1
|
Weil R, Loeb D. Breaking down the tumor immune infiltration within pediatric sarcomas. Front Endocrinol (Lausanne) 2023; 14:1187289. [PMID: 37424864 PMCID: PMC10324675 DOI: 10.3389/fendo.2023.1187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapies are a promising therapeutic option, yet for a variety of reasons, these treatments have achieved limited success against sarcomas. The immunosuppressive tumor microenvironment (TME) of sarcomas as well as lack of predictive biomarkers, decreased T-cell clonal frequency, and high expression of immunosuppressive infiltrating cells has thus far prevented major success using immunotherapies. By breaking down the TME into its individual components and understanding how the various cell types interact with each other as well as in the context of the complex immune microenvironment, can lead to effective therapeutic immunotherapy treatments, potentially improving outcomes for those with metastatic disease.
Collapse
Affiliation(s)
- Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - David Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
2
|
Seong G, D’Angelo SP. New therapeutics for soft tissue sarcomas: Overview of current immunotherapy and future directions of soft tissue sarcomas. Front Oncol 2023; 13:1150765. [PMID: 37007160 PMCID: PMC10052453 DOI: 10.3389/fonc.2023.1150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Soft tissue sarcoma is a rare and aggressive disease with a 40 to 50% metastasis rate. The limited efficacy of traditional approaches with surgery, radiation, and chemotherapy has prompted research in novel immunotherapy for soft tissue sarcoma. Immune checkpoint inhibitors such as anti-CTLA-4 and PD-1 therapies in STS have demonstrated histologic-specific responses. Some combinations of immunotherapy with chemotherapy, TKI, and radiation were effective. STS is considered a ‘cold’, non-inflamed tumor. Adoptive cell therapies are actively investigated in STS to enhance immune response. Genetically modified T-cell receptor therapy targeting cancer testis antigens such as NY-ESO-1 and MAGE-A4 demonstrated durable responses, especially in synovial sarcoma. Two early HER2-CAR T-cell trials have achieved stable disease in some patients. In the future, CAR-T cell therapies will find more specific targets in STS with a reliable response. Early recognition of T-cell induced cytokine release syndrome is crucial, which can be alleviated by immunosuppression such as steroids. Further understanding of the immune subtypes and biomarkers will promote the advancement of soft tissue sarcoma treatment.
Collapse
Affiliation(s)
- Gyuhee Seong
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, United States
| | - Sandra P. D’Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Sandra P. D’Angelo,
| |
Collapse
|
3
|
Lee EY, Kim M, Choi BK, Kim DH, Choi I, You HJ. TJP1 Contributes to Tumor Progression through Supporting Cell-Cell Aggregation and Communicating with Tumor Microenvironment in Leiomyosarcoma. Mol Cells 2021; 44:784-794. [PMID: 34764231 PMCID: PMC8627839 DOI: 10.14348/molcells.2021.0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Leiomyosarcoma (LMS) is a mesenchymal malignancy with a complex karyotype. Despite accumulated evidence, the factors contributing to the development of LMS are unclear. Here, we investigated the role of tight-junction protein 1 (TJP1), a membrane-associated intercellular barrier protein during the development of LMS and the tumor microenvironment. We orthotopically transplanted SK-LMS-1 cells and their derivatives in terms of TJP1 expression by intramuscular injection, such as SK-LMS-1 Sh-Control cells and SK-LMS-1 Sh-TJP1. We observed robust tumor growth in mice transplanted with LMS cell lines expressing TJP1 while no tumor mass was found in mice transplanted with SK-LMS-1 Sh-TJP1 cells with silenced TJP1 expression. Tissues from mice were stained and further analyzed to clarify the effects of TJP1 expression on tumor development and the tumor microenvironment. To identify the TJP1-dependent factors important in the development of LMS, genes with altered expression were selected in SK-LMS-1 cells such as cyclinD1, CSF1 and so on. The top 10% of highly expressed genes in LMS tissues were obtained from public databases. Further analysis revealed two clusters related to cell proliferation and the tumor microenvironment. Furthermore, integrated analyses of the gene expression networks revealed correlations among TJP1, CSF1 and CTLA4 at the mRNA level, suggesting a possible role for TJP1 in the immune environment. Taken together, these results imply that TJP1 contributes to the development of sarcoma by proliferation through modulating cell-cell aggregation and communication through cytokines in the tumor microenvironment and might be a beneficial therapeutic target.
