefield MJ, Ho GY, McNally O, McNeish IA, Bowtell DDL, de Weerd NA, Scott CL, Bourke NM, Hertzog PJ. Interferon-ε is a tumour suppressor and restricts ovarian cancer. Nature 2023; 620:1063-1070. [PMID: 37587335 DOI: 10.1038/s41586-023-06421-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
High-grade serous ovarian cancers have low survival rates because of their late presentation with extensive peritoneal metastases and frequent chemoresistance1, and require new treatments guided by novel insights into pathogenesis. Here we describe the intrinsic tumour-suppressive activities of interferon-ε (IFNε). IFNε is constitutively expressed in epithelial cells of the fallopian tube, the cell of origin of high-grade serous ovarian cancers, and is then lost during development of these tumours. We characterize its anti-tumour activity in several preclinical models: ovarian cancer patient-derived xenografts, orthotopic and disseminated syngeneic models, and tumour cell lines with or without mutations in Trp53 and Brca genes. We use manipulation of the IFNε receptor IFNAR1 in different cell compartments, differential exposure status to IFNε and global measures of IFN signalling to show that the mechanism of the anti-tumour activity of IFNε involves direct action on tumour cells and, crucially, activation of anti-tumour immunity. IFNε activated anti-tumour T and natural killer cells and prevented the accumulation and activation of myeloid-derived suppressor cells and regulatory T cells. Thus, we demonstrate that IFNε is an intrinsic tumour suppressor in the female reproductive tract whose activities in models of established and advanced ovarian cancer, distinct from other type I IFNs, are compelling indications of potential new therapeutic approaches for ovarian cancer.
Collapse
Affiliation(s)
- Zoe R C Marks
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nicole K Campbell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Cassandra J Vandenberg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Antony Y Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Jodee A Gould
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Georgie Wray-McCann
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Sarah Rosli
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Natasha Brockwell
- Research Division, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Belinda S Parker
- Research Division, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Maree Bilandzic
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | | | - Andrew N Stephens
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Eveline de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Matthew J Wakefield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Gwo-Yaw Ho
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Orla McNally
- Research Division, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
- Royal Women's Hospital, Parkville, Victoria, Australia
| | - Iain A McNeish
- Ovarian Cancer Action Research Centre, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - David D L Bowtell
- Research Division, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Clare L Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Royal Women's Hospital, Parkville, Victoria, Australia
| | - Nollaig M Bourke
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Department of Medical Gerontology, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
11
|
Acosta JC, Bahr JM, Basu S, O’Donnell JT, Barua A. Expression of CISH, an Inhibitor of NK Cell Function, Increases in Association with Ovarian Cancer Development and Progression. Biomedicines 2023; 11:biomedicines11020299. [PMID: 36830840 PMCID: PMC9952877 DOI: 10.3390/biomedicines11020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Epithelial ovarian cancer (OVCA), a fatal malignancy of women, disseminates locally. Although NK cells mount immune responses against OVCA, tumors inhibit NK cells, and the mechanism is not well understood. Cytokines stimulate NK cells; however, chronic stimulation exhausts them and induces expression of cytokine-inducible SH2-containing protein (CISH). Tumors produce anti-inflammatory cytokine interleukin (IL)-10 which may induce NK cell exhaustion. The goal of this study was to examine if CISH expression in NK cells increases during OVCA development and to determine the mechanism(s) of OVCA-induced CISH expression in NK cells. Normal ovaries (n = 7) were used for CISH, IL-10 and GRP78 expression. In tumor ovaries, CISH was examined in early and late stages (n = 14 each, all subtypes) while IL-10 and GRP78 expression were examined in early and late stage HGSC (n = 5 each). Compared to normal, the population of CISH-expressing NK cells increased and the intensity of IL-10 and GRP78 expression was significantly higher in OVCA (p < 0.05). CISH expression was positively correlated with IL-10 expression (r = 0.52, r = 0.65, p < 0.05 at early and late stages, respectively) while IL-10 expression was positively correlated with GRP78 expression (r = 0.43, r = 0.52, p < 0.05, respectively). These results suggest that OVCA development and progression are associated with increased CISH expression by NK cells which is correlated with tumor-induced persistent cellular stress.
Collapse
Affiliation(s)
- Jasmin C. Acosta
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janice M. Bahr
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sanjib Basu
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - James T. O’Donnell
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Animesh Barua
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence: ; Tel.: +1-(312)-942-6666
| |
Collapse
|
12
|
Israelsson P, Björk E, Nagaev I, Nagaeva O, Lundin E, Mincheva-Nilsson L, Ottander U. NKG2D-mediated cytotoxicity improves after primary surgery for high-grade serous ovarian cancer. Am J Reprod Immunol 2023; 89:e13647. [PMID: 36335434 PMCID: PMC10077899 DOI: 10.1111/aji.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
Abstract
PROBLEM Tumors compromise the patients' immune system to promote their own survival. We have previously reported that HGSC exosomes play a central role, downregulating NKG2D cytotoxicity. Primary surgery's effect on tumor exosomes and NKG2D cytotoxicity in HGSC patients has not been studied before. The overall objective of this study was to explore the effect of surgery on the exosome-induced impairment of NKG2D cytotoxicity in HGSC. METHOD OF STUDY Paired pre- and post-operative blood samples were subjected to cell and exosome analyses regarding the NKG2D receptor and ligands, and NKG2D-mediated cytotoxicity. Lymphocytes were phenotyped by immunoflow cytometry. Exosomes, isolated by ultracentrifugation, and characterized by nanoparticle tracking analysis, transmission and immune electron microscopy and western blot were used in functional cytotoxic experiments. HGSC explant culture-derived exosomes, previously studied by us, were used for comparison. RESULTS HGSC exosomes from patients' sera downregulated NKG2D-mediated cytotoxicity in NK cells of healthy donors. In a subgroup of subjects, NKG2D expression on CTLs and NK cells was upregulated after surgery, correlating to a decrease in the concentration of exosomes in postoperative sera. An overall significantly improved NKG2D-mediated cytotoxic response of the HGSC patients' own NK cells in postoperative compared to preoperative samples was noted. CONCLUSIONS Surgical removal of the primary tumor has a beneficial effect, relieving the exosome-mediated suppression of NKG2D cytotoxicity in HGSC patients, thus boostering their ability to combat cancer.
Collapse
Affiliation(s)
- Pernilla Israelsson
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden.,Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Emma Björk
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Ivan Nagaev
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Olga Nagaeva
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Lucia Mincheva-Nilsson
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Ulrika Ottander
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Jlassi A, Manai M, Morjen M, Sahraoui G, Elasmi Allal M, ELBini-Dhouib I, Naija L, Charfi L, Rejaibi R, Ben Ahmed M, Marrakchi N, Srairi-Abid N, Mezlini A, Manai M, Mrad K, Doghri R. VISTA+/CD8+ status correlates with favorable prognosis in Epithelial ovarian cancer. PLoS One 2023; 18:e0278849. [PMID: 36952478 PMCID: PMC10035885 DOI: 10.1371/journal.pone.0278849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/23/2022] [Indexed: 03/25/2023] Open
Abstract
Immunotherapy by blocking immune checkpoint regulators has emerged as a new targeted therapy for some cancers. Among them V-domain Ig suppressor of Tcell activation (VISTA) which is identified as a novel checkpoint regulator in ovarian cancer. This study aimed to investigate the VISTA role in Epithelial ovarian cancer (EOC), and its relationship with tumor-infiltrating lymphocytes (TILs) markers and its prognostic value. The expression of VISTA, CD3, CD8, CD4, FOXP3, and CD56 was assessed in 168 EOC tissue microarrays (TMA) by immunohistochemistry (IHC). In addition, associations between VISTA, TILs, clinicopathological variables, and overall survival (OS) were analyzed. VISTA expression in IGRov1 cells, as well as in PBMC of EOC patient, was evaluated by western blot. VISTA expression was detected in 64,28% of tissues, among which 42.3% were positive for tumor cells (TCs), and 47,9% were positive for immune cells (ICs). In univariate analysis, VISTA expression was significantly associated with a high density of TILs:CD3+ (p = 0,001), CD4+ (p = 0,002) and CD8+ (p≤0,001), in ICs but not in TCs. In terms of OS, multivariate analysis showed a significant association between the high density of CD8+ TILs and VISTA positive staining in ICs (p = 0,044), but not in TCs (p = 0,108). Kaplan-Meier curves demonstrated no correlation between VISTA expression and prolonged OS in both ICs (p = 0,841) and TCs (p = 0,090). Classification of EOC tumor microenvironment based on VISTA and CD8+TILs expression, demonstrated four immune subtypes: VISTA+/CD8+, VISTA+/CD8-, VISTA-/CD8+ and VISTA-/CD8-. The dual positive VISTA+/CD8+ subtype was significantly associated with prolonged OS in both TCs and ICs (p = 0,012 and p≤0,01, respectively), whereas patients with VISTA+/CD8- had the worst OS. Our results showed that VISTA is highly expressed in the IGRov1 cell line and LT-CD8 from a patient with EOC. Our results highlighted the association of VISTA expression and CD8+ TILs in EOC, with prolonged OS in patients with VISTA+/CD8+ and proposed VISTA as a potential immunotherapeutic target in EOC.
