1
|
Silva CP, Picco AS, Galdino FE, de Burgos Martins de Azevedo M, Cathcarth M, Passos AR, Cardoso MB. Distinguishing Protein Corona from Nanoparticle Aggregate Formation in Complex Biological Media Using X-ray Photon Correlation Spectroscopy. NANO LETTERS 2024; 24:13293-13299. [PMID: 39361530 PMCID: PMC11505373 DOI: 10.1021/acs.nanolett.4c03662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
In biological systems, nanoparticles interact with biomolecules, which may undergo protein corona formation that can result in noncontrolled aggregation. Therefore, comprehending the behavior and evolution of nanoparticles in the presence of biological fluids is paramount in nanomedicine. However, traditional lab-based colloid methods characterize diluted suspensions in low-complexity media, which hinders in-depth studies in complex biological environments. Here, we apply X-ray photon correlation spectroscopy (XPCS) to investigate silica nanoparticles (SiO2) in various environments, ranging from low to high complex biological media. Interestingly, SiO2 revealed Brownian motion behavior, irrespective of the complexity of the chosen media. Moreover, the SiO2 surface and media composition were tailored to underline the differences between a corona-free system from protein corona and aggregates formation. Our results highlighted XPCS potential for real-time nanoparticle analysis in biological media, surpassing the limitations of conventional techniques and offering deeper insights into colloidal behavior in complex environments.
Collapse
Affiliation(s)
- Caroline
E. P. Silva
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy & Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Agustin S. Picco
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina
| | - Flavia Elisa Galdino
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy & Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | | | - Marilina Cathcarth
- Instituto
de Investigaciones Fisicoquímicas Teóricas y Aplicadas
(INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, 1900 La Plata, Argentina
| | - Aline R. Passos
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy & Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| | - Mateus Borba Cardoso
- Brazilian
Synchrotron Light Laboratory (LNLS), Brazilian Center for Research
in Energy & Materials (CNPEM), Campinas, Sao Paulo 13083-970, Brazil
| |
Collapse
|
2
|
Mondo GB, Cathcarth M, Longo GS, Picco AS, Cardoso MB. Short Zwitterionic Sulfobetaine-Modified Silica Nanoparticles: Is Neutrality Possible? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10856-10867. [PMID: 38683600 DOI: 10.1021/acs.langmuir.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Zwitterionic coatings are an efficient strategy for preventing biomolecule adsorption and enhancing nanoparticle stability in solution. The properties of zwitterions and other antifouling materials, including suppression of nonspecific adsorption and improved colloidal stability of nanoparticles, are believed to derive from their electroneutral and highly hydrophilic nature. Among different zwitterions, short sulfobetaines have been demonstrated to be effective in preventing protein adsorption onto several nanoparticles and providing enhanced colloidal stability. Although zwitterionic sulfobetaine silane (ZS) is electrically neutral, the negatively charged zwitterionic sulfobetaine-functionalized silica nanoparticles (ZS@SiO2NPs) exhibit a similar ζ-potential to nonfunctionalized silica nanoparticles (SiO2NPs). In this work, we present a thorough comprehension of the surface properties of ZS@SiO2NPs, which encompasses the development of meticulous functionalization procedures, detailed characterization approaches, and cutting-edge modeling to address the questions that persist regarding the surface features of ZS@SiO2NPs. The negative charge of ZS@SiO2NPs is due to the stabilization of siloxide from residual surface silanols by the quaternary amine in the sulfobetaine structure. Consequently, we infer that zero-charge ZS@SiO2NPs are unlikely to be obtained since this stabilization increases the dissociation degree of surface silanols, increasing the overall structure negative charge. Additionally, colloidal stability was evaluated in different pH and ionic strength conditions, and it was found that ZS@SiO2NPs are more stable at higher ionic strengths. This suggests that the interaction between ZS and salt ions prevents the aggregation of ZS@SiO2NPs. Together, these results shed light on the nature of the ZS@SiO2NP negative charge and possible sources for the remarkable colloidal stability of zwitterionic nanoparticles in complex media.
Collapse
Affiliation(s)
- Gabriela Borba Mondo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, Brazil
| | - Marilina Cathcarth
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Agustín S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET, Diagonal 113 y 64, 1900 La Plata, Argentina
| | - Mateus Borba Cardoso
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, Brazil
| |
Collapse
|
3
|
Arora S, Dash SK, Dhawan D, Sahoo PK, Jindal A, Gugulothu D. Freeze-drying revolution: unleashing the potential of lyophilization in advancing drug delivery systems. Drug Deliv Transl Res 2024; 14:1111-1153. [PMID: 37985541 DOI: 10.1007/s13346-023-01477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Lyophilization also known as freeze-drying is a technique that has been employed to enhance the long-term durability of nanoparticles (NPs) that are utilized for drug delivery applications. This method is used to prevent their instability in suspension. However, this dehydration process can cause stress to the NPs, which can be alleviated by the incorporation of excipients like cryoprotectants and lyoprotectants. Nevertheless, the freeze-drying of NPs is often based on empirical principles without considering the physical-chemical properties of the formulations and the engineering principles of freeze-drying. For this reason, it is crucial to optimize the formulations and the freeze-drying cycle to obtain a good lyophilizate and ensure the preservation of NPs stability. Moreover, proper characterization of the lyophilizate and NPs is of utmost importance in achieving these goals. This review aims to update the recent advancements, including innovative formulations and novel approaches, contributing to the progress in this field, to obtain the maximum stability of formulations. Additionally, we critically analyze the limitations of lyophilization and discuss potential future directions. It addresses the challenges faced by researchers and suggests avenues for further research to overcome these limitations. In conclusion, this review is a valuable contribution to the understanding of the parameters involved in the freeze-drying of NPs. It will definitely aid future studies in obtaining lyophilized NPs with good quality and enhanced drug delivery and therapeutic benefits.
