1
|
Gerile S, Shen Q, Kang J, Liu W, Dong A. Current advances in black phosphorus-based antibacterial nanoplatform for infection therpy. Colloids Surf B Biointerfaces 2024; 241:114037. [PMID: 38878660 DOI: 10.1016/j.colsurfb.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.
Collapse
Affiliation(s)
- Saren Gerile
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
2
|
Qi W, Zhang R, Wang Z, Du H, Zhao Y, Shi B, Wang Y, Wang X, Wang P. Advances in the Application of Black Phosphorus-Based Composite Biomedical Materials in the Field of Tissue Engineering. Pharmaceuticals (Basel) 2024; 17:242. [PMID: 38399457 PMCID: PMC10892510 DOI: 10.3390/ph17020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Black Phosphorus (BP) is a new semiconductor material with excellent biocompatibility, degradability, and optical and electrophysical properties. A growing number of studies show that BP has high potential applications in the biomedical field. This article aims to systematically review the research progress of BP composite medical materials in the field of tissue engineering, mining BP in bone regeneration, skin repair, nerve repair, inflammation, treatment methods, and the application mechanism. Furthermore, the paper discusses the shortcomings and future recommendations related to the development of BP. These shortcomings include stability, photothermal conversion capacity, preparation process, and other related issues. However, despite these challenges, the utilization of BP-based medical materials holds immense promise in revolutionizing the field of tissue repair.
Collapse
Affiliation(s)
- Wanying Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Ru Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (W.Q.); (R.Z.)
| | - Zaishang Wang
- School of Pharmacy, Guilin Medical University, Guilin 541001, China;
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Yiwu Zhao
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Bin Shi
- Shandong Medicinal Biotechnology Center, Jinan 250062, China;
| | - Yi Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| | - Xin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan 250014, China; (H.D.); (Y.Z.); (Y.W.)
| |
Collapse
|
3
|
Dong Y, Wang Z, Wang J, Sun X, Yang X, Liu G. Mussel-inspired electroactive, antibacterial and antioxidative composite membranes with incorporation of gold nanoparticles and antibacterial peptides for enhancing skin wound healing. J Biol Eng 2024; 18:3. [PMID: 38212854 PMCID: PMC10785445 DOI: 10.1186/s13036-023-00402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
Large skin wounds are one of the most important health problems in the world. Skin wound repair and tissue regeneration are complex processes involving many physiological signals, and effective wound healing remains an enormous clinical challenge. Therefore, there is an urgent need for a strategy to rapidly kill bacteria, promote cell proliferation and accelerate wound healing. At present, electrical stimulation (ES) is often used in the clinical treatment of skin wounds and can simulate the endogenous biological current of the body and accelerate the repair process of skin wounds. However, a single ES strategy has difficulty covering the entire wound area, which may lead to unsatisfactory therapeutic effects. To overcome this deficiency, it is essential to develop a collaborative treatment strategy that combines ES with other treatments. In this study, gold nanoparticles and antibacterial peptides (Os) were loaded on the surface of poly(lactic-co-glycolic acid) (PLGA) material through the reducibility and adhesion of polydopamine (PDA) and improved the electrical activity, anti-inflammatory, antibacterial and biocompatibility properties of the polymer material. At the same time, this composite membrane material (Os/Au-PDA@PLGA) combined with ES was used in wound therapy to improve the wound healing rate. The results show that the new wound repair material has good biocompatibility and can effectively promote cell proliferation and migration. Through the combined application of gold nanoparticles and antibacterial peptides Os, the polymer materials have more efficient bactericidal and antioxidant effects. The antibacterial experiment results showed that gold nanoparticles could further enhance the antibacterial activity of antibacterial peptides. Furthermore, the Os/Au-PDA@PLGA composite membrane has good hydrophilicity and electrical activity, which can provide a more favorable cell microenvironment for wound healing. In vivo studies using a full-thickness skin defect model in rats showed that the Os/Au-PDA@PLGA composite membrane had a better therapeutic effect than the pure PLGA material. More importantly, the combination of the Os/Au-PDA@PLGA composite with ES significantly accelerated the rate of vascularization and collagen deposition and promoted wound healing compared with non-ES controls. Therefore, the combination of the Au/Os-PDA@PLGA composite membrane with ES may provide a new strategy for the effective treatment of skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jiapeng Wang
- Department of Orthopaedic Surgery, Jilin Province FAW General Hospital, Changchun, 130000, China
| | - Xuedi Sun
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xiaoyu Yang
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Guomin Liu
- Department of Orthopaedic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
4
|
Mammari N, Duval RE. Photothermal/Photoacoustic Therapy Combined with Metal-Based Nanomaterials for the Treatment of Microbial Infections. Microorganisms 2023; 11:2084. [PMID: 37630644 PMCID: PMC10458754 DOI: 10.3390/microorganisms11082084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The increased spread and persistence of bacterial drug-resistant phenotypes remains a public health concern and has contributed significantly to the challenge of combating antibiotic resistance. Nanotechnology is considered an encouraging strategy in the fight against antibiotic-resistant bacterial infections; this new strategy should improve therapeutic efficacy and minimize side effects. Evidence has shown that various nanomaterials with antibacterial performance, such as metal-based nanoparticles (i.e., silver, gold, copper, and zinc oxide) have intrinsic antibacterial properties. These antibacterial agents, such as those made of metal oxides, carbon nanomaterials, and polymers, have been used not only to improve antibacterial efficacy but also to reduce bacterial drug resistance due to their interaction with bacteria and their photophysical properties. These nanostructures have been used as effective agents for photothermal therapy (PTT) and photodynamic therapy (PDT) to kill bacteria locally by heating or the controlled production of reactive oxygen species. Additionally, PTT or PDT therapies have also been combined with photoacoustic (PA) imaging to simultaneously improve treatment efficacy, safety, and accuracy. In this present review, we present, on the one hand, a summary of research highlighting the use of PTT-sensitive metallic nanomaterials for the treatment of bacterial and fungal infections, and, on the other hand, an overview of studies showing the PA-mediated theranostic functionality of metal-based nanomaterials.