Collapse
Affiliation(s)
- Aida Jlassi
- Department of Biology, Mycology, Pathologies and Biomarkers Laboratory (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Ariana, Tunisia
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Tunis, Tunisia
| | - Maroua Manai
- Department of Biology, Mycology, Pathologies and Biomarkers Laboratory (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Ariana, Tunisia
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
- Department of Medicine, Division of Hematology-oncology, New York, New York, United States of America
| | - Maram Morjen
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Ghada Sahraoui
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Tunis, Tunisia
- Department of Pathology, Salah Azaiez Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | | | - Ines ELBini-Dhouib
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Lamia Naija
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
- Department of Surgical Oncology, Salah Aziz Institute, Tunis, Tunisia
| | - Lamia Charfi
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Tunis, Tunisia
- Department of Pathology, Salah Azaiez Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Rim Rejaibi
- Department of Biology, Mycology, Pathologies and Biomarkers Laboratory (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Ariana, Tunisia
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Tunis, Tunisia
- Department of Pathology, Salah Azaiez Institute, Tunis, Tunisia
| | - Melika Ben Ahmed
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
- Laboratory of Transmission, Control and Immunobiology of Infections - LR16IPT02, Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Amel Mezlini
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
- Department of Medical Oncology, Salah Aziz Institute, Tunis, Tunisia
| | - Mohamed Manai
- Department of Biology, Mycology, Pathologies and Biomarkers Laboratory (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Ariana, Tunisia
| | - Karima Mrad
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Tunis, Tunisia
- Department of Pathology, Salah Azaiez Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Raoudha Doghri
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Tunis, Tunisia
- Department of Pathology, Salah Azaiez Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| |
Collapse
|
14
|
Zhan S, Yung MMH, Siu MKY, Jiao P, Ngan HYS, Chan DW, Chan KKL. New Insights into Ferroptosis Initiating Therapies (FIT) by Targeting the Rewired Lipid Metabolism in Ovarian Cancer Peritoneal Metastases. Int J Mol Sci 2022; 23:ijms232315263. [PMID: 36499591 PMCID: PMC9737695 DOI: 10.3390/ijms232315263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers worldwide. The poor prognosis of this malignancy is substantially attributed to the inadequate symptomatic biomarkers for early diagnosis and effective remedies to cure the disease against chemoresistance and metastasis. Ovarian cancer metastasis is often relatively passive, and the single clusters of ovarian cancer cells detached from the primary ovarian tumor are transcoelomic spread by the peritoneal fluid throughout the peritoneum cavity and omentum. Our earlier studies revealed that lipid-enriched ascitic/omental microenvironment enforced metastatic ovarian cancer cells to undertake metabolic reprogramming and utilize free fatty acids as the main energy source for tumor progression and aggression. Intriguingly, cell susceptibility to ferroptosis has been tightly correlated with the dysregulated fatty acid metabolism (FAM), and enhanced iron uptake as the prominent features of ferroptosis are attributed to the strengthened lipid peroxidation and aberrant iron accumulation, suggesting that ferroptosis induction is a targetable vulnerability to prevent cancer metastasis. Therefore, the standpoints about tackling altered FAM in combination with ferroptosis initiation as a dual-targeted therapy against advanced ovarian cancer were highlighted herein. Furthermore, a discussion on the prospect and challenge of inducing ferroptosis as an innovative therapeutic approach for reversing remedial resistance in cancer interventions was included. It is hoped this proof-of-concept review will indicate appropriate directions for speeding up the translational application of ferroptosis-inducing compounds (FINs) to improve the efficacy of ovarian cancer treatment.
Collapse
Affiliation(s)
- Shijie Zhan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mingo M. H. Yung
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michelle K. Y. Siu
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peili Jiao
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hextan Y. S. Ngan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David W. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
- Correspondence: (D.W.C.); (K.K.L.C.); Tel.: +86-755-2351-6153 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2255-0947 (K.K.L.C.)
| | - Karen K. L. Chan
- Department of Obstetrics & Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: (D.W.C.); (K.K.L.C.); Tel.: +86-755-2351-6153 (D.W.C.); +852-2255-4260 (K.K.L.C.); Fax: +852-2255-0947 (K.K.L.C.)
| |
Collapse
|
15
|
Immune Tumor Microenvironment in Ovarian Cancer Ascites. Int J Mol Sci 2022; 23:ijms231810692. [PMID: 36142615 PMCID: PMC9504085 DOI: 10.3390/ijms231810692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OC) has a specific type of metastasis, via transcoelomic, and most of the patients are diagnosed at advanced stages with multiple tumors spread within the peritoneal cavity. The role of Malignant Ascites (MA) is to serve as a transporter of tumor cells from the primary location to the peritoneal wall or to the surface of the peritoneal organs. MA comprise cellular components with tumor and non-tumor cells and acellular components, creating a unique microenvironment capable of modifying the tumor behavior. These microenvironment factors influence tumor cell proliferation, progression, chemoresistance, and immune evasion, suggesting that MA play an active role in OC progression. Tumor cells induce a complex immune suppression that neutralizes antitumor immunity, leading to disease progression and treatment failure, provoking a tumor-promoting environment. In this review, we will focus on the High-Grade Serous Carcinoma (HGSC) microenvironment with special attention to the tumor microenvironment immunology.
Collapse
|
16
|
Taylor EN, Wilson CM, Franco S, De May H, Medina LY, Yang Y, Flores EB, Bartee E, Selwyn RG, Serda RE. Monitoring Therapeutic Responses to Silicified Cancer Cell Immunotherapy Using PET/MRI in a Mouse Model of Disseminated Ovarian Cancer. Int J Mol Sci 2022; 23:ijms231810525. [PMID: 36142437 PMCID: PMC9504323 DOI: 10.3390/ijms231810525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Current imaging approaches used to monitor tumor progression can lack the ability to distinguish true progression from pseudoprogression. Simultaneous metabolic 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) offers new opportunities to overcome this challenge by refining tumor identification and monitoring therapeutic responses to cancer immunotherapy. In the current work, spatial and quantitative analysis of tumor burden were performed using simultaneous [18F]FDG-PET/MRI to monitor therapeutic responses to a novel silicified cancer cell immunotherapy in a mouse model of disseminated serous epithelial ovarian cancer. Tumor progression was validated by bioluminescence imaging of luciferase expressing tumor cells, flow cytometric analysis of immune cells in the tumor microenvironment, and histopathology. While PET demonstrated the presence of metabolically active cancer cells through [18F]FDG uptake, MRI confirmed cancer-related accumulation of ascites and tissue anatomy. This approach provides complementary information on disease status without a confounding signal from treatment-induced inflammation. This work provides a possible roadmap to facilitate accurate monitoring of therapeutic responses to cancer immunotherapies.