Collapse
Affiliation(s)
- Sanchit Arora
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Sanat Kumar Dash
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India
| | - Dimple Dhawan
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Prabhat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Anil Jindal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India.
| |
Collapse
|
4
|
Rofeal M, Abdelmalek F, Pietrasik J, Steinbüchel A. A comparative study between two carboxymethylated polysaccharides/protein electrostatic and cross-linked nanogels constructed for caffeic acid and eugenol delivery. Int J Biol Macromol 2023:125585. [PMID: 37379949 DOI: 10.1016/j.ijbiomac.2023.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
In response to the pressing demand for functional nanomaterials synthesis and applications, two polyelectrolyte complexes (PECs) [electrostatic and cross-linked nanogels (NGs)] loaded individually with caffeic acid (CafA) and eugenol (Eug) demonstrating multifunctionalities were proposed for the first time. Curdlan (Curd) and glucomannan (GM) were carboxymethylated (CMCurd and CMGM) successfully and polymeric ratios of 1:1 and 4:1 (v/v) for chitosan (Cs): CMCurd and lactoferrin (Lf): CMGM were selected for the synthesis of Cs/CMCurd and Lf/CMGM NGs. Due to the use of EDC/NHS, Cs/CMCurd/CafA and Lf/CMGM/Eug NGs possessed very uniform particles sizes of 177 ± 18 and 230 ± 17 nm with marked encapsulation efficiencies (EEs) of 76 ± 4 and 88 ± 3 %, respectively. The formation of a carbonyl-amide linkage in both cross-linked NGs was confirmed by FTIR. It should be noted, the self-assembly was not reliable in retaining enough of the encapsulated compounds. Owing to the excellent physicochemical characteristics of the loaded cross-linked NGs, they were prioritized over the electrostatic ones. Both Cs/CMCurd/CafA and Lf/CMGM/Eug NGs exhibited high colloidal stability over 12 weeks, elevated hemocompatibility, and in vitro serum stability. The generated NGs were also tailored to possess controlled release profiles for CafA and Eug over 72 h. Cs/CMCurd/CafA and Lf/CMGM/Eug NGs had promising antioxidant efficacies and could remarkably inhibit 4 bacterial pathogens at low 2-16 μg/mL concentration of encapsulated NGs compared to their unencapsulated counterparts. Interestingly, the respective NGs could significantly decline the IC50 against colorectal cancer HCT-116 than conventional drugs. Based on these data, it was conferred that the investigated NGs could be promising candidates for functional foods and pharmaceutics.
Collapse
Affiliation(s)
- Marian Rofeal
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland; Department of Botany and Microbiology, Faculty of Science, Alexandria University, 21521, Egypt.
| | - Fady Abdelmalek
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| | - Joanna Pietrasik
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Alexander Steinbüchel
- International Center for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
5
|
Lyophilization for Formulation Optimization of Drug-Loaded Thermoresponsive Polyelectrolyte Complex Nanogels from Functionalized Hyaluronic Acid. Pharmaceutics 2023; 15:pharmaceutics15030929. [PMID: 36986789 PMCID: PMC10053597 DOI: 10.3390/pharmaceutics15030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
The lyophilization of nanogels is practical not only for their long-term conservation but also for adjusting their concentration and dispersant type during reconstitution for different applications. However, lyophilization strategies must be adapted to each kind of nanoformulation in order to minimize aggregation after reconstitution. In this work, the effects of formulation aspects (i.e., charge ratio, polymer concentration, thermoresponsive grafts, polycation type, cryoprotectant type, and concentration) on particle integrity after lyophilization and reconstitution for different types of polyelectrolyte complex nanogels (PEC-NGs) from hyaluronic acid (HA) were investigated. The main objective was to find the best approach for freeze-drying thermoresponsive PEC-NGs from Jeffamine-M-2005-functionalized HA, which has recently been developed as a potential platform for drug delivery. It was found that freeze-drying PEC-NG suspensions prepared at a relatively low polymer concentration of 0.2 g.L−1 with 0.2% (m/v) trehalose as a cryoprotectant allow the homogeneous redispersion of PEC-NGs when concentrated at 1 g.L−1 upon reconstitution in PBS without important aggregation (i.e., average particle size remaining under 350 nm), which could be applied to concentrate curcumin (CUR)-loaded PEC-NGs for optimizing CUR content. The thermoresponsive release of CUR from such concentrated PEC-NGs was also reverified, which showed a minor effect of freeze-drying on the drug release profile.