Collapse
Affiliation(s)
- Nour Mammari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform®, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
5
|
Karnwal A, Kumar G, Pant G, Hossain K, Ahmad A, Alshammari MB. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS OMEGA 2023; 8:13492-13508. [PMID: 37091369 PMCID: PMC10116640 DOI: 10.1021/acsomega.3c00110] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The clinical applications of nanotechnology are emerging as widely popular, particularly as a potential treatment approach for infectious diseases. Diseases associated with multiple drug-resistant organisms (MDROs) are a global concern of morbidity and mortality. The prevalence of infections caused by antibiotic-resistant bacterial strains has increased the urgency associated with researching and developing novel bactericidal medicines or unorthodox methods capable of combating antimicrobial resistance. Nanomaterial-based treatments are promising for treating severe bacterial infections because they bypass antibiotic resistance mechanisms. Nanomaterial-based approaches, especially those that do not rely on small-molecule antimicrobials, display potential since they can bypass drug-resistant bacteria systems. Nanoparticles (NPs) are small enough to pass through the cell membranes of pathogenic bacteria and interfere with essential molecular pathways. They can also target biofilms and eliminate infections that have proven difficult to treat. In this review, we described the antibacterial mechanisms of NPs against bacteria and the parameters involved in targeting established antibiotic resistance and biofilms. Finally, yet importantly, we talked about NPs and the various ways they can be utilized, including as delivery methods, intrinsic antimicrobials, or a mixture.
Collapse
Affiliation(s)
- Arun Karnwal
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun, Uttarakhand 248002, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Road, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
6
|
Different Dimensional Copper-Based Metal-Organic Frameworks with Enzyme-Mimetic Activity for Antibacterial Therapy. Int J Mol Sci 2023; 24:ijms24043173. [PMID: 36834604 PMCID: PMC9967080 DOI: 10.3390/ijms24043173] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Fighting against bacterial infection and accelerating wound healing remain important and challenging in infected wound care. Metal-organic frameworks (MOFs) have received much attention for their optimized and enhanced catalytic performance in different dimensions of these challenges. The size and morphology of nanomaterials are important in their physiochemical properties and thereby their biological functions. Enzyme-mimicking catalysts, based on MOFs of different dimensions, display varying degrees of peroxidase (POD)-like activity toward hydrogen peroxide (H2O2) decomposition into toxic hydroxyl radicals (•OH) for bacterial inhibition and accelerating wound healing. In this study, we investigated the two most studied representatives of copper-based MOFs (Cu-MOFs), three-dimensional (3D) HKUST-1 and two-dimensional (2D) Cu-TCPP, for antibacterial therapy. HKUST-1, with a uniform and octahedral 3D structure, showed higher POD-like activity, resulting in H2O2 decomposition for •OH generation rather than Cu-TCPP. Because of the efficient generation of toxic •OH, both Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus could be eliminated under a lower concentration of H2O2. Animal experiments indicated that the as-prepared HKUST-1 effectively accelerated wound healing with good biocompatibility. These results reveal the multivariate dimensions of Cu-MOFs with high POD-like activity, providing good potential for further stimulation of specific bacterial binding therapies in the future.
Collapse
|
7
|
Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics 2023; 15:pharmaceutics15020430. [PMID: 36839753 PMCID: PMC9967522 DOI: 10.3390/pharmaceutics15020430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The advent of new antibiotics has helped clinicians to control severe bacterial infections. Despite this, inappropriate and redundant use of antibiotics, inadequate diagnosis, and smart resistant mechanisms developed by pathogens sometimes lead to the failure of treatment strategies. The genotypic analysis of clinical samples revealed that the rapid spread of extended-spectrum β-lactamases (ESBLs) genes is one of the most common approaches acquired by bacterial pathogens to become resistant. The scenario compelled the researchers to prioritize the design and development of novel and effective therapeutic options. Nanotechnology has emerged as a plausible groundbreaking tool against resistant infectious pathogens. Numerous reports suggested that inorganic nanomaterials, specifically gold nanoparticles (AuNPs), have converted unresponsive antibiotics into potent ones against multi-drug resistant pathogenic strains. Interestingly, after almost two decades of exhaustive preclinical evaluations, AuNPs are gradually progressively moving ahead toward clinical evaluations. However, the mechanistic aspects of the antibacterial action of AuNPs remain an unsolved puzzle for the scientific fraternity. Thus, the review covers state-of-the-art investigations pertaining to the efficacy of AuNPs as a tool to overcome ESBLs acquired resistance, their applicability and toxicity perspectives, and the revelation of the most appropriate proposed mechanism of action. Conclusively, the trend suggested that antibiotic-loaded AuNPs could be developed into a promising interventional strategy to limit and overcome the concerns of antibiotic-resistance.