Collapse
Affiliation(s)
- Erik N. Taylor
- Department of Radiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Colin M. Wilson
- Department of Radiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Stefan Franco
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Henning De May
- Department of Obstetrics & Gynecology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Lorél Y. Medina
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Yirong Yang
- Pharmaceutical Sciences, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Erica B. Flores
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric Bartee
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Rita E. Serda
- Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
17
|
Fanale D, Dimino A, Pedone E, Brando C, Corsini LR, Filorizzo C, Fiorino A, Lisanti MC, Magrin L, Randazzo U, Bazan Russo TD, Russo A, Bazan V. Prognostic and Predictive Role of Tumor-Infiltrating Lymphocytes (TILs) in Ovarian Cancer. Cancers (Basel) 2022; 14:4344. [PMID: 36139508 PMCID: PMC9497073 DOI: 10.3390/cancers14184344] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022] Open
Abstract
In the last decade, tumor-infiltrating lymphocytes (TILs) have been recognized as clinically relevant prognostic markers for improved survival, providing the immunological basis for the development of new therapeutic strategies and showing a significant prognostic and predictive role in several malignancies, including ovarian cancer (OC). In fact, many OCs show TILs whose typology and degree of infiltration have been shown to be strongly correlated with prognosis and survival. The OC histological subtype with the higher presence of TILs is the high-grade serous carcinoma (HGSC) followed by the endometrioid subtype, whereas mucinous and clear cell OCs seem to contain a lower percentage of TILs. The abundant presence of TILs in OC suggests an immunogenic potential for this tumor. Despite the high immunogenic potential, OC has been described as a highly immunosuppressive tumor with a high expression of PD1 by TILs. Although further studies are needed to better define their role in prognostic stratification and the therapeutic implication, intraepithelial TILs represent a relevant prognostic factor to take into account in OC. In this review, we will discuss the promising role of TILs as markers which are able to reflect the anticancer immune response, describing their potential capability to predict prognosis and therapy response in OC.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessandra Dimino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Clarissa Filorizzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Maria Chiara Lisanti
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
18
|
Khanlarkhani N, Azizi E, Amidi F, Khodarahmian M, Salehi E, Pazhohan A, Farhood B, Mortezae K, Goradel NH, Nashtaei MS. Metabolic risk factors of ovarian cancer: a review. JBRA Assist Reprod 2022; 26:335-347. [PMID: 34751020 PMCID: PMC9118962 DOI: 10.5935/1518-0557.20210067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/29/2021] [Indexed: 11/20/2022] Open
Abstract
Ovarian cancer continues to be the leading cause of death from gynecological cancers. Despite inconsistent results, patients with metabolic abnormalities, including obesity and diabetes mellitus (DM), have poorer outcomes, showing a correlation with ovarian cancer incidence and ovarian cancer survival. Since ovarian cancer is the most common cancer in women, and considering the increasing prevalence of obesity and DM, this paper reviews the literature regarding the relationship between the aforementioned metabolic derangements and ovarian cancer, with a focus on ovarian cancer incidence, mortality, and likely mechanisms behind them. Several systematic reviews and meta-analyses have shown that obesity is associated with a higher incidence and poorer survival in ovarian cancer. Although more studies are required to investigate the etiological relation of DM and ovarian cancer, sufficient biological evidence indicates poorer outcomes and shorter survival in DM women with ovarian cancer. A variety of pathologic factors may contribute to ovarian cancer risk, development, and survival, including altered adipokine expression, increased levels of circulating growth factors, altered levels of sex hormones, insulin resistance, hyperinsulinemia, and chronic inflammation. Thus, obesity and DM, as changeable risk factors, can be targeted for intervention to prevent ovarian cancer and improve its outcomes.
Collapse
Affiliation(s)
- Neda Khanlarkhani
- Department of Physiology and Pharmacology, Karolinska Institute, Sweden
| | - Elham Azizi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshad Khodarahmian
- Infertility department, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Gynecology, School of Medicine, Fertility and Infertility Research Center, Dr. Ali Shariati Hospital, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Azar Pazhohan
- Infertility Center, Academic Center for Education, Culture and Research, East Azarbaijan, Tabriz, Iran. / Department of Midwifery, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezae
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. / Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Bose S, Saha P, Chatterjee B, Srivastava AK. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: potential pharmacological targets for cancer therapy. Semin Cancer Biol 2022; 86:568-579. [DOI: 10.1016/j.semcancer.2022.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
|
20
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
21
|
Giamougiannis P, Martin-Hirsch PL, Martin FL. The evolving role of MUC16 (CA125) in the transformation of ovarian cells and the progression of neoplasia. Carcinogenesis 2021; 42:327-343. [PMID: 33608706 DOI: 10.1093/carcin/bgab010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
MUC16 (the cancer antigen CA125) is the most commonly used serum biomarker in epithelial ovarian cancer, with increasing levels reflecting disease progression. It is a transmembrane glycoprotein with multiple isoforms, undergoing significant changes through the metastatic process. Aberrant glycosylation and cleavage with overexpression of a small membrane-bound fragment consist MUC16-related mechanisms that enhance malignant potential. Even MUC16 knockdown can induce an aggressive phenotype but can also increase susceptibility to chemotherapy. Variable MUC16 functions help ovarian cancer cells avoid immune cytotoxicity, survive inside ascites and form metastases. This review provides a comprehensive insight into MUC16 transformations and interactions, with description of activated oncogenic signalling pathways, and adds new elements on the role of its differential glycosylation. By following the journey of the molecule from pre-malignant states to advanced stages of disease it demonstrates its behaviour, in relation to the phenotypic shifts and progression of ovarian cancer. Additionally, it presents proposed differences of MUC16 structure in normal/benign conditions and epithelial ovarian malignancy.
Collapse
Affiliation(s)
- Panagiotis Giamougiannis
- Department of Gynaecological Oncology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK.,School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Pierre L Martin-Hirsch
- Department of Gynaecological Oncology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
22
|
Walens A, Olsson LT, Gao X, Hamilton AM, Kirk EL, Cohen SM, Midkiff BR, Xia Y, Sherman ME, Nikolaishvili-Feinberg N, Serody JS, Hoadley KA, Troester MA, Calhoun BC. Protein-based immune profiles of basal-like vs. luminal breast cancers. J Transl Med 2021; 101:785-793. [PMID: 33623115 PMCID: PMC8140991 DOI: 10.1038/s41374-020-00506-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/28/2023] Open
Abstract
Tumor-infiltrating lymphocytes play an important, but incompletely understood role in chemotherapy response and prognosis. In breast cancer, there appear to be distinct immune responses by subtype, but most studies have used limited numbers of protein markers or bulk sequencing of RNA to characterize immune response, in which spatial organization cannot be assessed. To identify immune phenotypes of Basal-like vs. Luminal breast cancer we used the GeoMx® (NanoString) platform to perform digital spatial profiling of immune-related proteins in tumor whole sections and tissue microarrays (TMA). Visualization of CD45, CD68, or pan-Cytokeratin by immunofluorescence was used to select regions of interest in formalin-fixed paraffin embedded tissue sections. Forty-four antibodies representing stromal markers and multiple immune cell types were applied to quantify the tumor microenvironment. In whole tumor slides, immune hot spots (CD45+) had increased expression of many immune markers, suggesting a diverse and robust immune response. In epithelium-enriched areas, immune signals were also detectable and varied by subtype, with regulatory T-cell (Treg) markers (CD4, CD25, and FOXP3) being higher in Basal-like vs. Luminal breast cancer. Extending these findings to TMAs with more patients (n = 75), we confirmed subtype-specific immune profiles, including enrichment of Treg markers in Basal-likes. This work demonstrated that immune responses can be detected in epithelium-rich tissue, and that TMAs are a viable approach for obtaining important immunoprofiling data. In addition, we found that immune marker expression is associated with breast cancer subtype, suggesting possible prognostic, or targetable differences.
Collapse
Affiliation(s)
- Andrea Walens
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Linnea T Olsson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xiaohua Gao
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Erin L Kirk
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Stephanie M Cohen
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Translational Pathology Laboratory, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Bentley R Midkiff
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Translational Pathology Laboratory, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Yongjuan Xia
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Translational Pathology Laboratory, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mark E Sherman
- Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Nana Nikolaishvili-Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Translational Pathology Laboratory, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Division of Hematology, Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Melissa A Troester
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Benjamin C Calhoun
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Zhang G, Xu Q, Zhang X, Yang M, Wang Y, He M, Lu J, Liu H. Spatial cytotoxic and memory T cells in tumor predict superior survival outcomes in patients with high-grade serous ovarian cancer. Cancer Med 2021; 10:3905-3918. [PMID: 33955198 PMCID: PMC8209602 DOI: 10.1002/cam4.3942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 01/05/2023] Open
Abstract
Although the association between tumor‐infiltrating CD3+ T and CD8+ T cells and superior survival in high‐grade serous ovarian cancer (HGSOC) has been observed, the different spatial localization of tumor‐infiltrating lymphocytes (TILs) possesses heterogeneous effects. We performed localized measurements in 260 HGSOC from 2 independent cohorts represented in tissue microarray format to determine the localized expression pattern and clinical significance of CD3+ T, CD8+ T, and CD45RO+ cells in HGSOC. Different density of spatial localization of CD3+ T, CD8+ T, and CD45RO+ cells exhibited heterogeneous association with OS. The combination of the center of the tumor and invasive margin localized CD8+T cells (CD8CT&IM) with the same margin localized CD45RO (CD45ROCT&IM) was the most robust prognostic predictor. Immune score (IS) was constructed by integrating FIGO stage with CD8CT&IM and CD45ROIM&CT and had the best prognostic value in HGSOC. The low‐, intermediate‐, and high‐IS groups were observed in 44.7%, 41.6%, and 13.7% of patients, respectively. Low‐IS identified patients were at higher risk of death compared to high‐IS identified patients (HR = 12.426; 95% CI 5.317–29.039, p < 0.001); meanwhile, we evaluate the RMSTs over 10 years of follow‐up and obtained RMST values of 104.09 months (95% CI 96.31–111.87 months) in the high‐IS group, 75.26 months (95% CI 59.92–90.60 months) in the intermediate‐IS group, and 48.68 months (95%CI 38.82–58.54 months) in the low‐IS group. In general, spatial localization can modulate the clinical effects of TILs in HGSOC. Thus, the spatial expression of CD8 and CD45RO could aid clinicians to determine the follow‐up plan of patients with HGSOC.