Collapse
|
6
|
Dos Santos da Silva A, Dos Santos JHZ. Stöber method and its nuances over the years. Adv Colloid Interface Sci 2023; 314:102888. [PMID: 37001206 DOI: 10.1016/j.cis.2023.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Some characteristics of silica-based materials, such as the control/adjustment of their physical and chemical properties, compatibility, and friendly-use synthesis methods, have held the attention of several scientific groups over the years. This condition of prominence becomes even more evident when we seek these characteristics at the micro- and/or nanoscale. Among existing methods to obtain these micro/nanomaterials, the Stöber method is the focus of this review. This method is known to enable the production of silica micro- or nanoparticles from reagents of medium-easy manipulation under mild conditions using equipment that is common in most laboratories. However, this method has many nuances that must be considered to guarantee accurate results, either in size or distribution, and to ensure result reproducibility. Thus, in this review, we discuss the effects of the primary components used in the synthesis of these materials (i.e., TEOS, ammonia, and water), as well as those of other reaction conditions, such as solvent, temperature, and ionic strength. Therefore, we discuss studies involving the synthesis and characterization of micro- and nanoparticles over the years to establish discussions between their experimental observations and proposed models. This review provides experimental observations about the synthesis of these materials, as well as discussions according to complementary and/or contradictory evidence found over the years. This review seeks to help those who intend to work with this method and provide certain key points that, in our experience, can be important to obtain desired results.
Collapse
|
7
|
Rivas MV, Arenas Muñetón MJ, Bordoni AV, Lombardo MV, Spagnuolo CC, Wolosiuk A. Revisiting carboxylic group functionalization of silica sol-gel materials. J Mater Chem B 2023; 11:1628-1653. [PMID: 36752739 DOI: 10.1039/d2tb02279f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The carboxylic chemical group is a ubiquitous moiety present in amino acids, a ligand for transition metals, a colloidal stabilizer, and a weak acidic ion-exchanger in polymeric resins and given this property, it is attractive for responsive materials or nanopore-based gating applications. As the number of uses increases, subtle requirements are imposed on this molecular group when anchored to various platforms for the functioning of an integrated chemical system. In this context, silica stands as an inert and multipurpose platform that enables the anchoring of multiple chemical entities combined through several orthogonal synthesis methods on the interface. Surface chemical modification relies on the use of organoalkoxysilanes that must meet the demand of tuned chemical properties; this, in turn, urges for innovative approaches for having an improved, but simple, organic toolbox. Starting from commonly available molecular precursors, several approaches have emerged: hydrosilylation, click thiol-ene additions, the use of carbodiimides or the reaction between cyclic anhydrides and anchored amines. In this review, we analyze the importance of the COOH groups in the area of materials science and the commercial availability of COOH-based silanes and present new approaches for obtaining COOH-based organoalkoxide precursors. Undoubtedly, this will attract widespread interest for the ultimate design of highly integrated chemical platforms.
Collapse
Affiliation(s)
- M Verónica Rivas
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina. .,Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - María J Arenas Muñetón
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - M Verónica Lombardo
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - Carla C Spagnuolo
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Sustainable curdlan biosynthesis by Rahnella variigena ICRI91 via alkaline hydrolysis of Musa sapientum peels and its edible, active and modified hydrogel for Quercetin controlled release. Int J Biol Macromol 2023; 225:416-429. [PMID: 36375664 DOI: 10.1016/j.ijbiomac.2022.11.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Despite the high demand for curdlan (Curd), its industrial implementation has not reached a mature stage due to the high cost of simple sugar feed stocks. Herein, Musa sapientum peels hydrolysate (MPH) was proposed for the first time as a sustainable medium for Curd generation and as an ameliorated functional biomaterial for quercetin (Quer) sustained release. In this study, banana peels have been hydrolysed by 3 % NaOH catalyst/ 60 °C, yielding high concentration of glucose 20.5 ± 0.04 and 24.3 ± 0.11 g/L and reducing sugar amount, respectively. Meanwhile, a novel local Rahnella variigena ICRI91 strain was isolated from soil, that was useful for Curd production and identified by 16S rRNA analysis. Furthermore, three-batch fermentation models were carried out using MPH for obtaining a sufficient yield of Curd. R. variigena ICRI91 accumulated a satisfactory Curd concentration; 10.3 ± 0.25 g/L; using 60 g/L MPH. On the other hand, the strain produced an impressive Curd yield; 21.5 ± 0.13 g/L with an attained productivity of 0.179 ± 0.01 g/L/h and a sugar consumption of 68 ± 0.25 % as the MPH content increased to 100 g/L. For the first time, Curd hydrogel was modified by different amount of Xylitol (Xyl), reaching good mechanical performance; 3.1 MPa and 75 % for tensile strength (TS) and elongation at break (EB), respectively. Curd/Xyl (3/5) hydrogel was then integrated with nanometer-sized quercetin nanocrystals (Quer NCs, 83 ± 0.12 nm) with high colloidal stability of -23 ± 0.05 mV. The interconnected H- bonding between Xyl and Curd was confirmed by FTIR and SEM. The generated biomaterial was tailored to exhibit a sustained Quer release over 72 h. It also has improved antibacterial efficacy against four bacterial pathogens compared to that of a free drug. In recognition of these merits, an edible polymeric nanomaterial has been proposed for the functional food and biomedicine sectors.