Collapse
|
8
|
Antimicrobial peptide functionalized gold nanorods combining near-infrared photothermal therapy for effective wound healing. Colloids Surf B Biointerfaces 2022; 220:112887. [PMID: 36191410 DOI: 10.1016/j.colsurfb.2022.112887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/29/2022]
Abstract
Photothermal therapy using laser activated gold nanorods (AuNRs) is a strategy for treatment of bacterial infections. Nevertheless, it also exerts cytotoxicity against human cells which leads to adverse effects in healthy human tissues and limits the applicable dose. Functionalization of AuNRs with a selective antimicrobial peptide (AMP) with higher selectivity for bacteria over human cells is a promising strategy for increasing the selectivity of the AuNRs for bacteria, hence increasing their cellular uptake by the bacteria in order to achieve stronger antimicrobial effects with lower doses of AuNRs without damaging the human cells. In this study, the surface of AuNRs was functionalized with a short AMP named C-At5 and the efficiency of the peptide functionalized AuNRs in killing gram-positive and gram-negative bacteria was evaluated in vitro as well as their potential for facilitating wound healing in a mouse model of wound infection with and without application of laser. The peptide-conjugated AuNRs exhibited higher antibacterial activity in vitro compared to the plain AuNRs both in the presence and absence of laser irradiation. Furthermore, AuNR@C-At5 had very low toxicity against human skin fibroblasts and human red blood cells indicating their higher biocompatibility compared to the plain AuNRs. Treatment of wounded mice with AuNR@C-At5 accelerated the wound healing process which was further enhanced by applying laser. The system developed in this study has great potential for customization for specific antimicrobial or antifungal therapy via conjugation of different types of AMPs with higher selectivity and can therefore serve as a guide for any future attempts in this regard.
Collapse
|
9
|
Alafnan A, Rizvi SMD, Alshammari AS, Faiyaz SSM, Lila ASA, Katamesh AA, Khafagy ES, Alotaibi HF, Ahmed ABF. Gold Nanoparticle-Based Resuscitation of Cefoxitin against Clinical Pathogens: A Nano-Antibiotic Strategy to Overcome Resistance. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3643. [PMID: 36296833 PMCID: PMC9608365 DOI: 10.3390/nano12203643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Gold nanoparticles have gained popularity as an effective drug delivery vehicle due to their unique features. In fact, antibiotics transported via gold nanoparticles have significantly enhanced their potency in the recent past. The present study used an approach to synthesize gold nanoparticles in one step with the help of cefoxitin antibiotic as a reducing and stabilizing agent. Cefoxitin is a second-generation cephalosporin that loses its potential due to modification in the porins (ompK35 and ompK36) of Gram-negative pathogens. Thus, the present study has developed an idea to revive the potential of cefoxitin against clinical Gram-negative pathogens, i.e., Escherichia coli and Klebsiella pneumoniae, via applying gold nanoparticles as a delivery tool. Prior to antibacterial activity, characterization of cefoxitin-gold nanoparticles was performed via UV-visible spectrophotometry, dynamic light scattering, and electron microscopy. A characteristic UV-visible scan peak for gold nanoparticles was observed at 518 nm, ζ potential was estimated as -23.6 ± 1.6, and TEM estimated the size in the range of 2-12 nm. Moreover, cefoxitin loading efficiency on gold nanoparticles was calculated to be 71.92%. The antibacterial assay revealed that cefoxitin, after loading onto the gold nanoparticles, become potent against cefoxitin-resistant E. coli and K. pneumoniae, and their MIC50 values were estimated as 1.5 μg/mL and 2.5 μg/mL, respectively. Here, gold nanoparticles effectively deliver cefoxitin to the resistant pathogens, and convert it from unresponsive to a potent antibiotic. However, to obtain some convincing conclusions on the human relevance, their fate and toxicity need to be evaluated.
