1
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
2
|
Zhu J, Fan J, Xia Y, Wang H, Li Y, Feng Z, Fu C. Potential targets and applications of nanodrug targeting myeloid cells in osteosarcoma for the enhancement of immunotherapy. Front Pharmacol 2023; 14:1271321. [PMID: 37808190 PMCID: PMC10551637 DOI: 10.3389/fphar.2023.1271321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Targeted immunotherapies have emerged as a transformative approach in cancer treatment, offering enhanced specificity to tumor cells, and minimizing damage to healthy tissues. The targeted treatment of the tumor immune system has become clinically applicable, demonstrating significant anti-tumor activity in both early and late-stage malignancies, subsequently enhancing long-term survival rates. The most frequent and significant targeted therapies for the tumor immune system are executed through the utilization of checkpoint inhibitor antibodies and chimeric antigen receptor T cell treatment. However, when using immunotherapeutic drugs or combined treatments for solid tumors like osteosarcoma, challenges arise due to limited efficacy or the induction of severe cytotoxicity. Utilizing nanoparticle drug delivery systems to target tumor-associated macrophages and bone marrow-derived suppressor cells is a promising and attractive immunotherapeutic approach. This is because these bone marrow cells often exert immunosuppressive effects in the tumor microenvironment, promoting tumor progression, metastasis, and the development of drug resistance. Moreover, given the propensity of myeloid cells to engulf nanoparticles and microparticles, they are logical therapeutic targets. Therefore, we have discussed the mechanisms of nanomedicine-based enhancement of immune therapy through targeting myeloid cells in osteosarcoma, and how the related therapeutic strategies well adapt to immunotherapy from perspectives such as promoting immunogenic cell death with nanoparticles, regulating the proportion of various cellular subgroups in tumor-associated macrophages, interaction with myeloid cell receptor ligands, activating immunostimulatory signaling pathways, altering myeloid cell epigenetics, and modulating the intensity of immunostimulation. We also explored the clinical implementations of immunotherapy grounded on nanomedicine.
Collapse
Affiliation(s)
- Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zijia Feng
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Xia Y, Yang R, Zhu J, Wang H, Li Y, Fan J, Fu C. Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Front Bioeng Biotechnol 2022; 10:890257. [PMID: 36394039 PMCID: PMC9643844 DOI: 10.3389/fbioe.2022.890257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Despite advances in cancer treatment, metastatic cancer is still the main cause of death in cancer patients. At present, the treatment of metastatic cancer is limited to palliative care. The abscopal effect is a rare phenomenon in which shrinkage of metastatic tumors occurs simultaneously with the shrinkage of a tumor receiving localized treatment, such as local radiotherapy or immunotherapy. Immunotherapy shows promise for cancer treatment, but it also leads to consequences such as low responsiveness and immune-related adverse events. As a promising target-based approach, intravenous or intratumoral injection of nanomaterials provides new opportunities for improving cancer immunotherapy. Chemically modified nanomaterials may be able to trigger the abscopal effect by regulating immune cells. This review discusses the use of nanomaterials in killing metastatic tumor cells through the regulation of immune cells and the prospects of such nanomaterials for clinical use.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Changfeng Fu,
| |
Collapse
|
4
|
Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer 2022; 21:58. [PMID: 35189921 PMCID: PMC8860277 DOI: 10.1186/s12943-022-01528-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractAccumulating research suggests that the tumor immune microenvironment (TIME) plays an essential role in regulation of tumor growth and metastasis. The cellular and molecular nature of the TIME influences cancer progression and metastasis by altering the ratio of immune- suppressive versus cytotoxic responses in the vicinity of the tumor. Targeting or activating the TIME components show a promising therapeutic avenue to combat cancer. The success of immunotherapy is both astounding and unsatisfactory in the clinic. Advancements in RNA-based technology have improved understanding of the complexity and diversity of the TIME and its effects on therapy. TIME-related RNA or RNA regulators could be promising targets for anticancer immunotherapy. In this review, we discuss the available RNA-based cancer immunotherapies targeting the TIME. More importantly, we summarize the potential of various RNA-based therapeutics clinically available for cancer treatment. RNA-dependent targeting of the TIME, as monotherapy or combined with other evolving therapeutics, might be beneficial for cancer patients’ treatment in the near future.