Collapse
Affiliation(s)
- Guodong Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Qing Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Xiangyun Zhang
- Department of Gynecology, Suzhou Municipal Hospital, Suzhou, China
| | - Moran Yang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yiying Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Mengdi He
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jiaqi Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Gynecology, Kashgar Prefecture Second People's Hospital, Kashi, China
| | - Haiou Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
24
|
Dam K, Peeters F, Verhoeven D, Duwel V. High-grade serous cancer of undetermined primary origin presenting as solitary inguinal lymph node enlargement. BMJ Case Rep 2021; 14:14/4/e239185. [PMID: 33910789 PMCID: PMC8094361 DOI: 10.1136/bcr-2020-239185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 62-year-old woman presented with unilateral inguinal lymphadenopathy, existing for several months. As it was initially thought to be lymphoma, the lymph node was resected. Pathology, however, revealed a metastasis of a high-grade papillary serous cancer, according to its stainings, most likely ovarian in origin. Further staging showed lymphadenopathies in the inguinofemoral, para-aortic and mediastinal regions. Consequently, the multidisciplinary oncologic meeting advised a diagnostic laparoscopy which showed no macroscopic spread within the abdomen. Pathological examination of biopsies as well as both ovaries showed no sign of ovarian cancer. The patient received standard chemotherapy, that is, carbo-Taxol-Avastin, to which she showed complete response after three cycles as shown on positron emission tomography-CT. A review of existing literature showed that this is a very unusual case of high-grade serous carcinoma, where no site of origin could be found.
Collapse
Affiliation(s)
- Karen Dam
- Gynaecology, AZ Monica, Antwerp, Belgium
| | | | - Didier Verhoeven
- Oncology, AZ Klina, Brasschaat, Belgium.,Department of Health Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
25
|
Jain S, Annett SL, Morgan MP, Robson T. The Cancer Stem Cell Niche in Ovarian Cancer and Its Impact on Immune Surveillance. Int J Mol Sci 2021; 22:4091. [PMID: 33920983 PMCID: PMC8071330 DOI: 10.3390/ijms22084091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is an aggressive gynaecological cancer with extremely poor prognosis, due to late diagnosis as well as the development of chemoresistance after first-line therapy. Research advances have found stem-like cells present in ovarian tumours, which exist in a dynamic niche and persist through therapy. The stem cell niche interacts extensively with the immune and non-immune components of the tumour microenvironment. Significant pathways associated with the cancer stem cell niche have been identified which interfere with the immune component of the tumour microenvironment, leading to immune surveillance evasion, dysfunction and suppression. This review aims to summarise current evidence-based knowledge on the cancer stem cell niche within the ovarian cancer tumour microenvironment and its effect on immune surveillance. Furthermore, the review seeks to understand the clinical consequences of this dynamic interaction by highlighting current therapies which target these processes.
Collapse
Affiliation(s)
| | | | | | - Tracy Robson
- School of Pharmacy and Biomolecular Science, RCSI University of Medicine and Health Sciences, 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (S.J.); (S.L.A.); (M.P.M.)
| |
Collapse
|
26
|
Proof of principle study of sequential combination atezolizumab and Vigil in relapsed ovarian cancer. Cancer Gene Ther 2021; 29:369-382. [PMID: 33753870 DOI: 10.1038/s41417-021-00317-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/08/2022]
Abstract
Vigil® is a personalized vaccine that enhances tumor neoantigen expression. We investigated for the first time safety and efficacy of Vigil in combination with atezolizumab in relapsed ovarian cancer (OC) patients. This is a randomized, Phase 1 study of Vigil, an autologous tumor tissue transfected vaccine encoding for GMCSF and bi-shRNA-furin thereby creating enhanced immune activation and TGFβ expression control. Part 1 is a safety assessment of Vigil (1 × 10e7 cells/mL/21 days) plus atezolizumab (1200 mg/21 days). Part 2 is a randomized study of Vigil first (Vigil-1st) or atezolizumab first (Atezo-1st) for two cycles followed by the combination of both agents. The primary endpoint of the study was the determination of safety. Twenty-four patients were enrolled in the study; three patients to Part 1 and 21 to Part 2. Patients in Part 1 completed combination therapy without dose-limiting toxicity justifying expansion to Part 2. Twenty-one patients were randomized (1:1) to Part 2 to Vigil-1st (n = 11) or Atezo-1st (n = 10). Grade 3/4 treatment-related adverse events of Atezo-1st vs. Vigil-1st were 17.2% vs. 5.1%. Median overall survival (OS) was not reached (NR) (Vigil-1st) vs. 10.8 months (Atezo-1st) (hazard ratio [HR] 0.33). The exploratory subset analysis of BRCAwt suggested improved OS benefit [NR in Vigil-1st vs. 5.2 months in Atezo-1st, HR 0.16, p 0.027]. The Vigil-1st combination therapy with atezolizumab was safe and results in support continued investigation in BRCAwt patients.
Collapse
|
27
|
Duwa R, Jeong JH, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin-Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients. Cells 2021; 10:130. [PMID: 33440842 PMCID: PMC7827772 DOI: 10.3390/cells10010130] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022] Open
Abstract
Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an "eat me" signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor's antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant disease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; (I.S.-K.); (M.K.)
| | | | | |
Collapse
|
29
|
Lipid Regulatory Proteins as Potential Therapeutic Targets for Ovarian Cancer in Obese Women. Cancers (Basel) 2020; 12:cancers12113469. [PMID: 33233362 PMCID: PMC7700662 DOI: 10.3390/cancers12113469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity has become a recognized global epidemic that is associated with numerous comorbidities including type II diabetes, cardiovascular disease, hypertension, and cancer incidence and progression. Ovarian cancer (OvCa) has a unique mechanism of intra-peritoneal metastasis, already present in 80% of women at the time of diagnosis, making it the fifth leading cause of death from gynecological malignancy. Meta-analyses showed that obesity increases the risk of OvCa progression, leads to enhanced overall and organ-specific tumor burden, and adversely effects survival of women with OvCa. Recent data discovered that tumors grown in mice fed on a western diet (40% fat) have elevated lipid levels and a highly increased expression level of sterol regulatory element binding protein 1 (SREBP1). SREBP1 is a master transcription factor that regulates de novo lipogenesis and lipid homeostasis, and induces lipogenic reprogramming of tumor cells. Elevated SREBP1 levels are linked to cancer cell proliferation and metastasis. This review will summarize recent findings to provide a current understanding of lipid regulatory proteins in the ovarian tumor microenvironment with emphasis on SREBP1 expression in the obese host, the role of SREBP1 in cancer progression and metastasis, and potential therapeutic targeting of SREBPs and SREBP-pathway genes in treating cancers, particularly in the context of host obesity.
Collapse
|
30
|
Nguyen JMV, Ferguson SE, Bernardini MQ, May T, Laframboise S, Hogen L, Bouchard-Fortier G. Preoperative neutrophil-to-lymphocyte ratio predicts 30 day postoperative morbidity and survival after primary surgery for ovarian cancer. Int J Gynecol Cancer 2020; 30:1378-1383. [PMID: 32788264 DOI: 10.1136/ijgc-2020-001378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The preoperative neutrophil-to-lymphocyte ratio has been found to be an independent prognostic indicator for perioperative complications and survival outcomes in patients undergoing oncologic surgery for several malignancies. The objective of this study was to evaluate the role of the preoperative neutrophil-to-lymphocyte ratio in predicting 30-day postoperative morbidity and overall survival in advanced-stage high-grade serous ovarian cancer patients after primary surgery. METHODS A retrospective study was conducted on consecutive patients who underwent primary surgery for high-grade serous ovarian cancer between January 2008 and December 2016 at a single tertiary academic institution in Toronto, Canada. Optimal thresholds for preoperative neutrophil-to-lymphocyte ratio were determined using receiver-operator characteristic curve analysis. Cox-proportional hazard models, Kaplan-Meier, and logistic regression analyses were performed. RESULTS Of 505 patients with ovarian cancer during the study period, 199 met the inclusion criteria. Receiver-operator characteristic curve analysis generated optimal preoperative neutrophil-to-lymphocyte ratio thresholds of 2.3 and 2.9 for 30-day postoperative morbidity and survival outcomes, respectively. A neutrophil-to-lymphocyte ratio ≥2.3 was predictive of a composite outcome of 30-day postoperative complications (odds ratio 7.3, 95% confidence interval 2.44 to 21.81; p=0.0004), after adjusting for longer operative time and intraoperative complications. Postoperative complications included superficial surgical site infections (p=0.007) and urinary tract infections (p=0.004). A neutrophil-to-lymphocyte ratio ≥29 was associated with worse 5-year overall survival (57.8% vs 77.7%, p=0.003), and suggested no statistically significant difference in progression-free survival (33.8% vs 40.7%, p=0.054). On multivariable analysis, the neutrophil-to-lymphocyte ratio remained an independent predictor for overall survival (p=0.02) when adjusting for suboptimal cytoreduction (p≤0.0001). DISCUSSION A preoperative neutrophil-to-lymphocyte ratio ≥2.3 and ≥2.9 is associated with greater risk of 30-day postoperative morbidity and worse overall survival, respectively. This marker may be used in conjunction with other risk assessment strategies to preoperatively identify high-risk patients. Further prospective study is required to investigate its role in clinical decision-making.