Collapse
Affiliation(s)
- Eun-Young Lee
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Minjeong Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Beom K. Choi
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Dae Hong Kim
- Division of Convergence Technology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Hye Jin You
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy (NCC-GCSP), National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
4
|
Rytlewski J, Milhem MM, Monga V. Turning 'Cold' tumors 'Hot': immunotherapies in sarcoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1039. [PMID: 34277839 PMCID: PMC8267323 DOI: 10.21037/atm-20-6041] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Immunotherapies have an established role in the management of several advanced malignancies. Their responses are largely dependent on the presence of PD-L1, microsatellite instability (MSI), and high tumor mutation burden. Sarcomas are heterogenous tumors which comprise over 100 subtypes. They are broadly considered immunologically inert or “cold”. Immunotherapy as monotherapy has shown interesting responses in a certain handful of subtypes, such as undifferentiated pleomorphic sarcoma, dedifferentiated and pleomorphic liposarcoma, and alveolar soft part sarcoma. However, the mechanisms of action of immunotherapy agents in several sarcoma subtypes remains unknown. Several sarcoma types such as leiomyosarcoma have been shown to have an immunosuppressive microenvironment. Early clinical studies suggest the emergence of B cell infiltration in sarcoma tumor tissues as well as the role of PD-1 and PD-L1 as biomarkers of response. Immunotherapy combinations with conventional chemotherapies, radiation therapies, tyrosine kinase inhibitors and oncolytic viruses are showing promise in turning these “cold” tumors “hot”. Several novel agents as well as repurposing therapies with the potential to enhance immunotherapy responses are undergoing pre-clinical and clinical studies in other tumor types. Herein we review current clinical studies which have explored the use of immunotherapeutic agents in the management of sarcomas and discuss the challenges and future directions.
Collapse
Affiliation(s)
- Jeff Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Mohammed M Milhem
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| | - Varun Monga
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood and Marrow Transplantation, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
5
|
Rodríguez Pérez Á, Campillo-Davo D, Van Tendeloo VFI, Benítez-Ribas D. Cellular immunotherapy: a clinical state-of-the-art of a new paradigm for cancer treatment. Clin Transl Oncol 2020; 22:1923-1937. [PMID: 32266674 DOI: 10.1007/s12094-020-02344-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/19/2020] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy has opened a new chapter in Medical Oncology. Many novel therapies are under clinical testing and some have already been approved and implemented in cancer treatment protocols. In particular, cellular immunotherapies take advantage of the antitumor capabilities of the immune system. From dendritic cell-based vaccines to treatments centered on genetically engineered T cells, this form of personalized cancer therapy has taken the field by storm. They commonly share the ex vivo genetic modification of the patient's immune cells to generate or induce tumor antigen-specific immune responses. The latest clinical trials and translational research have shed light on its clinical effectiveness as well as on the mechanisms behind targeting specific antigens or unique tumor alterations. This review gives an overview of the clinical developments in immune cell-based technologies predominantly for solid tumors and on how the latest discoveries are being incorporated within the standard of care.
Collapse
Affiliation(s)
- Á Rodríguez Pérez
- Laboratory of Molecular and Translational Oncology-CELLEX, University of Barcelona, 08035, Barcelona, Spain.,Medical Oncology Department, University Hospital "Fundación Jiménez Díaz", Autonomous University of Madrid, 28040, Madrid, Spain
| | - D Campillo-Davo
- Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - V F I Van Tendeloo
- Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - D Benítez-Ribas
- Department of Immunology, Hospital Clinic, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Carrer Villarroel, 170. 08036, Barcelona, Spain.
| |
Collapse
|
6
|
Anwar MA, El-Baba C, Elnaggar MH, Elkholy YO, Mottawea M, Johar D, Al Shehabi TS, Kobeissy F, Moussalem C, Massaad E, Omeis I, Darwiche N, Eid AH. Novel therapeutic strategies for spinal osteosarcomas. Semin Cancer Biol 2019; 64:83-92. [PMID: 31152785 DOI: 10.1016/j.semcancer.2019.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
Abstract
At the dawn of the third millennium, cancer has become the bane of twenty-first century man, and remains a predominant public health burden, affecting welfare and life expectancy globally. Spinal osteogenic sarcoma, a primary spinal malignant tumor, is a rare and challenging neoplastic disease to treat. After the conventional therapeutic modalities of chemotherapy, radiation and surgery have been exhausted, there is currently no available alternative therapy in managing cases of spinal osteosarcoma. The defining signatures of tumor survival are characterised by cancer cell ability to stonewall immunogenic attrition and apoptosis by various means. Some of these biomarkers, namely immune-checkpoints, have recently been exploited as druggable targets in osteosarcoma and many other different cancers. These promising strides made by the use of reinvigorated immunotherapeutic approaches may lead to significant reduction in spinal osteosarcoma disease burden and corresponding reciprocity in increase of survival rates. In this review, we provide the background to spinal osteosarcoma, and proceed to elaborate on contribution of the complex ecology within tumor microenvironment giving arise to cancerous immune escape, which is currently receiving considerable attention. We follow this section on the tumor microenvironment by a brief history of cancer immunity. Also, we draw on the current knowledge of treatment gained from incidences of osteosarcoma at other locations of the skeleton (long bones of the extremities in close proximity to the metaphyseal growth plates) to make a case for application of immunity-based tools, such as immune-checkpoint inhibitors and vaccines, and draw attention to adverse upshots of immune-checkpoint blockers as well. Finally, we describe the novel biotechnique of CRISPR/Cas9 that will assist in treatment approaches for personalized medication.