1
|
Pirozyan MR, McGuire HM, Emran AA, Tseng HY, Tiffen JC, Lee JH, Carlino MS, Menzies AM, Long GV, Scolyer RA, Fazekas de St Groth B, Hersey P. Pretreatment Innate Cell Populations and CD4 T Cells in Blood Are Associated With Response to Immune Checkpoint Blockade in Melanoma Patients. Front Immunol 2020; 11:372. [PMID: 32210968 PMCID: PMC7076153 DOI: 10.3389/fimmu.2020.00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
The development of changes in T cells, referred to as T cell exhaustion, has been suggested as a cause of primary or acquired resistance to immunotherapy by immune checkpoint blockade (ICB). A limited number of studies, largely performed on tumor infiltrating lymphocytes (TILs), has provided evidence in support of this hypothesis, but whether similar changes occur in circulating blood lymphocytes has received little attention. In the present study, a comprehensive analysis of peripheral blood leukocytes from 42 patients taken over the course of treatment with anti-PD-1 was undertaken. The patients included those grouped as responders (who did not progress), primary non-responders (primary resistance) and those with acquired resistance (who initially responded then subsequently progressed). Analysis included surface markers of exhaustion, production of cytokines following in vitro stimulation, and assessment of transcription factor levels associated with T cell exhaustion. There were differences in innate cell populations between responders and non-responders at baseline and maintained throughout therapy. Frequencies of total and classical CD14+CD16- monocytes were higher and the major subset of NK cells (CD16hiCD56+) was significantly smaller in the primary resistance group compared with responders. However, differences in peripheral blood expression of exhaustion markers were not evident between the treatment groups. T cell exhaustion markers were expressed in practically all patients and the major observation was an increase in CD39 on CD4 T cells during treatment. The results confirm the association of Eomes transcription factor with T cell exhaustion but levels of expression and the ratio with T-bet over Eomes did not differ between the patient groups. Thus, peripheral blood expression of T cell exhaustion markers does not distinguish between responders and non-responders to anti-PD-1 therapy. CD4 T cell expression of IFNγ also differed in pre-treatment samples, indicating that predictors of response unrelated to exhaustion may be present in peripheral blood. The association of response with innate cell populations and CD4 T cell responses requires further study.
Collapse
Affiliation(s)
- Mehdi R Pirozyan
- Melanoma Immunology and Oncology, Centenary Institute, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Abdullah Al Emran
- Melanoma Immunology and Oncology, Centenary Institute, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Hsin-Yi Tseng
- Melanoma Immunology and Oncology, Centenary Institute, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology, Centenary Institute, Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, Camperdown, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Jenny H Lee
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,New South Wales Health Pathology, Sydney, NSW, Australia
| | - Barbara Fazekas de St Groth
- Ramaciotti Facility for Human Systems Biology, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Peter Hersey
- Melanoma Immunology and Oncology, Centenary Institute, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Gallagher SJ, Tiffen JC, Hersey P. Histone Modifications, Modifiers and Readers in Melanoma Resistance to Targeted and Immune Therapy. Cancers (Basel) 2015; 7:1959-82. [PMID: 26426052 PMCID: PMC4695870 DOI: 10.3390/cancers7040870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 02/06/2023] Open
Abstract
The treatment of melanoma has been revolutionized by new therapies targeting MAPK signaling or the immune system. Unfortunately these therapies are hindered by either primary resistance or the development of acquired resistance. Resistance mechanisms involving somatic mutations in genes associated with resistance have been identified in some cases of melanoma, however, the cause of resistance remains largely unexplained in other cases. The importance of epigenetic factors targeting histones and histone modifiers in driving the behavior of melanoma is only starting to be unraveled and provides significant opportunity to combat the problems of therapy resistance. There is also an increasing ability to target these epigenetic changes with new drugs that inhibit these modifications to either prevent or overcome resistance to both MAPK inhibitors and immunotherapy. This review focuses on changes in histones, histone reader proteins and histone positioning, which can mediate resistance to new therapeutics and that can be targeted for future therapies.
Collapse
Affiliation(s)
- Stuart J Gallagher
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Jessamy C Tiffen
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| | - Peter Hersey
- Melanoma Immunology and Oncology Group, Centenary Institute, University of Sydney, Camperdown 2050, Australia.
- Melanoma Institute Australia, Crow's Nest 2065, Sydney, Australia.
| |
Collapse
|