Collapse
|
9
|
Tarannum N, Pooja K. Recent trends and applications in the research and development activities of redispersible powder: a vision of twenty-first century. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03928-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ferreira LF, Picco AS, Galdino FE, Albuquerque LJC, Berret JF, Cardoso MB. Nanoparticle-Protein Interaction: Demystifying the Correlation between Protein Corona and Aggregation Phenomena. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28559-28569. [PMID: 35696304 DOI: 10.1021/acsami.2c05362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein corona formation and nanoparticles' aggregation have been heavily discussed over the past years since the lack of fine-mapping of these two combined effects has hindered the targeted delivery evolution and the personalized nanomedicine development. We present a multitechnique approach that combines dynamic light and small-angle X-ray scattering techniques with cryotransmission electron microscopy in a given fashion that efficiently distinguishes protein corona from aggregates formation. This methodology was tested using ∼25 nm model silica nanoparticles incubated with either model proteins or biologically relevant proteomes (such as fetal bovine serum and human plasma) in low and high ionic strength buffers to precisely tune particle-to-protein interactions. In this work, we were able to differentiate protein corona, small aggregates formation, and massive aggregation, as well as obtain fractal information on the aggregates reliably and straightforwardly. The strategy presented here can be expanded to other particle-to-protein mixtures and might be employed as a quality control platform for samples that undergo biological tests.
Collapse
Affiliation(s)
- Larissa Fernanda Ferreira
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
- Programa de Pós-Graduação em Biotecnociências, Universidade Federal do ABC, 09210-580 Santo André, Brazil
| | - Agustín Silvio Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Fac. de Cs. Exactas, Universidad Nacional de La Plata─CONICET, Boulevard 113 y 64, 1900 La Plata, Argentina
| | - Flávia Elisa Galdino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, Brazil
| | - Lindomar Jose Calumby Albuquerque
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | | | - Mateus Borba Cardoso
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
- Programa de Pós-Graduação em Biotecnociências, Universidade Federal do ABC, 09210-580 Santo André, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, Brazil
| |
Collapse
|
11
|
Ferreira LF, Giordano GF, Gobbi AL, Piazzetta MHO, Schleder GR, Lima RS. Real-Time and In Situ Monitoring of the Synthesis of Silica Nanoparticles. ACS Sens 2022; 7:1045-1057. [PMID: 35417147 DOI: 10.1021/acssensors.1c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The real-time and in situ monitoring of the synthesis of nanomaterials (NMs) remains a challenging task, which is of pivotal importance by assisting fundamental studies (e.g., synthesis kinetics and colloidal phenomena) and providing optimized quality control. In fact, the lack of reproducibility in the synthesis of NMs is a bottleneck against the translation of nanotechnologies into the market toward daily practice. Here, we address an impedimetric millifluidic sensor with data processing by machine learning (ML) as a sensing platform to monitor silica nanoparticles (SiO2NPs) over a 24 h synthesis from a single measurement. The SiO2NPs were selected as a model NM because of their extensive applications. Impressively, simple ML-fitted descriptors were capable of overcoming interferences derived from SiO2NP adsorption over the signals of polarizable Au interdigitate electrodes to assure the determination of the size and concentration of nanoparticles over synthesis while meeting the trade-off between accuracy and speed/simplicity of computation. The root-mean-square errors were calculated as ∼2.0 nm (size) and 2.6 × 1010 nanoparticles mL-1 (concentration). Further, the robustness of the ML size descriptor was successfully challenged in data obtained along independent syntheses using different devices, with the global average accuracy being 103.7 ± 1.9%. Our work advances the developments required to transform a closed flow system basically encompassing the reactional flask and an impedimetric sensor into a scalable and user-friendly platform to assess the in situ synthesis of SiO2NPs. Since the sensor presents a universal response principle, the method is expected to enable the monitoring of other NMs. Such a platform may help to pave the way for translating "sense-act" systems into practice use in nanotechnology.