Collapse
Affiliation(s)
| | | | - Marcus Q Bernardini
- Gynecologic Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Taymaa May
- Gynecologic Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Stephane Laframboise
- Gynecologic Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Liat Hogen
- Gynecologic Oncology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
31
|
Smith PG, Roque D, Ching MM, Fulton A, Rao G, Reader JC. The Role of Eicosanoids in Gynecological Malignancies. Front Pharmacol 2020; 11:1233. [PMID: 32982722 PMCID: PMC7479818 DOI: 10.3389/fphar.2020.01233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.
Collapse
Affiliation(s)
- Paige G. Smith
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dana Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Fulton
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Gautam Rao
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
32
|
Abstract
Pancreatic cancer is the third leading cause of cancer death in the USA, and pancreatic ductal adenocarcinoma (PDA) constitutes 85% of pancreatic cancer diagnoses. PDA frequently metastasizes to the peritoneum, but effective treatment of peritoneal metastasis remains a clinical challenge. Despite this unmet need, understanding of the biological mechanisms that contribute to development and progression of PDA peritoneal metastasis is sparse. By contrast, a vast number of studies have investigated mechanisms of peritoneal metastasis in ovarian and gastric cancers. Here, we contrast similarities and differences between peritoneal metastasis in PDA as compared with those in gastric and ovarian cancer by outlining molecular mediators involved in each step of the peritoneal metastasis cascade. This review aims to provide mechanistic insights that could be translated into effective targeted therapies for patients with peritoneal metastasis from PDA.
Collapse
|
33
|
Ojasalu K, Brehm C, Hartung K, Nischak M, Finkernagel F, Rexin P, Nist A, Pavlakis E, Stiewe T, Jansen JM, Wagner U, Gattenlöhner S, Bräuninger A, Müller-Brüsselbach S, Reinartz S, Müller R. Upregulation of mesothelial genes in ovarian carcinoma cells is associated with an unfavorable clinical outcome and the promotion of cancer cell adhesion. Mol Oncol 2020; 14:2142-2162. [PMID: 32533757 PMCID: PMC7463315 DOI: 10.1002/1878-0261.12749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
A hallmark of ovarian high‐grade serous carcinoma (HGSC) is its early and massive peritoneal dissemination via the peritoneal fluid. It is generally believed that tumor cells must breach the mesothelium of peritoneal organs to adhere to the underlying extracellular matrix (ECM) and initiate metastatic growth. However, the molecular mechanisms underlying these processes are only partially understood. Here, we have analyzed 52 matched samples of spheroids and solid tumor masses (suspected primary lesions and metastases) from 10 patients by targeted sequencing of 21 loci previously proposed as targets of HGSC driver mutations. This analysis revealed very similar patterns of genetic alterations in all samples. One exception was FAT3 with a strong enrichment of mutations in metastases compared with presumed primary lesions in two cases. FAT3 is a putative tumor suppressor gene that codes for an atypical cadherin, pointing a potential role in peritoneal dissemination in a subgroup of HGSC patients. By contrast, transcriptome data revealed clear and consistent differences between tumor cell spheroids from ascites and metastatic lesions, which were mirrored by the in vitro adherence of ascites‐derived spheroids. The adhesion‐induced transcriptional alterations in metastases and adherent cells resembled epithelial–mesenchymal transition, but surprisingly also included the upregulation of a specific subset of mesothelial genes, such as calretinin (CALB2) and podoplanin (PDPN). Consistent with this finding, calretinin staining was also observed in subsets of tumor cells in HGSC metastases, particularly at the invasive tumor edges. Intriguingly, a high expression of either CALB2 or PDPN was strongly associated with a poor clinical outcome. siRNA‐mediated CALB2 silencing triggered the detachment of adherent HGSC cells in vitro and inhibited the adhesion of detached HGSC cells to collagen type I. Our data suggest that the acquisition of a mesenchymal–mesothelial phenotype contributes to cancer cell adhesion to the ECM of peritoneal organs and HGSC progression.
Collapse
Affiliation(s)
- Kaire Ojasalu
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Corinna Brehm
- Institute of Pathology, Philipps University, Marburg, Germany
| | - Kristin Hartung
- Institute of Pathology, Justus-Liebig University, Giessen, Germany
| | - Maximilian Nischak
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Peter Rexin
- Institute of Pathology, Philipps University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University, Marburg, Germany
| | - Evangelos Pavlakis
- Institute of Molecular Oncology, Member of the German Center of Lung Research (DZL), Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University, Marburg, Germany.,Institute of Molecular Oncology, Member of the German Center of Lung Research (DZL), Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | | | | | | | - Silke Reinartz
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Rolf Müller
- Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
34
|
Mlynska A, Vaišnorė R, Rafanavičius V, Jocys S, Janeiko J, Petrauskytė M, Bijeikis S, Cimmperman P, Intaitė B, Žilionytė K, Barakauskienė A, Meškauskas R, Paberalė E, Pašukonienė V. A gene signature for immune subtyping of desert, excluded, and inflamed ovarian tumors. Am J Reprod Immunol 2020; 84:e13244. [PMID: 32294293 DOI: 10.1111/aji.13244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
PROBLEM The current tumor immunology paradigm emphasizes the role of the immune tumor microenvironment and distinguishes several histologically and transcriptionally different immune tumor subtypes. However, the experimental validation of such classification is so far limited to selected cancer types. Here, we aimed to explore the existence of inflamed, excluded, and desert immune subtypes in ovarian cancer, as well as investigate their association with the disease outcome. METHOD OF STUDY We used the publicly available ovarian cancer dataset from The Cancer Genome Atlas for developing subtype assignment algorithm, which was next verified in a cohort of 32 real-world patients of a known tumor subtype. RESULTS Using clinical and gene expression data of 489 ovarian cancer patients in the publicly available dataset, we identified three transcriptionally distinct clusters, representing inflamed, excluded, and desert subtypes. We developed a two-step subtyping algorithm with COL5A2 serving as a marker for separating excluded tumors, and CD2, TAP1, and ICOS for distinguishing between inflamed and desert tumors. The accuracy of gene expression-based subtyping algorithm in a real-world cohort was 75%. Additionally, we confirmed that patients bearing inflamed tumors are more likely to survive longer. CONCLUSION Our results highlight the presence of transcriptionally and histologically distinct immune subtypes among ovarian tumors and emphasize the potential benefit of immune subtyping as a clinical tool for treatment tailoring.
Collapse
Affiliation(s)
| | | | | | - Simonas Jocys
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | - Julija Janeiko
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | | | - Simas Bijeikis
- Baltic Institute of Advanced Technology, Vilnius, Lithuania
| | | | | | | | - Aušrinė Barakauskienė
- Vilnius University, Vilnius, Lithuania.,Ltd Patologijos Diagnostika, Vilnius, Lithuania
| | | | | | | |
Collapse
|
35
|
Wang J, Zhu M, Zhou X, Wang T, Xi Y, Jing Z, Xi W. MiR-140-3p inhibits natural killer cytotoxicity to human ovarian cancer via targeting MAPK1. J Biosci 2020. [DOI: 10.1007/s12038-020-00036-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh K, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Current Approaches for Combination Therapy of Cancer: The Role of Immunogenic Cell Death. Cancers (Basel) 2020; 12:E1047. [PMID: 32340275 PMCID: PMC7226590 DOI: 10.3390/cancers12041047] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cell death resistance is a key feature of tumor cells. One of the main anticancer therapies is increasing the susceptibility of cells to death. Cancer cells have developed a capability of tumor immune escape. Hence, restoring the immunogenicity of cancer cells can be suggested as an effective approach against cancer. Accumulating evidence proposes that several anticancer agents provoke the release of danger-associated molecular patterns (DAMPs) that are determinants of immunogenicity and stimulate immunogenic cell death (ICD). It has been suggested that ICD inducers are two different types according to their various activities. Here, we review the well-characterized DAMPs and focus on the different types of ICD inducers and recent combination therapies that can augment the immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil 5618985991, Iran;
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Ali Baradaran
- Research & Development Lab, BSD Robotics, 4500 Brisbane, Australia;
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
| | | | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (Z.A.); (S.S.); (K.H.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
37
|
Opposite Macrophage Polarization in Different Subsets of Ovarian Cancer: Observation from a Pilot Study. Cells 2020; 9:cells9020305. [PMID: 32012728 PMCID: PMC7072171 DOI: 10.3390/cells9020305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
The role of the innate immune system in ovarian cancer is gaining importance. The relevance of tumor-associated macrophages (TAM) is insufficiently understood. In this pilot project, comprising the immunofluorescent staining of 30 biopsies taken from 24 patients with ovarian cancer, we evaluated the presence of total TAM (cluster of differentiation (CD) 68 expression), M1 (major histocompatibility complex (MHC) II expression), and M2 (anti-mannose receptor C type 1 (MRC1) expression), and the blood vessel diameter. We observed a high M1/M2 ratio in low-grade ovarian cancer compared to high-grade tumors, more total TAM and M2 in metastatic biopsies, and a further increase in total TAM and M2 at interval debulking, without beneficial effects of bevacizumab. The blood vessel diameter was indicative for M2 tumor infiltration (Spearman correlation coefficient of 0.65). These data mainly reveal an immune beneficial environment in low-grade ovarian cancer in contrast to high-grade serous ovarian cancer, where immune suppression is not altered by neoadjuvant therapy.