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Muhammed H Elnaggar
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yasmeen O Elkholy
- Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed Mottawea
- Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Dina Johar
- Biomedical Sciences Program, Zewail University of Science and Technology, Giza, Egypt
| | | | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Charbel Moussalem
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Elie Massaad
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ibrahim Omeis
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
| | - A H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Abstract
Although the development of anticancer drugs has improved the outcomes of bone and soft tissue sarcomas, the clinical outcome of patients with relapsed sarcomas remains unsatisfactory due to therapeutic toxicities and resistance to anticancer drugs. Therefore, novel therapeutic modalities are needed to improve the outcome of patients with bone and soft tissue sarcomas. Dendritic cells present tumor antigens and stimulate immune responses, and immune cells, such as cytotoxic T lymphocytes, kill tumor cells by recognizing tumor antigens. However, immune-suppressive conditions by immune regulator PD-1, CTLA-4 and regulatory T cells help tumor growth and progression. In this report, current immunotherapies including cellular immunotherapy and checkpoint inhibitors are introduced, and the advantages and disadvantages of the treatments are discussed.
Collapse
Affiliation(s)
- Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Hideji Nishida
- Department of Orthopedic Surgery, Kanazawa University School of Medicine, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University School of Medicine, Kanazawa, Japan
| |
Collapse
|
8
|
Dallos M, Tap WD, D'Angelo SP. Current status of engineered T-cell therapy for synovial sarcoma. Immunotherapy 2017; 8:1073-80. [PMID: 27485079 DOI: 10.2217/imt-2016-0026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Synovial sarcoma is a rare soft tissue sarcoma characterized by a t(X;18) translocation, which results in a SYT-SSX gene fusion. In the metastatic setting, chemotherapy has limited, durable efficacy prompting the necessity for new therapeutic modalities. One emerging new strategy involves T-cell-directed therapy such as tumor-infiltrating lymphocytes or the development of T cells that are genetically engineered to express a T-cell receptor against a cancer testis antigen. Of these approaches, engineered T cells that recognize NY-ESO-1 are the furthest along in development. Completed and on-going clinical trials have shown promise and there are efforts to continue to optimize the current approach.
Collapse
Affiliation(s)
- Matthew Dallos
- New York University Langone Medical Center, NY 10016, USA
| | - William D Tap
- Memorial Sloan Kettering Cancer Center, NY 10065, USA.,Weill Cornell Medical College, NY 10065, USA
| | - Sandra P D'Angelo
- Memorial Sloan Kettering Cancer Center, NY 10065, USA.,Weill Cornell Medical College, NY 10065, USA
| |
Collapse
|
9
|
Wang Z, Li B, Ren Y, Ye Z. T-Cell-Based Immunotherapy for Osteosarcoma: Challenges and Opportunities. Front Immunol 2016; 7:353. [PMID: 27683579 PMCID: PMC5021687 DOI: 10.3389/fimmu.2016.00353] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Even though combining surgery with chemotherapy has significantly improved the prognosis of osteosarcoma patients, advanced, metastatic, or recurrent osteosarcomas are often non-responsive to chemotherapy, making development of novel efficient therapeutic methods an urgent need. Adoptive immunotherapy has the potential to be a useful non-surgical modality for treatment of osteosarcoma. Recently, alternative strategies, including immunotherapies using naturally occurring or genetically modified T cells, have been found to hold promise in the treatment of hematologic malignancies and solid tumors. In this review, we will discuss possible T-cell-based therapies against osteosarcoma with a special emphasis on combination strategies to improve the effectiveness of adoptive T cell transfer and, thus, to provide a rationale for the clinical development of immunotherapies.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Binghao Li
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Yingqing Ren
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Zhaoming Ye
- Department of Orthopaedics, Centre for Orthopaedic Research, Orthopaedics Research Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
10
|
DeRenzo C, Gottschalk S. Genetically Modified T-cell Therapy for the Treatment of Osteosarcoma: An Update. ACTA ACUST UNITED AC 2016; 7. [PMID: 27313973 PMCID: PMC4904842 DOI: 10.4172/2155-9899.1000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Christopher DeRenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pediatrics Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pediatrics Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|