Collapse
Affiliation(s)
- Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriela F. Giordano
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Maria H. O. Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R. Schleder
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
12
|
Ma S, Guo J, Tian Z, Meng T, Mai Y, Yang J. Multi-directionally evaluating the formation mechanism of 1,4-dihydropyridine drug nanosuspensions through experimental validation and computer-aided drug design. Drug Dev Ind Pharm 2022; 47:1587-1597. [PMID: 35037805 DOI: 10.1080/03639045.2022.2028824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The poor aqueous solubility of 1,4-dihydropyridine drugs needs to be solved urgently to improve the bioavailability. Nanotechnology can improve drug solubility and dissolution by reducing particle size, but usually a specific polymer or surfactant is required for stabilization. In this study, Poloxamer-407(P-407) was screened as the optimal stabilize through energy simulation, molecular docking and particle size. morphological study, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, Raman, in vitro dissolution test and molecular simulation of interactions were utilized to explore the formation mechanisms of four 1,4-dihydropyridine drugs/P-407 nanosuspensions. The result shows that the optimized nanosuspensions had the particle size in the nano-size range and maintained the original crystal state. The in vitro dissolution rate of the nanosuspension was 3-4 times higher than the corresponding API and could reduce the restriction of drug dissolution in different pH environments. Raman spectroscopy, FTIR and molecular docking simulations provided strong supporting evidence for the formation mechanism of 1,4-dihydropyridine drugs/P-407 nanosuspensions at the molecular level, which confirmed that the stable intermolecular hydrogen bond adsorption and hydrophobic interaction were formed between the drug and P-407. This research will provide practical concepts and technologies, which are helpful to develop nanosuspensions for the same class of drugs.
Collapse
Affiliation(s)
- Shijie Ma
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Zonghua Tian
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Tingting Meng
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Yaping Mai
- Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No.1160 Shengli South Street, Yinchuan, 750004, P R China
| |
Collapse
|
13
|
Rofeal M, El-Malek FA, Qi X. In vitroassessment of green polyhydroxybutyrate/chitosan blend loaded with kaempferol nanocrystals as a potential dressing for infected wounds. NANOTECHNOLOGY 2021; 32:375102. [PMID: 33853056 DOI: 10.1088/1361-6528/abf7ee] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/14/2021] [Indexed: 05/23/2023]
Abstract
Despite the major medical advancements in recent decades, treating infected wounds successfully remains a challenge. In this research, a functional blend of Polyhydroxybutyrate (PHB) and Chitosan (Cs) was developed for wound infection mitigation with tailored biological and physicochemical properties. Water insoluble kaempferol (KPF) was pre-formulated to water soluble KPF nanocrystals (KPF-NCs) with fine particle size of 145 ± 11 nm, and high colloidal stability (-31 ± 0.4 mV) to improve its drug transdermal delivery. PHB-Cs-KPF-NCs (1:2 ratio) film owned the best physical properties in terms of high breathability, thermal stability and mechanical strength (33 ± 1 MPa). Besides, XRD and FTIR findings indicated the interaction between Cs, PHB and KPF, reducing the film crystallinity. The scanning electron microscopy of the film displayed a highly interconnected porous morphology. KPF-NCs were integrated in PHB-Cs matrix with a marked encapsulation efficiency of 96.6%. The enhanced drug-loading film showed a sustain release pattern of KPF-NCs over 48 h. Interestingly, the developed blend possessed an impressive blood clotting capacity within 20 min. Furthermore, we presented a new naturally-sourced mixture of Cs+KPF-NCs with powerful antibacterial effects against MDRStaphylococcus aureusandAcentibacter baumanniiat very low concentrations. The membrane evidenced a remarkable antibacterial naturein vitrowith almost 100% cell viability reduction against the study strains after 48 h. By virtue of these advantages, this green blend is highly proposed for optimal wound care.
Collapse
Affiliation(s)
- Marian Rofeal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, People's Republic of China
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt
| | - Fady Abd El-Malek
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, People's Republic of China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, People's Republic of China
| |
Collapse
|
14
|
El-Malek FA, Rofeal M, Farag A, Omar S, Khairy H. Polyhydroxyalkanoate nanoparticles produced by marine bacteria cultivated on cost effective Mediterranean algal hydrolysate media. J Biotechnol 2021; 328:95-105. [PMID: 33485864 DOI: 10.1016/j.jbiotec.2021.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023]
Abstract
Algae are omnipresent in all seas and oceans, which make thema target for many applications such as bio-fertilizers, fish feeding and removal of heavy metals. In the present study, different algal species were examined as sustainable alternatives substrates for PHA production by Halomonas sp. Several media simulations were utilized to achieve high polymer productivity. The maximum poly(3-hydroxybutyrate) (PHB) concentrations were determined by using Corallina mediterranea hydrolysates as a carbon and nitrogen source. The isolates Halomonas pacifica ASL10 and Halomonas salifodiane ASL11 were found to be able to produce PHA by 67 % wt and 63 % wt CDW, respectively. PHB nanoparticles (NPs) had high zeta potential values and small particle sizes. These properties make it suitable for several drug delivery and pharmaceutical applications. Interestingly, NPs showed a potent antibacterial activity against several reference strains. The antibacterial efficacy of PHA-NPs has not been previously studied, thus this study opens a promising use of PHA-NPs.