Collapse
|
38
|
Siamakpour-Reihani S, Cobb LP, Jiang C, Zhang D, Previs RA, Owzar K, Nixon AB, Alvarez Secord A. Differential expression of immune related genes in high-grade ovarian serous carcinoma. Gynecol Oncol 2020; 156:662-668. [PMID: 31918995 DOI: 10.1016/j.ygyno.2019.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To identify novel immunologic targets and biomarkers associated with overall survival (OS) in high-grade serous ovarian cancer (HGSC). METHODS In this retrospective study, microarray data from 51 HGSC specimens were analyzed (Affymetrix HG-U133A). A panel of 183 immune/inflammatory response related genes linked to 279 probe sets was constructed a priori and screened. Associations between gene expression and OS were assessed using logrank tests. Multiple testing was addressed within the False Discovery Rate (FDR) framework. For external validation, TCGA Ovarian dataset and five GSE publicly available HGSC datasets were evaluated. RESULTS In Duke data, 110 probe sets linked to 83 immunologic/inflammatory-related genes were differentially expressed in tumors from long versus short-term HGSC survivors (adjusted p < 0.05). In TCGA, concordant with the results from the Duke discovery cohort, high expression of one probe (IL6R) demonstrated a consistent significance and concordant association with higher expression in long-term HGSC survivors (Duke q-value = 0.022) and improved OS in the TCGA dataset (p-value = 0.015, HR = 0.8). Thirteen genes in GSE14764 (N = 4) and GSE26712 (N = 9) datasets had significant p-values and consistent concordant with Duke Data. Despite the significant associations of gene expression and OS in the individual GSE datasets, in the GSE meta-analysis no genes were consistently concordant and significantly associated with survival. CONCLUSIONS Evaluation of IL6R expression may be warranted based on higher expression in long-term survivors and association with improved survival in advanced HGSC. The other candidate genes may also be of worthy of further exploration to enhance immuno-oncology drug discovery.
Collapse
Affiliation(s)
- Sharareh Siamakpour-Reihani
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, United States.
| | - Lauren Patterson Cobb
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States
| | - Chen Jiang
- Bioinformatics Shared Resource, Duke Cancer Institute, United States.
| | - Dadong Zhang
- Bioinformatics Shared Resource, Duke Cancer Institute, United States.
| | - Rebecca A Previs
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States.
| | - Kouros Owzar
- Duke Department of Biostatistics and Bioinformatics, Duke University Medical Center, United States; Bioinformatics Shared Resource, Duke Cancer Institute, United States.
| | - Andrew B Nixon
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Duke University Medical Center, United States.
| | - Angeles Alvarez Secord
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
39
|
Nizzero S, Shen H, Ferrari M, Corradetti B. Immunotherapeutic Transport Oncophysics: Space, Time, and Immune Activation in Cancer. Trends Cancer 2019; 6:40-48. [PMID: 31952780 DOI: 10.1016/j.trecan.2019.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
Immuno-oncology has gained momentum thanks to the success of strategies aimed at enhancing immune-mediated antitumor response. The field of immunotherapeutic transport oncophysics investigates the physical processes that drive cancer immunotherapies. This review discusses three main aspects that determine the outcome of an immunotherapy-based treatment from a physical point of view; (i) space, the distribution of cancer and immune cells within tumor masses, (ii) time, the temporal dynamic of immune response against tumors, and (iii) activity, the ability of immune cell populations to suppress cancer. Upon introducing these topics with examples from the literature, we investigate in detail two cases where the interplay between space, time, and activation variables determines immune response: nanodendritic cell vaccines and immunosuppression in ovarian cancer.
Collapse
Affiliation(s)
- Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Mathematics in Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; University of St. Thomas, Houston, TX 77006, USA
| | - Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Swansea University Medical School, Singleton Park, Swansea, Wales, UK.
| |
Collapse
|
40
|
Verma A, Mathur R, Farooque A, Kaul V, Gupta S, Dwarakanath BS. T-Regulatory Cells In Tumor Progression And Therapy. Cancer Manag Res 2019; 11:10731-10747. [PMID: 31920383 PMCID: PMC6935360 DOI: 10.2147/cmar.s228887] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) are important members of the immune system regulating the host responses to infection and neoplasms. Tregs prevent autoimmune disorders by protecting the host-cells from an immune response, related to the peripheral tolerance. However, tumor cells use Tregs as a shield to protect themselves against anti-tumor immune response. Thus, Tregs are a hurdle in achieving the complete potential of anti-cancer therapies including immunotherapy. This has prompted the development of novel adjuvant therapies that obviate their negative effects thereby enhancing the therapeutic efficacy. Our earlier studies have shown the efficacy of the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG) by reducing the induced Tregs pool and enhance immune stimulation as well as local tumor control. These findings have suggested its potential for enhancing the efficacy of immunotherapy, besides radiotherapy and chemotherapy. This review provides a brief account of the current status of Tregs as a component of the immune-biology of tumors and various preclinical and clinical strategies pursued to obviate the limitations imposed by them in achieving therapeutic efficacy.
Collapse
Affiliation(s)
- Amit Verma
- Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD, USA
| | - Rohit Mathur
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Vandana Kaul
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | |
Collapse
|
41
|
Jiang S, Liu J, Chen X, Zheng X, Ruan J, Ye A, Zhang S, Zhang L, Kuang Z, Liu R. Platelet-lymphocyte ratio as a potential prognostic factor in gynecologic cancers: a meta-analysis. Arch Gynecol Obstet 2019; 300:829-839. [PMID: 31385023 DOI: 10.1007/s00404-019-05257-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Cancer-related inflammation plays an important role in tumor development and progression. Platelet-lymphocyte ratio (PLR) has been studied as a biomarker for prognosis in gynecologic cancers. But, the results of previous studies were controversial, so we performed this meta-analysis. METHODS We searched the scientific database of PubMed, Embase, Web of Science, Wanfang, and China National Knowledge Infrastructure (CNKI) using free text and MeSH keywords. Crude HR (hazard ratio) with 95% confidence interval was used to evaluate the risk association between PLR and overall survival (OS) or progression-free survival (PFS) in gynecologic neoplasms. RESULTS There totally 23 studies, including 6869 patients who were eligible, most of which are published after 2015 or later. PLR greater than the cut-off was associated with poorer survival prognosis in ovarian cancer [OS: HR 1.80 (95% CI 1.37-2.37), p = 0.000; PFS: HR 1.63 (95% CI 1.38-1.91), p = 0.000] and cervical cancer [OS: HR 1.36 (95% CI 1.10-1.68), p = 0.005; PFS: HR 1.40 (95% CI 1.16-1.70), p = 0.002], but not in endometrial cancer [OS: HR 1.95 (95% CI 0.65-5.84), p = 0.234]. CONCLUSIONS The current meta-analysis revealed that pretreatment PLR was a simple, promising prognostic indicator for OS and PFS in ovarian and cervical cancers. But, its significance of prognosis did not agree with endometrial neoplasm. However, due to the limited number of original studies, future large-scale studies with more well-designed, high-quality studies are still needed.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Jiandong Liu
- Department of General Surgery, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Xiangyi Chen
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Xinfei Zheng
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Junhao Ruan
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Aihua Ye
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Shufang Zhang
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Lingli Zhang
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Zhixing Kuang
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China
| | - Rongqiang Liu
- Department of Radiation Oncology, The First Hospital of Nan Ping, 317 Zhongshan Road, Yanping District, Fujian, 353000, China.