Collapse
Affiliation(s)
- Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Abdullah S. Alshammari
- Department of Physics, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | | | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed A. Katamesh
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Central Administration for Drug Control, Egyptian Drug Authority “EDA”, Al Maadi 1347, Giza 11553, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint AbdulRahman University, Riyadh 11671, Saudi Arabia
| | - Abo Bakr F. Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
10
|
Abu Lila AS, Huwaimel B, Alobaida A, Hussain T, Rafi Z, Mehmood K, Abdallah MH, Hagbani TA, Rizvi SMD, Moin A, Ahmed AF. Delafloxacin-Capped Gold Nanoparticles (DFX-AuNPs): An Effective Antibacterial Nano-Formulation of Fluoroquinolone Antibiotic. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165709. [PMID: 36013845 PMCID: PMC9415438 DOI: 10.3390/ma15165709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 05/03/2023]
Abstract
New antibiotics are seen as 'drugs of last resort' against virulent bacteria. However, development of resistance towards new antibiotics with time is a universal fact. Delafloxacin (DFX) is a new fluoroquinolone antibiotic that differs from existing fluoroquinolones by the lack of a protonatable substituent, which gives the molecule a weakly acidic nature, affording it higher antibacterial activity under an acidic environment. Furthermore, antibiotic-functionalized metallic nanoparticles have been recently emerged as a feasible platform for conquering bacterial resistance. In the present study, therefore, we aimed at preparing DFX-gold nano-formulations to increase the antibacterial potential of DFX. To synthesize DFX-capped gold nanoparticles (DFX-AuNPs), DFX was used as a reducing and stabilizing/encapsulating agent. Various analytical techniques such as UV-visible spectroscopy, TEM, DLS, FTIR and zeta potential analysis were applied to determine the properties of the synthesized DFX-AuNPs. The synthesized DFX-AuNPs revealed a distinct surface plasmon resonance (SPR) band at 530 nm and an average size of 16 nm as manifested by TEM analysis. In addition, Zeta potential results (-19 mV) confirmed the stability of the synthesized DFX-AuNPs. Furthermore, FTIR analysis demonstrated that DFX was adsorbed onto the surface of AuNPs via strong interaction between AuNPs and DFX. Most importantly, comparative antibacterial analysis of DFX alone and DFX-AuNPs against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) verified the superior antibacterial activity of DFX-AuNPs against the tested microorganisms. To sum up, DFX gold nano-formulations can offer a promising possible solution, even at a lower antibiotic dose, to combat pathogenic bacteria.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Ahmed Alobaida
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Zeeshan Rafi
- Nanomedicine and Nanotechnology Lab, Department of Biosciences, Integral University, Lucknow 226026, India
| | - Khalid Mehmood
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian 22500, Pakistan
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Correspondence: (S.M.D.R.); (A.M.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Correspondence: (S.M.D.R.); (A.M.)
| | - Abobakr F. Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
11
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
12
|
Zhang Y, Yu J, Zhang H, Li Y, Wang L. Nanofibrous dressing: Potential alternative for fighting against antibiotic‐resistance wound infections. J Appl Polym Sci 2022. [DOI: 10.1002/app.52178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yingjie Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| | - Juan Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| | - Huiru Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| | - Yan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles Donghua University Shanghai China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai China
| |
Collapse
|
13
|
Rai A, Ferrão R, Palma P, Patricio T, Parreira P, Anes E, Tonda-Turo C, Martins C, Alves N, Ferreira L. Antimicrobial peptide-based materials: opportunities and challenges. J Mater Chem B 2022; 10:2384-2429. [DOI: 10.1039/d1tb02617h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered alternatives to antibiotics due to the rising number of multidrug-resistant...
Collapse
|
14
|
Kaur K, Reddy S, Barathe P, Shriram V, Anand U, Proćków J, Kumar V. Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Front Microbiol 2021; 12:747019. [PMID: 34867863 PMCID: PMC8633304 DOI: 10.3389/fmicb.2021.747019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Injudicious use of antibiotics has been the main driver of severe bacterial non-susceptibility to commonly available antibiotics (known as drug resistance or antimicrobial resistance), a global threat to human health and healthcare. There is an increase in the incidence and levels of resistance to antibacterial drugs not only in nosocomial settings but also in community ones. The drying pipeline of new and effective antibiotics has further worsened the situation and is leading to a potentially "post-antibiotic era." This requires novel and effective therapies and therapeutic agents for combating drug-resistant pathogenic microbes. Nanomaterials are emerging as potent antimicrobial agents with both bactericidal and potentiating effects reported against drug-resistant microbes. Among them, the photothermally active nanomaterials (PANs) are gaining attention for their broad-spectrum antibacterial potencies driven mainly by the photothermal effect, which is characterized by the conversion of absorbed photon energy into heat energy by the PANs. The current review capitalizes on the importance of using PANs as an effective approach for overcoming bacterial resistance to drugs. Various PANs leveraging broad-spectrum therapeutic antibacterial (both bactericidal and synergistic) potentials against drug-resistant pathogens have been discussed. The review also provides deeper mechanistic insights into the mechanisms of the action of PANs against a variety of drug-resistant pathogens with a critical evaluation of efflux pumps, cell membrane permeability, biofilm, and quorum sensing inhibition. We also discuss the use of PANs as drug carriers. This review also discusses possible cytotoxicities related to the therapeutic use of PANs and effective strategies to overcome this. Recent developments, success stories, challenges, and prospects are also presented.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