Collapse
Affiliation(s)
- Fady Abd El-Malek
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Marian Rofeal
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Aida Farag
- Marine Biotechnology and Natural Products Extract Laboratory, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Sanaa Omar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt
| | - Heba Khairy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Egypt.
| |
Collapse
|
15
|
Picco AS, Mondo GB, Ferreira LF, de Souza EE, Peroni LA, Cardoso MB. Protein corona meets freeze-drying: overcoming the challenges of colloidal stability, toxicity, and opsonin adsorption. NANOSCALE 2021; 13:753-762. [PMID: 33232428 DOI: 10.1039/d0nr06040b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Freeze-drying of nanoparticle suspensions is capable of generating stable nanoformulations with improved storage times and easier transportation. Nonetheless, nanoparticle aggregation is likely induced during freeze-drying, which reduces its redispersibility upon reconstitution and leads to undesirable effects such as non-specific toxicity and impaired efficacy. In this work, bovine serum albumin (BSA) is described as a suitable protectant for silica nanoparticles (SNPs), which result in solid structures with excellent redispersibility and negligible signs of aggregation even when longer storage times are considered. We experimentally demonstrated that massive system aggregation can be prevented when a saturated BSA corona around the nanoparticle is formed before the lyophilization process. Furthermore, the BSA corona is able to suppress non-specific interactions between these nanoparticles and biological systems, as evidenced by the lack of residual cytotoxicity, hemolytic activity and opsonin adsorption. Hence, BSA can be seriously considered for industry as an additive for nanoparticle freeze-drying since it generates solid and redispersible nanoformulations with improved biocompatibility.
Collapse
Affiliation(s)
- Agustin S Picco
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970, Campinas, Brazil.
| | | | | | | | | | | |
Collapse
|
16
|
Hakeem EA, El-Mahrouk GM, Abdelbary G, Teaima MH. Freeze-Dried Clopidogrel Loaded Lyotropic Liquid Crystal: Box-Behnken Optimization, In-Vitro and In-Vivo Evaluation. Curr Drug Deliv 2021; 17:207-217. [PMID: 31969101 DOI: 10.2174/1567201817666200122161433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Clopidogrel (CLP) suffers from extensive first pass metabolism results in a negative impact on its oral systemic bioavailability. Cubosomes are Lyotropic Liquid Crystalline (LLC) nano-systems comprising monoolein, a steric stabilizer and an aqueous system, it considered a promising carrier for different pharmaceutical compounds. Box-Behnken Design (BBD) is an efficient tool for process analysis and optimization skipping forceful treatment combinations. OBJECTIVE The study was designed to develop freeze-dried clopidogrel loaded LLC (cubosomes) for enhancement of its oral bioavailability. METHODS A 33 BBD was adopted, the studied independent factors were glyceryl monooleate (GMO lipid phase), Pluronic F127 (PL F127steric stabilizer) and polyvinyl alcohol powder (stabilizer). Particle Size (PS), Polydispersity Index (PDI) and Zeta Potential (ZP) were set as independent response variables. Seventeen formulae were prepared in accordance with the bottom up approach and in-vitro evaluated regarding PS, PDI and ZP. Statistical analysis and optimization were achieved using design expert software®, then the optimum suggested formula was prepared, in-vitro revaluated, freeze-dried with 3% mannitol (cryoprotectant), solid state characterized and finally packed in hard gelatin capsule for comparative in-vitro release and in-vivo evaluation to Plavix®. RESULTS Results of statistical analysis of each individual response revealed a quadratic model for PS and PDI where a linear model for ZP. The optimum suggested formula with desirability factor equal 0.990 consisting of (200 mg GMO, 78.15 mg PL F127 and 2% PVA). LC/MS/MS study confirmed significant higher Cmax, AUC0-24h and AUC0-∞ than that of Plavix®. CONCLUSION The results confirm the capability of developed carrier to overcome the low oral bioavailability.
Collapse
Affiliation(s)
- Eman A Hakeem
- Department of pharmaceutics and pharmaceutical industry, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Galal M El-Mahrouk
- Department of pharmaceutics and pharmaceutical industry, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Ghada Abdelbary
- Department of pharmaceutics and pharmaceutical industry, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of pharmaceutics and pharmaceutical industry, Faculty of pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Schneid ADC, Silveira CP, Galdino FE, Ferreira LF, Bouchmella K, Cardoso MB. Colloidal Stability and Redispersibility of Mesoporous Silica Nanoparticles in Biological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11442-11449. [PMID: 32880180 DOI: 10.1021/acs.langmuir.0c01571] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The outreach of nanoparticle-based medical treatments has been severely hampered due to the imbalance between the efforts in designing extremely complex materials and the general lack of studies devoted to understanding their colloidal stability in biological environments. Over the years, the scientific community has neglected the relevance related to the nanoparticles' colloidal state, which consequently resulted in very poor bench-to-clinic translation. In this work, we show how mesoporous silica nanoparticles (MSNs, one of the most promising and tested drug delivery platforms) can be efficiently synthesized and prepared, resulting in a colloidally stable system. We first compared three distinct methods of template removal of MSNs and evaluated their ultimate colloidal stability. Then, we also proposed a simple way to prevent aggregation during the drying step by adsorbing BSA onto MSNs. The surface modification resulted in colloidally stable particles that are successfully redispersed in biologically relevant medium while retaining high hemocompatibility and low cytotoxicity.