| |
Collapse
|
42
|
Corradetti B, Pisano S, Conlan RS, Ferrari M. Nanotechnology and Immunotherapy in Ovarian Cancer: Tracing New Landscapes. J Pharmacol Exp Ther 2019; 370:636-646. [PMID: 30737357 PMCID: PMC6806629 DOI: 10.1124/jpet.118.254979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) is the seventh most common cancer in women worldwide. Standard therapeutic treatments involve debulking surgery combined with platinum-based chemotherapies. Of the patients with advanced-stage cancer who initially respond to current treatments, 50%-75% relapse. Immunotherapy-based approaches aimed at boosting antitumor immunity have recently emerged as promising tools to challenge tumor progression. Treatments with inhibitors of immune checkpoint molecules have shown impressive results in other types of tumors. However, only 15% of checkpoint inhibitors evaluated have proven successful in OC due to the immunosuppressive environment of the tumor and the transport barriers. This limits the efficacy of the existing immunotherapies. Nanotechnology-based delivery systems hold the potential to overcome such limitations. Various nanoformulations including polymeric, liposomes, and lipid-polymer hybrid nanoparticles have already been proposed to improve the biodistribution and targeting capabilities of drugs against tumor-associated immune cells, including dendritic cells and macrophages. In this review, we examine the impact of immunotherapeutic approaches that are currently under consideration for the treatment of OC. In this review, we also provide a comprehensive analysis of the existing nanoparticle-based synthetic strategies and their limitations and advantages over standard treatments. Furthermore, we discuss how the strength of the combination of nanotechnology with immunotherapy may help to overcome the current therapeutic limitations associated with their individual application and unravel a new paradigm in the treatment of this malignancy.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Simone Pisano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Robert Steven Conlan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| |
Collapse
|
43
|
Hartl CA, Bertschi A, Puerto RB, Andresen C, Cheney EM, Mittendorf EA, Guerriero JL, Goldberg MS. Combination therapy targeting both innate and adaptive immunity improves survival in a pre-clinical model of ovarian cancer. J Immunother Cancer 2019; 7:199. [PMID: 31362778 PMCID: PMC6668091 DOI: 10.1186/s40425-019-0654-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Despite major advancements in immunotherapy among a number of solid tumors, response rates among ovarian cancer patients remain modest. Standard treatment for ovarian cancer is still surgery followed by taxane- and platinum-based chemotherapy. Thus, there is an urgent need to develop novel treatment options for clinical translation. Methods Our approach was to analyze the effects of standard chemotherapy in the tumor microenvironment of mice harboring orthotopic, syngeneic ID8-Vegf-Defb29 ovarian tumors in order to mechanistically determine a complementary immunotherapy combination. Specifically, we interrogated the molecular and cellular consequences of chemotherapy by analyzing gene expression and flow cytometry data. Results These data show that there is an immunosuppressive shift in the myeloid compartment, with increased expression of IL-10 and ARG1, but no activation of CD3+ T cells shortly after chemotherapy treatment. We therefore selected immunotherapies that target both the innate and adaptive arms of the immune system. Survival studies revealed that standard chemotherapy was complemented most effectively by a combination of anti-IL-10, 2′3’-cGAMP, and anti-PD-L1. Immunotherapy dramatically decreased the immunosuppressive myeloid population while chemotherapy effectively activated dendritic cells. Together, combination treatment increased the number of activated T and dendritic cells as well as expression of cytotoxic factors. It was also determined that the immunotherapy had to be administered concurrently with the chemotherapy to reverse the acute immunosuppression caused by chemotherapy. Mechanistic studies revealed that antitumor immunity in this context was driven by CD4+ T cells, which acquired a highly activated phenotype. Our data suggest that these CD4+ T cells can kill cancer cells directly via granzyme B-mediated cytotoxicity. Finally, we showed that this combination therapy is also effective at delaying tumor growth substantially in an aggressive model of lung cancer, which is also treated clinically with taxane- and platinum-based chemotherapy. Conclusions This work highlights the importance of CD4+ T cells in tumor immunology. Furthermore, the data support the initiation of clinical trials in ovarian cancer that target both innate and adaptive immunity, with a focus on optimizing dosing schedules. Electronic supplementary material The online version of this article (10.1186/s40425-019-0654-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christina A Hartl
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adrian Bertschi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Regina Bou Puerto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Carolin Andresen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Emily M Cheney
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elizabeth A Mittendorf
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02215, USA.,Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Susan F. Smith Center for Women's Cancers, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Michael S Goldberg
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
44
|
Travers M, Brown SM, Dunworth M, Holbert CE, Wiehagen KR, Bachman KE, Foley JR, Stone ML, Baylin SB, Casero RA, Zahnow CA. DFMO and 5-Azacytidine Increase M1 Macrophages in the Tumor Microenvironment of Murine Ovarian Cancer. Cancer Res 2019; 79:3445-3454. [PMID: 31088836 DOI: 10.1158/0008-5472.can-18-4018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
Although ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ+ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further decrease immunosuppressive cell populations improving outcome. We tested this hypothesis in an immunocompetent mouse model for ovarian cancer and found that in vivo, 5AZA-C and DFMO, either alone or in combination, significantly increased survival, decreased tumor burden, and caused recruitment of activated (IFNγ+) CD4+ T cells, CD8+ T cells, and NK cells. The combination therapy had a striking increase in survival when compared with single-agent treatment, despite a smaller difference in recruited lymphocytes. Instead, combination therapy led to a significant decrease in immunosuppressive cells such as M2 polarized macrophages and an increase in tumor-killing M1 macrophages. In this model, depletion of macrophages with a CSF1R-blocking antibody reduced the efficacy of 5AZA-C + DFMO treatment and resulted in fewer M1 macrophages in the tumor microenvironment. These observations suggest our novel combination therapy modifies macrophage polarization in the tumor microenvironment, recruiting M1 macrophages and prolonging survival. SIGNIFICANCE: Combined epigenetic and polyamine-reducing therapy stimulates M1 macrophage polarization in the tumor microenvironment of an ovarian cancer mouse model, resulting in decreased tumor burden and prolonged survival.
Collapse
Affiliation(s)
- Meghan Travers
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Stephen M Brown
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Matthew Dunworth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Cassandra E Holbert
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | | | - Jackson R Foley
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Meredith L Stone
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen B Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Robert A Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| | - Cynthia A Zahnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
45
|
Kramer S, Langhanki J, Krumb M, Opatz T, Bros M, Zentel R. HPMA‐Based Nanocarriers for Effective Immune System Stimulation. Macromol Biosci 2019; 19:e1800481. [DOI: 10.1002/mabi.201800481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Stefan Kramer
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Jens Langhanki
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Matthias Krumb
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Till Opatz
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Matthias Bros
- Department of DermatologyUniversity Medical CenterJohannes Gutenberg‐University Mainz Obere Zahlbacher Straße 63 ,55131 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| |
Collapse
|
46
|
Strengthening the AntiTumor NK Cell Function for the Treatment of Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20040890. [PMID: 30791364 PMCID: PMC6412350 DOI: 10.3390/ijms20040890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between cancer cells and host cells is a crucial prerequisite for tumor growth and progression. The cells from both the innate and adaptive immune systems enter into a perverse relationship with tumor cells to create a tumor-promoting and immunosuppressive tumor microenvironment (TME). Epithelial ovarian cancer (EOC), the most lethal of all gynecological malignancies, is characterized by a unique TME that paves the way to the formation of metastasis and mediates therapy resistance through the deregulation of immune surveillance. A characteristic feature of the ovarian cancer TME is the ascites/peritoneal fluid, a malignancy-associated effusion occurring at more advanced stages, which enables the peritoneal dissemination of tumor cells and the formation of metastasis. The standard therapy for EOC involves a combination of debulking surgery and platinum-based chemotherapy. However, most patients experience disease recurrence. New therapeutic strategies are needed to improve the prognosis of patients with advanced EOC. Harnessing the body’s natural immune defenses against cancer in the form of immunotherapy is emerging as an innovative treatment strategy. NK cells have attracted attention as a promising cancer immunotherapeutic target due to their ability to kill malignant cells and avoid healthy cells. Here, we will discuss the recent advances in the clinical application of NK cell immunotherapy in EOC.