Collapse
|
5
|
Allam A, Yakou M, Pang L, Ernst M, Huynh J. Exploiting the STAT3 Nexus in Cancer-Associated Fibroblasts to Improve Cancer Therapy. Front Immunol 2021; 12:767939. [PMID: 34858425 PMCID: PMC8632218 DOI: 10.3389/fimmu.2021.767939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of a heterogenous population of cells that exist alongside the extracellular matrix and soluble components. These components can shape an environment that is conducive to tumor growth and metastatic spread. It is well-established that stromal cancer-associated fibroblasts (CAFs) in the TME play a pivotal role in creating and maintaining a growth-permissive environment for tumor cells. A growing body of work has uncovered that tumor cells recruit and educate CAFs to remodel the TME, however, the mechanisms by which this occurs remain incompletely understood. Recent studies suggest that the signal transducer and activator of transcription 3 (STAT3) is a key transcription factor that regulates the function of CAFs, and their crosstalk with tumor and immune cells within the TME. CAF-intrinsic STAT3 activity within the TME correlates with tumor progression, immune suppression and eventually the establishment of metastases. In this review, we will focus on the roles of STAT3 in regulating CAF function and their crosstalk with other cells constituting the TME and discuss the utility of targeting STAT3 within the TME for therapeutic benefit.
Collapse
Affiliation(s)
- Amr Allam
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Marina Yakou
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Lokman Pang
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
6
|
Affiliation(s)
- Zachary W Wagoner
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA. .,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA. .,Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA, USA. .,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA. .,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
7
|
Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology. Cells 2020; 9:E2102. [PMID: 32942725 PMCID: PMC7565449 DOI: 10.3390/cells9092102] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy utilizes the immune system to fight cancer and has already moved from the laboratory to clinical application. However, and despite excellent therapeutic outcomes in some hematological and solid cancers, the regular clinical use of cancer immunotherapies reveals major limitations. These include the lack of effective immune therapy options for some cancer types, unresponsiveness to treatment by many patients, evolving therapy resistance, the inaccessible and immunosuppressive nature of the tumor microenvironment (TME), and the risk of potentially life-threatening immune toxicities. Given the potential of nanotechnology to deliver, enhance, and fine-tune cancer immunotherapeutic agents, the combination of cancer immunotherapy with nanotechnology can overcome some of these limitations. In this review, we summarize innovative reports and novel strategies that successfully combine nanotechnology and cancer immunotherapy. We also provide insight into how nanoparticular combination therapies can be used to improve therapy responsiveness, to reduce unwanted toxicity, and to overcome adverse effects of the TME.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Dominik Siegl
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Fuchs N, Meta M, Schuppan D, Nuhn L, Schirmeister T. Novel Opportunities for Cathepsin S Inhibitors in Cancer Immunotherapy by Nanocarrier-Mediated Delivery. Cells 2020; 9:E2021. [PMID: 32887380 PMCID: PMC7565055 DOI: 10.3390/cells9092021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Cathepsin S (CatS) is a secreted cysteine protease that cleaves certain extracellular matrix proteins, regulates antigen presentation in antigen-presenting cells (APC), and promotes M2-type macrophage and dendritic cell polarization. CatS is overexpressed in many solid cancers, and overall, it appears to promote an immune-suppressive and tumor-promoting microenvironment. While most data suggest that CatS inhibition or knockdown promotes anti-cancer immunity, cell-specific inhibition, especially in myeloid cells, appears to be important for therapeutic efficacy. This makes the design of CatS selective inhibitors and their targeting to tumor-associated M2-type macrophages (TAM) and DC an attractive therapeutic strategy compared to the use of non-selective immunosuppressive compounds or untargeted approaches. The selective inhibition of CatS can be achieved through optimized small molecule inhibitors that show good pharmacokinetic profiles and are orally bioavailable. The targeting of these inhibitors to TAM is now more feasible using nanocarriers that are functionalized for a directed delivery. This review discusses the role of CatS in the immunological tumor microenvironment and upcoming possibilities for a nanocarrier-mediated delivery of potent and selective CatS inhibitors to TAM and related APC to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, Staudingerweg 5, D, 55128 Mainz, Germany; (N.F.); (M.M.)
| | - Mergim Meta
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, Staudingerweg 5, D, 55128 Mainz, Germany; (N.F.); (M.M.)
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Str. 63, 55131 Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, Staudingerweg 5, D, 55128 Mainz, Germany; (N.F.); (M.M.)
| |
Collapse
|
9
|
Abstract
This chapter is a brief overview of use of nanobiotechnology in drug delivery. Several types of nanoparticles are available. Nanoparticulate formulations of normally used drugs have increased efficacy due to improved absorption and require lower dosage with less side effects than standard formulations. Nanobiotechnology also facilitates targeted drug delivery of anticancer drugs, which is important for the management of cancer. Nanoparticles also facilitate crossing of biological barriers in the human body for drug delivery to targeted organs, for example, crossing the blood-brain barrier to reach the brain. Nanobiotechnology applications in delivery of biological therapies are expanding in areas such as cell and gene therapies, siRNAs, and monoclonal antibodies. Some nanoparticles can carry more than one therapeutic molecule enabling multimodal therapy and combination with physical modalities such as radiotherapy in cancer. Nanorobotics is developing with applications in drug delivery, particularly for cancer. Other anticipated developments in this area include use of nanotechnology for creating intelligent drug release devices.