Collapse
Affiliation(s)
| | | | - Flávia Elisa Galdino
- Instituto de Quı́mica (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, CEP 13083-970 Campinas, São Paulo, Brasil
| | | | - Karim Bouchmella
- Institut Charles Gerhardt Montpellier, UMR-5253 Univ Montpellier, CNRS, ENSCM, cc 1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Mateus Borba Cardoso
- Instituto de Quı́mica (IQ), Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, CEP 13083-970 Campinas, São Paulo, Brasil
- Pós Graduação em Biotecnociência, Universidade Federal do ABC, CEP 09210-580 Santo André, Brasil
| |
Collapse
|
18
|
Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles. Colloids Surf B Biointerfaces 2020; 186:110677. [DOI: 10.1016/j.colsurfb.2019.110677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
|
19
|
Palomba F, Genovese D, Rampazzo E, Zaccheroni N, Prodi L, Morbidelli L. PluS Nanoparticles Loaded with Sorafenib: Synthetic Approach and Their Effects on Endothelial Cells. ACS OMEGA 2019; 4:13962-13971. [PMID: 31497714 PMCID: PMC6714606 DOI: 10.1021/acsomega.9b01699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 05/24/2023]
Abstract
Silica nanostructures are widely investigated for theranostic applications since relatively mild and easy synthetic methods allow the fabrication of multicompartment nanoparticles (NPs) and fine modulation of their properties. Here, we report the optimization of a synthetic strategy leading to brightly fluorescent silica NPs with a high loading ability, up to 45 molecules per NP, of Sorafenib, a small molecule acting as an antiangiogenic drug. We demonstrate that these NPs can efficiently release the drug and they are able to inhibit endothelial cell proliferation and migration and network formation. Their lyophilization can endow them with long shelf stability, whereas, once in solution, they show a much slower release compared to analogous micellar systems. Interestingly, Sorafenib released from Pluronic silica NPs completely prevented endothelial cell responses and postreceptor mitogen-activated protein kinase signaling ignited by vascular endothelial growth factor, one of the major players of tumor angiogenesis. Our results indicate that these theranostic systems represent a promising structure for anticancer applications since NPs alone have no cytotoxic effect on cultured endothelial cells, a cell type to which drugs and exogenous material are always in contact once delivered.
Collapse
Affiliation(s)
- Francesco Palomba
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Enrico Rampazzo
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Luca Prodi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Lucia Morbidelli
- Dipartimento
di Scienze della Vita, Università
di Siena, Via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
20
|
Loiola LMD, Batista M, Capeletti LB, Mondo GB, Rosa RSM, Marques RE, Bajgelman MC, Cardoso MB. Shielding and stealth effects of zwitterion moieties in double-functionalized silica nanoparticles. J Colloid Interface Sci 2019; 553:540-548. [PMID: 31234127 DOI: 10.1016/j.jcis.2019.06.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023]
Abstract
Surface functionalization of silica nanoparticles (SiO2NPs) has been considered as a promising strategy to develop target-specific nanostructures. However, finding a chemical functionalization that can be used as an active targeting moiety while preserving the nanoparticles colloidal stability in biological fluids is still challenging. We present here a dual surface modification strategy for SiO2NPs where a zwitterion (ZW) and a biologically active group (BAG) (amino, mercapto or carboxylic functionalities) are simultaneously grafted on the nanoparticles' surface. The rationale behind this strategy is to generate colloidally stable nanoparticles and avoid the nonspecific protein adsorption due to ZW groups insertion, while the effective interaction with biosystems is guaranteed by the BAGs presence. The biological efficacy was tested against VERO cells, E. coli bacteria and Zika viruses and a similar trend was observed for all tested particles. The desirable "stealth property" to prevent nonspecific protein adhesion also generated a ZW shielding effect of the BAG functionality hindering their proper interaction and activity in cells, bacteria and viruses.
Collapse
Affiliation(s)
- Lívia M D Loiola
- Brazilian Nanotechnology National Laboratory (LNNano). Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, São Paulo, Brazil
| | - Marina Batista
- Brazilian Nanotechnology National Laboratory (LNNano). Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, São Paulo, Brazil
| | - Larissa B Capeletti
- Brazilian Nanotechnology National Laboratory (LNNano). Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, São Paulo, Brazil; Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Zip Code 13083-970, Campinas, São Paulo, Brazil
| | - Gabriela B Mondo
- Brazilian Nanotechnology National Laboratory (LNNano). Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, São Paulo, Brazil; Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Zip Code 13083-970, Campinas, São Paulo, Brazil
| | - Rhubia S M Rosa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, São Paulo, Brazil
| | - Rafael E Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, São Paulo, Brazil
| | - Mateus B Cardoso
- Brazilian Nanotechnology National Laboratory (LNNano). Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970, Campinas, São Paulo, Brazil; Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Zip Code 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
21
|
Click-based thiol-ene photografting of COOH groups to SiO2 nanoparticles: Strategies comparison. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Affonso de Oliveira JF, Scheffer FR, Landis RF, Teixeira Neto É, Rotello VM, Cardoso MB. Dual Functionalization of Nanoparticles for Generating Corona-Free and Noncytotoxic Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41917-41923. [PMID: 30426737 DOI: 10.1021/acsami.8b12351] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein coronas form on the surfaces of nanomaterials in biological fluids. This layer of proteins affects the properties of nanomaterials, altering their behavior and masking engineered functionality. The use of nonfouling moieties reduces or prevents corona formation; however, these ligands typically complicate functionalization. We present here a surface modification strategy for silica nanoparticles using specific molar ratios of zwitterionic and amine moieties. Through proper balance of ligands, we were able to generate particles that featured reactive "handles", while retaining nonfouling properties, high hemocompatibility, and low cytotoxicity.