Collapse
|
47
|
Perales-Puchalt A, Wojtak K, Duperret EK, Yang X, Slager AM, Yan J, Muthumani K, Montaner LJ, Weiner DB. Engineered DNA Vaccination against Follicle-Stimulating Hormone Receptor Delays Ovarian Cancer Progression in Animal Models. Mol Ther 2019; 27:314-325. [PMID: 30554854 PMCID: PMC6369450 DOI: 10.1016/j.ymthe.2018.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer presents in 80% of patients as a metastatic disease, which confers it with dismal prognosis despite surgery and chemotherapy. However, it is an immunogenic disease, and the presence of intratumoral T cells is a major prognostic factor for survival. We used a synthetic consensus (SynCon) approach to generate a novel DNA vaccine that breaks immune tolerance to follicle-stimulating hormone receptor (FSHR), present in 50% of ovarian cancers but confined to the ovary in healthy tissues. SynCon FSHR DNA vaccine generated robust CD8+ and CD4+ cellular immune responses and FSHR-redirected antibodies. The SynCon FSHR DNA vaccine delayed the progression of a highly aggressive ovarian cancer model with peritoneal carcinomatosis in immunocompetent mice, and it increased the infiltration of anti-tumor CD8+ T cells in the tumor microenvironment. Anti-tumor activity of this FSHR vaccine was confirmed in a syngeneic murine FSHR-expressing prostate cancer model. Furthermore, adoptive transfer of vaccine-primed CD8+ T cells after ex vivo expansion delayed ovarian cancer progression. In conclusion, the SynCon FSHR vaccine was able to break immune tolerance and elicit an effective anti-tumor response associated with an increase in tumor-infiltrating T cells. FSHR DNA vaccination could help current ovarian cancer therapy after first-line treatment of FSHR+ tumors to prevent tumor recurrence.
Collapse
Affiliation(s)
- Alfredo Perales-Puchalt
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Krzysztof Wojtak
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Elizabeth K. Duperret
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Xue Yang
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Jian Yan
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | - Kar Muthumani
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA,Corresponding author: David B. Weiner, PhD, Vaccine and Immunotherapy Center, Microenvironment and Metastasis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Wilson AL, Wilson KL, Bilandzic M, Moffitt LR, Makanji M, Gorrell MD, Oehler MK, Rainczuk A, Stephens AN, Plebanski M. Non-Invasive Fluorescent Monitoring of Ovarian Cancer in an Immunocompetent Mouse Model. Cancers (Basel) 2018; 11:E32. [PMID: 30602661 PMCID: PMC6356411 DOI: 10.3390/cancers11010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancers (OCs) are the most lethal gynaecological malignancy, with high levels of relapse and acquired chemo-resistance. Whilst the tumour⁻immune nexus controls both cancer progression and regression, the lack of an appropriate system to accurately model tumour stage and immune status has hampered the validation of clinically relevant immunotherapies and therapeutic vaccines to date. To address this need, we stably integrated the near-infrared phytochrome iRFP720 at the ROSA26 genomic locus of ID8 mouse OC cells. Intrabursal ovarian implantation into C57BL/6 mice, followed by regular, non-invasive fluorescence imaging, permitted the direct visualization of tumour mass and distribution over the course of progression. Four distinct phases of tumour growth and dissemination were detectable over time that closely mimicked clinical OC progression. Progression-related changes in immune cells also paralleled typical immune profiles observed in human OCs. Specifically, we observed changes in both the CD8+ T cell effector (Teff):regulatory (Treg) ratio, as well as the dendritic cell (DC)-to-myeloid derived suppressor cell (MDSC) ratio over time across multiple immune cell compartments and in peritoneal ascites. Importantly, iRFP720 expression had no detectible influence over immune profiles. This new model permits non-invasive, longitudinal tumour monitoring whilst preserving host⁻tumour immune interactions, and allows for the pre-clinical assessment of immune profiles throughout disease progression as well as the direct visualization of therapeutic responses. This simple fluorescence-based approach provides a useful new tool for the validation of novel immuno-therapeutics against OC.
Collapse
Affiliation(s)
- Amy L Wilson
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
- Department of Immunology and Pathology, Monash University, Clayton 3168, Australia.
| | - Kirsty L Wilson
- Department of Immunology and Pathology, Monash University, Clayton 3168, Australia.
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| | - Maree Bilandzic
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Laura R Moffitt
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Ming Makanji
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Sydney 2006, Australia.
| | - Martin K Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia.
- Robinson Institute, University of Adelaide, Adelaide 5000, Australia.
| | - Adam Rainczuk
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
- Bruker Biosciences Pty Ltd., Preston 3072, Australia.
| | - Andrew N Stephens
- Hudson Institute of Medical Research, Clayton 3168, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton 3168, Australia.
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia.
| |
Collapse
|
49
|
Jiang L, Fang X, Wang H, Li D, Wang X. Ovarian Cancer-Intrinsic Fatty Acid Synthase Prevents Anti-tumor Immunity by Disrupting Tumor-Infiltrating Dendritic Cells. Front Immunol 2018; 9:2927. [PMID: 30619288 PMCID: PMC6302125 DOI: 10.3389/fimmu.2018.02927] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Fatty acid synthase (FASN), the key metabolic enzyme of de novo lipogenesis, provides proliferative and metastatic capacity directly to cancer cells have been described. However, the impact of aberrant activation of this lipogenic enzyme on host anti-tumor immune milieu remains unknown. In this study, we depicted that elevated FASN expression presented in ovarian cancer with more advanced clinical phenotype and correlated with the immunosuppressive status, which characterized by the lower number and dysfunction of infiltrating T cells. Notably, in a mouse model, we showed that tumor cell-intrinsic FASN drove ovarian cancer (OvCa) progression by blunting anti-tumor immunity. Dendritic cells (DCs) are required to initiate and sustain T cell-dependent anti-tumor immunity. Here, our data showed that constitutive activation of FASN in ovarian cancer cell lead to abnormal lipid accumulation and subsequent inhibition of tumor-infiltrating DCs (TIDCs) capacity to support anti-tumor T cells. Mechanistically, FASN activation in ovarian cancer cell-induced the resulting increase of lipids present at high concentrations in the tumor microenvironment. Dendritic cells educated by FASNhigh OvCa ascites are defective in their ability to present antigens and prime T cells. Accordingly, inhibiting FASN by FASN inhibitor can partly restore the immunostimulatory activity of TIDCs and extended tumor control by evoking protective anti-tumor immune responses. Therefore, our data provide a mechanism by which ovarian cancer-intrinsic FASN oncogenic pathway induce the impaired anti-tumor immune response through lipid accumulation in TIDCs and subsequently T-cells exclusion and dysfunction. These results could further indicate that targeting the FASN oncogenic pathway concomitantly enhance anti-tumor immunity, thus offering a unique approach to ovarian cancer immunotherapy.
Collapse
Affiliation(s)
- Li Jiang
- Department of Gynecology and Obstetrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhong Fang
- Department of Gynecology and Obstetrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Diyou Li
- Department of Gynecology and Obstetrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xipeng Wang
- Department of Gynecology and Obstetrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Varga A, Piha-Paul S, Ott PA, Mehnert JM, Berton-Rigaud D, Morosky A, Yang P, Ruman J, Matei D. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: Analysis of KEYNOTE-028. Gynecol Oncol 2018; 152:243-250. [PMID: 30522700 DOI: 10.1016/j.ygyno.2018.11.017] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To evaluate safety, tolerability, and antitumor activity of pembrolizumab monotherapy in patients with programmed death ligand 1 (PD-L1)-expressing advanced ovarian cancer enrolled in the multicohort, phase Ib KEYNOTE-028 trial. METHODS Key inclusion criteria were age ≥18 years; advanced ovarian epithelial, fallopian tube, or primary peritoneal carcinoma; failure of previous therapy; and tumor PD-L1 positivity. Patients received pembrolizumab (10 mg/kg every 2 weeks) for ≤24 months or until disease progression/intolerable toxicity. Tumor response was assessed per RECIST v1.1 (investigator review). Adverse events (AEs) were graded using CTCAE version 4.0. Primary end point was confirmed objective response rate (ORR) per RECIST v1.1 (investigator review); data cutoff date was February 20, 2017. RESULTS Twenty-six patients (median age, 57.5 years) with PD-L1-positive advanced metastatic ovarian cancer received pembrolizumab; 38.5% had metastatic disease, and 73.1% previously received ≥3 lines of therapy. Treatment-related AEs (TRAEs) occurred in 19 (73.1%) patients, most commonly arthralgia (19.2%), nausea (15.4%), and pruritus (15.4%). One grade 3 TRAE (increased plasma transaminase level) occurred. No deaths and no treatment discontinuations due to TRAEs occurred. After a median follow-up duration of 15.4 months, ORR was 11.5% (1 complete response, 2 partial responses); 7 patients (26.9%) achieved stable disease. Median progression-free and overall survival were 1.9 (95% CI, 1.8-3.5) and 13.8 (95% CI, 6.7-18.8) months, respectively. CONCLUSION Pembrolizumab conferred durable antitumor activity with manageable safety and toxicity in patients with advanced PD-L1-positive ovarian cancer and is under further investigation in an ongoing phase II trial, KEYNOTE-100.
Collapse
Affiliation(s)
- Andrea Varga
- Department of Drug Development, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Sarina Piha-Paul
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick A Ott
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Janice M Mehnert
- Developmental Therapeutics/Phase I Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | - Anne Morosky
- Department of Oncology, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Ping Yang
- Biostatistics and Research Decision Sciences, MSD China, Beijing, China
| | - Jane Ruman
- Department of Oncology, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|