Collapse
|
10
|
Lin YX, Wang Y, Blake S, Yu M, Mei L, Wang H, Shi J. RNA Nanotechnology-Mediated Cancer Immunotherapy. Theranostics 2020; 10:281-299. [PMID: 31903120 PMCID: PMC6929632 DOI: 10.7150/thno.35568] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
RNA molecules (e.g., siRNA, microRNA, and mRNA) have shown tremendous potential for immunomodulation and cancer immunotherapy. They can activate both innate and adaptive immune system responses by silencing or upregulating immune-relevant genes. In addition, mRNA-based vaccines have recently been actively pursued and tested in cancer patients, as a form of treatment. Meanwhile, various nanomaterials have been developed to enhance RNA delivery to the tumor and immune cells. In this review article, we summarize recent advances in the development of RNA-based therapeutics and their applications in cancer immunotherapy. We also highlight the variety of nanoparticle platforms that have been used for RNA delivery to elicit anti-tumor immune responses. Finally, we provide our perspectives of potential challenges and opportunities of RNA-based nanotherapeutics in clinical translation towards cancer immunotherapy.
Collapse
Affiliation(s)
- Yao-Xin Lin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sara Blake
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Tufts University, Medford, MA 02155, USA
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Castro F, Pinto ML, Silva AM, Pereira CL, Teixeira GQ, Gomez-Lazaro M, Santos SG, Barbosa MA, Gonçalves RM, Oliveira MJ. Pro-inflammatory chitosan/poly(γ-glutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity. Acta Biomater 2017; 63:96-109. [PMID: 28919508 DOI: 10.1016/j.actbio.2017.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Anticancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals provided by antigen-presenting cells (APCs). However, it is described that immature dendritic cells (DCs) and macrophages at the tumor site may have an immunosuppressive profile, which limits the activity of effector T cells and supports tumor progression. Therapeutic targeting of these innate immune cells, either aiming at their elimination or re-polarization towards an immunostimulatory profile, has been pointed as an attractive approach to control tumor progression. In the present work, we assessed the potential of Chitosan (Ch)/Poly(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) to modulate macrophages and DCs inflammatory profile and to impair their ability to promote cancer cell invasion. Interestingly, Ch/γ-PGA NPs, prepared by co-acervation method, induced an immunostimulatory DCs phenotype, enhancing the expression of the co-stimulatory molecules CD86, CD40 and HLA-DR, and the secretion of the pro-inflammatory cytokines TNF-α, IL-12p40 and IL-6. Furthermore, Ch/γ-PGA NPs re-educated IL-10-stimulated macrophages towards a pro-inflammatory profile, decreasing the expression of CD163 and promoting the secretion of IL-12p40 and TNF-α. These alterations in the immune cells phenotype promoted CD4+ and CD8+ T cell activation/proliferation and partially inhibited APCs' ability to induce colorectal cancer cell invasion. Overall, our findings open new perspectives on the use of Ch/γ-PGA NPs as an immunomodulatory therapy for antigen-presenting cells reprogramming, providing a new tool for anticancer therapies. STATEMENT OF SIGNIFICANCE The immune system is responsible to detect and destroy abnormal cells preventing the development of cancer. However, the immunosuppressive tumor microenvironment can compromise the immune response favoring tumor progression. Thus, immune system modulation towards an immunostimulatory profile can improve anticancer therapies. This research focus on the development of chitosan/poly(γ-glutamic acid) nanoparticles (NPs) to modulate human antigen-presenting cells (APCs) phenotype and to counteract their pro-invasive capacity. Interestingly, Ch/γ-PGA NPs had a prominent effect in inducing macrophages and dendritic cells immunostimulatory phenotype, thus favoring T cell proliferation and inhibiting colorectal cancer cell invasion. We propose that their combination with other immunomodulatory drugs or conventional anticancer therapies can improve patients' outcome.