Collapse
Affiliation(s)
- Jessica Fernanda Affonso de Oliveira
- Laboratório Nacional de Nanotecnologia (LNNano) and Laboratório Nacional de Luz Síncrotron (LNLS)/Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , CEP 13083-970 , Caixa Postal, 6192 Campinas , São Paulo , Brazil
- Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP) , CEP 13083-970 , Caixa Postal, 6154 Campinas , São Paulo , Brazil
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Francine Ramos Scheffer
- Laboratório Nacional de Nanotecnologia (LNNano) and Laboratório Nacional de Luz Síncrotron (LNLS)/Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , CEP 13083-970 , Caixa Postal, 6192 Campinas , São Paulo , Brazil
- Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP) , CEP 13083-970 , Caixa Postal, 6154 Campinas , São Paulo , Brazil
| | - Ryan F Landis
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Érico Teixeira Neto
- Laboratório Nacional de Nanotecnologia (LNNano) and Laboratório Nacional de Luz Síncrotron (LNLS)/Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , CEP 13083-970 , Caixa Postal, 6192 Campinas , São Paulo , Brazil
| | - Vincent M Rotello
- Department of Chemistry , University of Massachusetts Amherst , 710 North Pleasant Street , Amherst , Massachusetts 01003 , United States
| | - Mateus Borba Cardoso
- Laboratório Nacional de Nanotecnologia (LNNano) and Laboratório Nacional de Luz Síncrotron (LNLS)/Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) , CEP 13083-970 , Caixa Postal, 6192 Campinas , São Paulo , Brazil
- Instituto de Química (IQ), Universidade Estadual de Campinas (UNICAMP) , CEP 13083-970 , Caixa Postal, 6154 Campinas , São Paulo , Brazil
| |
Collapse
|
23
|
Sim T, Kim JE, Hoang NH, Kang JK, Lim C, Kim DS, Lee ES, Youn YS, Choi HG, Han HK, Weon KY, Oh KT. Development of a docetaxel micellar formulation using poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) with successful reconstitution for tumor targeted drug delivery. Drug Deliv 2018; 25:1362-1371. [PMID: 29869563 PMCID: PMC6060706 DOI: 10.1080/10717544.2018.1477865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 11/17/2022] Open
Abstract
Docetaxel (DTX)-loaded polymeric micelles (DTBM) were formulated using the triblock copolymer, poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG), to comprehensively study their pharmaceutical application as anticancer nanomedicine. DTBM showed a stable formulation of anticancer nanomedicine that could be reconstituted after lyophilization (DTBM-R) in the presence of PEG 2000 and D-mannitol (Man) as surfactant and protectant, respectively. DTBM-R showed a particle size less than 150 nm and greater than 90% of DTX recovery after reconstitution. The robustly formed micelles might minimize systemic toxicity due to their sustained drug release and also maximize antitumor efficacy through increased accumulation and release of DTX from the micelles. From the pharmaceutical development point of view, DTBM-R showing successful reconstitution could be considered as a potent nanomedicine for tumor treatment.
Collapse
Affiliation(s)
- Taehoon Sim
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Jae Eun Kim
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Ngoc Ha Hoang
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Jin Kook Kang
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Chaemin Lim
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| | - Dong Shik Kim
- b College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Eun Seong Lee
- c Department of Biotechnology , The Catholic University of Korea , Bucheon , Republic of Korea
| | - Yu Seok Youn
- d School of Pharmacy , SungKyunKwan University , Suwon City , Republic of Korea
| | - Han-Gon Choi
- b College of Pharmacy & Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Republic of Korea
| | - Hyo-Kyung Han
- e College of Pharmacy , Dongguk University-Seoul , Goyang , Republic of Korea
| | - Kwon-Yeon Weon
- f College of Pharmacy , Catholic University of Daegu , Gyeongsan-si , Republic of Korea
| | - Kyung Taek Oh
- a College of Pharmacy , Chung-Ang University , Seoul , Republic of Korea
| |
Collapse
|
24
|
Freeze-drying of monoclonal antibody-conjugated gold nanorods: Colloidal stability and biological activity. Int J Pharm 2018; 550:269-277. [DOI: 10.1016/j.ijpharm.2018.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
|