15
|
Mutalik C, Okoro G, Krisnawati DI, Jazidie A, Rahmawati EQ, Rahayu D, Hsu WT, Kuo TR. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. J Colloid Interface Sci 2021; 607:1825-1835. [PMID: 34688975 DOI: 10.1016/j.jcis.2021.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023]
Abstract
Metal chalcogenides have been intensively investigated as antibacterial agents due to their unique structures and superior photoactivities. Herein, various structures of copper sulfide (CuS), a metal chalcogenide, such as microspheres (MSs), nanosheets (NSs), and nanoparticles (NPs), were developed in this work for antibacterial applications. A hydrothermal process was utilized to synthesize CuS MSs, CuS NSs, and CuS NPs. Under simulated solar light and near-infrared (NIR) light irradiation, the antibacterial behaviors, reactive oxygen species (ROS) production, and light-driven antibacterial mechanisms of CuS MSs, CuS NSs, and CuS NPs were demonstrated with the bacterium Escherichia coli (E. coli). Bacterial growth curves and ROS generation tests indicated that CuS NSs and CuS NPs had higher light-driven antibacterial activities than that of CuS MSs. ROS of hydroxyl (·OH) and superoxide anion radicals (O2-) were investigated via an electron spin resonance (ESR) spectroscopic analysis by respectively incubating CuS MSs, CuS NSs, and CuS NPs with E. coli under simulated solar light irradiation. Furthermore, E. coli incubated with CuS NPs and CuS NSs showed substantial bacterial degradation after NIR laser irradiation, which was attributed to their photothermal killing effects. Light-driven antibacterial mechanisms of CuS NSs and CuS NPs were investigated, and we discovered that under simulated solar and NIR light irradiation, CuS NSs and CuS NPs produced photoinduced electrons, and the copper ions and photoinduced electrons then reacted with atmospheric moisture to produce hydroxide and superoxide anion radicals and heat, resulting in bacterial mortality.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Goodluck Okoro
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; Universitas Nahdlatul Ulama Surabaya, Surabaya 60237, Indonesia
| | | | - Dwi Rahayu
- Dharma Husada Nursing Academy, Kediri 64114, Indonesia
| | - Wei-Tung Hsu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
16
|
Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021; 9:7878-7908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infectious diseases caused by bacteria, viruses, and fungi and their global spread pose a great threat to human health. The 2019 World Health Organization report predicted that infection-related mortality will be similar to cancer mortality by 2050. Particularly, the global cumulative numbers of the recent outbreak of coronavirus disease (COVID-19) have reached 110.7 million cases and over 2.4 million deaths as of February 23, 2021. Moreover, the crisis of these infectious diseases exposes the many problems of traditional diagnosis, treatment, and prevention, such as time-consuming and unselective detection methods, the emergence of drug-resistant bacteria, serious side effects, and poor drug delivery. There is an urgent need for rapid and sensitive diagnosis as well as high efficacy and low toxicity treatments. The emergence of nanomedicine has provided a promising strategy to greatly enhance detection methods and drug treatment efficacy. Owing to their unique optical, magnetic, and electrical properties, nanoparticles (NPs) have great potential for the fast and selective detection of bacteria, viruses, and fungi. NPs exhibit remarkable antibacterial activity by releasing reactive oxygen species and metal ions, exerting photothermal effects, and causing destruction of the cell membrane. Nano-based delivery systems can further improve drug permeability, reduce the side effects of drugs, and prolong systemic circulation time and drug half-life. Moreover, effective drugs against COVID-19 are still lacking. Recently, nanomedicine has shown great potential to accelerate the development of safe and novel anti-COVID-19 drugs. This article reviews the fundamental mechanisms and the latest developments in the treatment and diagnosis of bacteria, viruses, and fungi and discusses the challenges and perspectives in the application of nanomedicine.
Collapse
Affiliation(s)
- Hengyu Liu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China. .,School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Alternatives to Fight Vancomycin-Resistant Staphylococci and Enterococci. Antibiotics (Basel) 2021; 10:antibiotics10091116. [PMID: 34572698 PMCID: PMC8471638 DOI: 10.3390/antibiotics10091116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
Gram positive pathogens are a significant cause of healthcare-associated infections, with Staphylococci and Enterococci being the most prevalent ones. Vancomycin, a last resort glycopeptide, is used to fight these bacteria but the emergence of resistance against this drug leaves some patients with few therapeutic options. To counter this issue, new generations of antibiotics have been developed but resistance has already been reported. In this article, we review the strategies in place or in development to counter vancomycin-resistant pathogens. First, an overview of traditional antimicrobials already on the market or in the preclinical or clinical pipeline used individually or in combination is summarized. The second part focuses on the non-traditional antimicrobials, such as antimicrobial peptides, bacteriophages and nanoparticles. The conclusion is that there is hitherto no substitute equivalent to vancomycin. However, promising strategies based on drugs with multiple mechanisms of action and treatments based on bacteriophages possibly combined with conventional antibiotics are hoped to provide treatment options for vancomycin-resistant Gram-positive pathogens.