Collapse
|
12
|
Bastiancich C, Bianco J, Vanvarenberg K, Ucakar B, Joudiou N, Gallez B, Bastiat G, Lagarce F, Préat V, Danhier F. Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection. J Control Release 2017; 264:45-54. [DOI: 10.1016/j.jconrel.2017.08.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022]
|
13
|
Hull MA, Cuthbert RJ, Ko CWS, Scott DJ, Cartwright EJ, Hawcroft G, Perry SL, Ingram N, Carr IM, Markham AF, Bonifer C, Coletta PL. Paracrine cyclooxygenase-2 activity by macrophages drives colorectal adenoma progression in the Apc Min/+ mouse model of intestinal tumorigenesis. Sci Rep 2017; 7:6074. [PMID: 28729694 PMCID: PMC5519705 DOI: 10.1038/s41598-017-06253-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/12/2017] [Indexed: 01/29/2023] Open
Abstract
Genetic deletion or pharmacological inhibition of cyclooxygenase (COX)-2 abrogates intestinal adenoma development at early stages of colorectal carcinogenesis. COX-2 is localised to stromal cells (predominantly macrophages) in human and mouse intestinal adenomas. Therefore, we tested the hypothesis that paracrine Cox-2-mediated signalling from macrophages drives adenoma growth and progression in vivo in the ApcMin/+ mouse model of intestinal tumorigenesis. Using a transgenic C57Bl/6 mouse model of Cox-2 over-expression driven by the chicken lysozyme locus (cLys-Cox-2), which directs integration site-independent, copy number-dependent transgene expression restricted to macrophages, we demonstrated that stromal macrophage Cox-2 in colorectal (but not small intestinal) adenomas from cLys-Cox-2 x ApcMin/+ mice was associated with significantly increased tumour size (P = 0.025) and multiplicity (P = 0.025), compared with control ApcMin/+ mice. Transgenic macrophage Cox-2 expression was associated with increased dysplasia, epithelial cell Cox-2 expression and submucosal tumour invasion, as well as increased nuclear β-catenin translocation in dysplastic epithelial cells. In vitro studies confirmed that paracrine macrophage Cox-2 signalling drives catenin-related transcription in intestinal epithelial cells. Paracrine macrophage Cox-2 activity drives growth and progression of ApcMin/+ mouse colonic adenomas, linked to increased epithelial cell β-catenin dysregulation. Stromal cell (macrophage) gene regulation and signalling represent valid targets for chemoprevention of colorectal cancer.
Collapse
Affiliation(s)
- Mark A Hull
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom.
| | - Richard J Cuthbert
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - C W Stanley Ko
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Daniel J Scott
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Elizabeth J Cartwright
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Gillian Hawcroft
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Sarah L Perry
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Nicola Ingram
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Ian M Carr
- Section of Translational Medicine, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Alexander F Markham
- Section of Translational Medicine, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - Constanze Bonifer
- Section of Experimental Haematology, Leeds Institute of Cancer and Pathology, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| | - P Louise Coletta
- Section of Molecular Gastroenterology, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St James's University Hospital, Leeds, LS9 7TF, United Kingdom
| |
Collapse
|
14
|
Leber N, Nuhn L, Zentel R. Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery. Macromol Biosci 2017; 17. [PMID: 28605133 DOI: 10.1002/mabi.201700092] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/04/2017] [Indexed: 02/02/2023]
Abstract
Short pharmaceutical active oligonucleotides such as small interfering RNA (siRNA) or cytidine-phosphate-guanosine (CpG) are considered as powerful therapeutic alternatives, especially to medicate hard-to-treat diseases (e.g., liver fibrosis or cancer). Unfortunately, these molecules are equipped with poor pharmacokinetic properties that prevent them from translation. Well-defined nanosized carriers can provide opportunities to optimize their delivery and guide them to their site of action. Among several concepts, this Feature Article focuses on cationic nanohydrogel particles as a universal delivery system for small anionic molecules including siRNA and CpG. Cationic nanohydrogels are derived from preaggregated precursor block copolymers, which are further cross-linked to obtain well-defined nanoparticles of tunable sizes and with (degradable) cationic cores. Novel opportunities for oligonucleotide delivery in vitro and in vivo with respect to liver fibrosis therapies will be highlighted as well as perspectives toward modulating the immune system. In general, the approach of covalently stabilized cationic carrier systems can contribute to find advanced oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Nadine Leber
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
15
|
Smith TD, Nagalla RR, Chen EY, Liu WF. Harnessing macrophage plasticity for tissue regeneration. Adv Drug Deliv Rev 2017; 114:193-205. [PMID: 28449872 DOI: 10.1016/j.addr.2017.04.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022]
Abstract
Macrophages are versatile and plastic effector cells of the immune system, and contribute to diverse immune functions including pathogen or apoptotic cell removal, inflammatory activation and resolution, and tissue healing. Macrophages function as signaling regulators and amplifiers, and influencing their activity is a powerful approach for controlling inflammation or inducing a wound-healing response in regenerative medicine. This review discusses biomaterials-based approaches for altering macrophage activity, approaches for targeting drugs to macrophages, and approaches for delivering macrophages themselves as a therapeutic intervention.
Collapse
|
16
|
Affiliation(s)
- Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
| |
Collapse
|