Collapse
|
18
|
Chen B, Li F, Zhu XK, Xie W, Hu X, Zan MH, Li X, Li QY, Guo SS, Zhao XZ, Jiang YA, Cao Z, Liu W. Highly biocompatible and recyclable biomimetic nanoparticles for antibiotic-resistant bacteria infection. Biomater Sci 2021; 9:826-834. [PMID: 33215618 DOI: 10.1039/d0bm01397h] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increasing number of resistant bacteria have emerged with the overuse of antibiotics, which indicates that the bacterial infection has become a global challenge. Furthermore, the pollution of antibiotics to the environment has become a serious threat to public health. It is known that toxins produced by bacteria are the main cause of bacterial infections. Photothermal therapy is an effective antibacterial approach. However, the photothermal reagents cannot eliminate bacterial toxins, and even some anti-bacterial materials are toxic. Here, we synthesized a biomimetic recycled nanoparticle, red blood cell (RBC) membrane-coated Fe3O4 nanoparticles (RBC@Fe3O4), as an antibacterial agent. The RBC@Fe3O4 nanoparticles act as nano-sponges to trap toxins and then kill them all with a photothermal effect. We can describe this process simply as a battle between two armies. Our strategy is to disarm the "enemy" so that we can easily kill the "enemy" who has no power, which results in enhancing the bactericidal efficacy. The toxin of methicillin-resistant Staphylococcus aureus (MRSA) was absorbed by RBC@Fe3O4in vitro. In addition, in vivo studies proved that the RBC@Fe3O4 nanoparticles confer obvious survival benefits against toxin-induced lethality by absorbing the toxin of MRSA. Furthermore, using a mouse model of MRSA wound infection, the RBC@Fe3O4 nanoparticles with laser irradiation were found to have a superior wound-healing effect. Simultaneously, the RBC@Fe3O4 nanoparticles could be recycled in a simple way without affecting the bactericidal efficacy. The highly biocompatible and recyclable RBC@Fe3O4 biomimetic nanoparticles based on photothermal therapy and bacterial toxin adsorption strategy are promising for treating bacterial infections.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Fangfang Li
- State Key Laboratory of Virology, College of Life Sciences, Renmin Hospital, Wuhan University, Wuhan 430072, PR China.
| | - Xin Kai Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Wei Xie
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Ming Hui Zan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - XueKe Li
- State Key Laboratory of Virology, College of Life Sciences, Renmin Hospital, Wuhan University, Wuhan 430072, PR China.
| | - Qian-Ying Li
- School of Foreign Language and Literature, Wuhan University, Wuhan 430072, China
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.
| | - Ying-An Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Renmin Hospital, Wuhan University, Wuhan 430072, PR China.
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China. and Wuhan University Shenzhen Institution, Shenzhen 518057, China
| |
Collapse
|
19
|
Guan G, Win KY, Yao X, Yang W, Han M. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Adv Healthc Mater 2021; 10:e2001158. [PMID: 33184997 DOI: 10.1002/adhm.202001158] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/18/2020] [Indexed: 12/11/2022]
Abstract
With the wide utilization of antibiotics, antibiotic-resistant bacteria have been often developed more frequently to cause potential global catastrophic consequences. Emerging photothermal ablation has been attracting extensive research interest for quick/effective eradication of pathogenic bacteria from contaminated surroundings and infected body. In this field, anisotropic gold nanostructures with tunable size/morphologies have been demonstrated to exhibit their outstanding photothermal performance through strong plasmonic absorption of near-infrared (NIR) light, efficient light to heat conversion, and easy surface modification for targeting bacteria. To this end, this review first introduces thermal treatment of infectious diseases followed by photothermal therapy via heat generation on NIR-absorbing gold nanostructures. Then, the usual synthesis and spectral features of diversified gold nanostructures and composites are systematically overviewed with the emphasis on the importance of size, shape, and composition to achieve strong plasmonic absorption in NIR region. Further, the innovated photothermal applications of gold nanostructures are comprehensively demonstrated to combat against bacterial infections, and some constructive suggestions are also discussed to improve photothermal technologies for practical applications.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Khin Yin Win
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| | - Xiang Yao
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Wensheng Yang
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Ming‐Yong Han
- Institute of Molecular Plus Tianjin University No.11 Building, 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
20
|
Gold Nanoparticles: Can They Be the Next Magic Bullet for Multidrug-Resistant Bacteria? NANOMATERIALS 2021; 11:nano11020312. [PMID: 33530434 PMCID: PMC7911621 DOI: 10.3390/nano11020312] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
In 2017 the World Health Organization (WHO) announced a list of the 12 multidrug-resistant (MDR) families of bacteria that pose the greatest threat to human health, and recommended that new measures should be taken to promote the development of new therapies against these superbugs. Few antibiotics have been developed in the last two decades. Part of this slow progression can be attributed to the surge in the resistance acquired by bacteria, which is holding back pharma companies from taking the risk to invest in new antibiotic entities. With limited antibiotic options and an escalating bacterial resistance there is an urgent need to explore alternative ways of meeting this global challenge. The field of medical nanotechnology has emerged as an innovative and a powerful tool for treating some of the most complicated health conditions. Different inorganic nanomaterials including gold, silver, and others have showed potential antibacterial efficacies. Interestingly, gold nanoparticles (AuNPs) have gained specific attention, due to their biocompatibility, ease of surface functionalization, and their optical properties. In this review, we will focus on the latest research, done in the field of antibacterial gold nanoparticles; by discussing the mechanisms of action, antibacterial efficacies, and future implementations of these innovative antibacterial systems.
Collapse
|
21
|
Wang H, Ouyang W, Zhang X, Xue J, Lou X, Fan R, Zhao X, Shan L, Jiang T. Bacteria-induced aggregation of bioorthogonal gold nanoparticles for SERS imaging and enhanced photothermal ablation of Gram-positive bacteria. J Mater Chem B 2020; 7:4630-4637. [PMID: 31364668 DOI: 10.1039/c9tb00845d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The challenge in antimicrobial photothermal therapy (PTT) is to develop strategies for decreasing the damage to cells and increasing the antibacterial efficiency. Herein, we report a novel theranostic strategy based on bacteria-induced gold nanoparticle (GNP) aggregation, in which GNPs in situ aggregated on the bacterial surface via specific targeting of vancomycin and bioorthogonal cycloaddition. Plasmonic coupling between adjacent GNPs exhibited a strong "hot spot" effect, enabling effective surface enhanced Raman scattering (SERS) imaging of bacterial pathogens. More importantly, in situ aggregation of GNPs showed strong NIR adsorption and high photothermal conversion, allowing enhanced photokilling activity against Gram-positive bacteria. In the absence of bacterial strains, GNPs were dispersed and showed a very low photothermal effect, minimizing the side effects towards surrounding healthy tissues. Given the above advantages, the bioorthogonal theranostic strategy developed in this study may find potential applications in treating bacterial infection and even multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Huijie Wang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Wenwen Ouyang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xuerui Zhang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Jing Xue
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xiaoran Lou
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Ranran Fan
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Xiaonai Zhao
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Lianqi Shan
- School of Life Sciences, Ludong University, Yantai 264025, China.
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
22
|
Lin J, He Z, Liu F, Feng J, Huang C, Sun X, Deng H. Hybrid Hydrogels for Synergistic Periodontal Antibacterial Treatment with Sustained Drug Release and NIR-Responsive Photothermal Effect. Int J Nanomedicine 2020; 15:5377-5387. [PMID: 32848384 PMCID: PMC7425099 DOI: 10.2147/ijn.s248538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Periodontal pathogenic bacteria promote the destruction of periodontal tissues and cause loosening and loss of teeth in adults. However, complete removal of periodontal pathogenic bacteria, at both the bottom of the periodontal pocket and the root bifurcation area, remains challenging. In this work, we explored a synergistic antibiotic and photothermal treatment, which is considered an alternative strategy for highly efficient periodontal antibacterial therapy. METHODS Mesoporous silica (MSNs) on the surface of Au nanobipyramids (Au NBPs) were designed to achieve the sustained release of the drug and photothermal antibacterials. The mesoporous silica-coated Au NBPs (Au NBPs@SiO2) were mixed with gelatin methacrylate (GelMA-Au NBPs@SiO2). Au NBPs@SiO2 and GelMA-Au NBPs@SiO2 hybrid hydrogels were characterized, and the drug content and photothermal properties in terms of the release profile, bacterial inhibition, and cell growth were investigated. RESULTS The GelMA-Au NBPs@SiO2 hybrid hydrogels showed controllable minocycline delivery, and the drug release rates increased under 808 nm near-infrared (NIR) light irradiation. The hydrogels also exhibited excellent antibacterial properties, and the antibacterial efficacy of the antibiotic and photothermal treatment was as high as 90% and 66.7% against Porphyromonas gingivalis (P. gingivalis), respectively. Moreover, regardless of NIR irradiation, cell viability was over 80% and the concentration of Au NBPs@SiO2 in the hybrid hydrogels was as high as 100 µg/mL. CONCLUSION We designed a new near-infrared light (NIR)-activated hybrid hydrogel that offers both sustained release of antibacterial drugs and photothermal treatment. Such sustained release pattern yields the potential to rapidly eliminate periodontal pathogens in the periodontal pocket, and the photothermal treatment maintains low bacterial retention after the drug treatment.
Collapse
Affiliation(s)
- Jian Lin
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zhiqi He
- Department of Pediatric Dentistry, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Fen Liu
- Department of Histology and Embryology, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People’s Republic of China
| | - Chengyi Huang
- Department of Dentistry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xueli Sun
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People’s Republic of China
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
23
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
24
|
Yougbaré S, Mutalik C, Krisnawati DI, Kristanto H, Jazidie A, Nuh M, Cheng TM, Kuo TR. Nanomaterials for the Photothermal Killing of Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1123. [PMID: 32517253 PMCID: PMC7353317 DOI: 10.3390/nano10061123] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
An upsurge in the multidrug-resistant (MDR) bacterial pestilence is a global cause for concern in terms of human health. Lately, nanomaterials with photothermal effects have assisted in the efficient killing of MDR bacteria, attributable to their uncommon plasmonic, photocatalytic, and structural properties. Examinations of substantial amounts of photothermally enabled nanomaterials have shown bactericidal effects in an optimized time under near-infrared (NIR) light irradiation. In this review, we have compiled recent advances in photothermally enabled nanomaterials for antibacterial activities and their mechanisms. Photothermally enabled nanomaterials are classified into three groups, including metal-, carbon-, and polymer-based nanomaterials. Based on substantial accomplishments with photothermally enabled nanomaterials, we have inferred current trends and their prospective clinical applications.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (S.Y.); (C.M.)
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso
| | - Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (S.Y.); (C.M.)
| | - Dyah Ika Krisnawati
- Dharma Husada Nursing Academy, Kediri, East Java 64114, Indonesia; (D.I.K.); or (H.K.)
| | - Heny Kristanto
- Dharma Husada Nursing Academy, Kediri, East Java 64114, Indonesia; (D.I.K.); or (H.K.)
| | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
- Universitas Nahdlatul Ulama Surabaya, Surabaya 60111, Indonesia
| | - Mohammad Nuh
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; or
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medicine and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (S.Y.); (C.M.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
25
|
Moorcroft SCT, Roach L, Jayne DG, Ong ZY, Evans SD. Nanoparticle-Loaded Hydrogel for the Light-Activated Release and Photothermal Enhancement of Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24544-24554. [PMID: 32312040 DOI: 10.1021/acsami.9b22587] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rising concerns over multidrug-resistant bacteria have necessitated an expansion to the current antimicrobial arsenal and forced the development of novel delivery strategies that enhance the efficacy of existing treatments. Antimicrobial peptides (AMPs) are a promising antibiotic alternative that physically disrupts the membrane of bacteria, resulting in rapid bactericidal activity; however, clinical translation of AMPs has been hindered by their susceptibility to protease degradation. Through the co-loading of liposomes encapsulating model AMP, IRIKIRIK-CONH2 (IK8), and gold nanorods (AuNRs) into a poly(ethylene glycol) (PEG) hydrogel, we have demonstrated the ability to protect encapsulated materials from proteolysis and provide the first instance of the triggered AMP release. Laser irradiation at 860 nm, at 2.1 W cm-2, for 10 min led to the photothermal triggered release of IK8, resulting in bactericidal activity against Gram-negative Pseudonomas aeruginosa and Gram-positive Staphylococcus aureus. Furthermore, by increasing the laser intensity to 2.4 W cm-2, we have shown the thermal enhancement of AMP activity. The photothermal triggered release, and enhancement of AMP efficacy, was demonstrated to treat two rounds of fresh S. aureus, indicating that the therapeutic gel has the potential for multiple rounds of treatment. Taken together, this novel therapeutic hydrogel system demonstrates the stimuli-responsive release of AMPs with photothermal enhanced antimicrobial efficacy to treat pathogenic bacteria.
Collapse
Affiliation(s)
- Samuel C T Moorcroft
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lucien Roach
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David G Jayne
- School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Zhan Yuin Ong
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
26
|
Zou Z, Sun J, Li Q, Pu Y, Liu J, Sun R, Wang L, Jiang T. Vancomycin modified copper sulfide nanoparticles for photokilling of vancomycin-resistant enterococci bacteria. Colloids Surf B Biointerfaces 2020; 189:110875. [PMID: 32087532 DOI: 10.1016/j.colsurfb.2020.110875] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Due to the overuse of antibiotics, vancomycin resistant enterococci (VRE) has caused serious infections and become more and more difficult to deal with. Herein, we reported a facile one-pot strategy to synthesize copper sulfide nanoparticles using vancomycin (Van) as reductant and capping agent (CuS@Van). The as-prepared CuS@Van nanocomposites presented excellent uniformity in particle size and strong near infrared (NIR) absorbance. Fourier Transform infrared spectroscopy (FTIR) and Energy dispersive spectrometry (EDS) analysis confirmed the successful modification of Van molecules on the surface of CuS@Van nanoparticles. Bacterial TEM images verified the specific binding affinity between CuS@Van and VRE pathogen. CuS@Van also exhibited effective photokilling capability based on a combination of photothermal therapy (PTT) and photodynamic therapy (PDT). Fluorescent bacterial viability staining and bacterial growth curves monitoring were performed to explore the photokilling ablation of CuS@Van against VRE pathogens. The in vitro results indicated that CuS@Van nanocomposites had no antibacterial activity in the dark but displayed satisfying bactericidal effect against VRE pathogens upon the NIR irradiation. Mouse infection assays were also implemented to evaluate in vivo antibacterial photokilling effectiveness. CuS@Van with NIR irradiation showed the highest antibacterial capability and fastest infection regression compared with the control groups. Considering the low cost, easy preparation, good biocompatibility and excellent photokilling capability, CuS@Van nanocomposites will shed bright light on the photokilling ablation of vancomycin-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Zhonghao Zou
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Jie Sun
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Qing Li
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Yang Pu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jiaqi Liu
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Ruiqi Sun
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Luyao Wang
- School of Life Sciences, Ludong University, Yantai 264025, China
| | - Tingting Jiang
- School of Life Sciences, Ludong University, Yantai 264025, China.
| |
Collapse
|
27
|
Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surf B Biointerfaces 2020; 185:110616. [DOI: 10.1016/j.colsurfb.2019.110616] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 11/21/2022]
|
28
|
Wang S, Gao Y, Jin Q, Ji J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater Sci 2020; 8:6825-6839. [DOI: 10.1039/d0bm00974a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review highlights the different mechanisms of current nano-antibiotic systems for combatting serious antibiotic resistance of bacteria.
Collapse
Affiliation(s)
- Shuting Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yifan Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
29
|
Interplay between amphiphilic peptides and nanoparticles for selective membrane destabilization and antimicrobial effects. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Wang W, Cheng X, Liao J, Lin Z, Chen L, Liu D, Zhang T, Li L, Lu Y, Xia H. Synergistic Photothermal and Photodynamic Therapy for Effective Implant-Related Bacterial Infection Elimination and Biofilm Disruption Using Cu9S8 Nanoparticles. ACS Biomater Sci Eng 2019; 5:6243-6253. [PMID: 33405531 DOI: 10.1021/acsbiomaterials.9b01280] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wanshun Wang
- Department of Graduate School, Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P. R. China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Xiaohang Cheng
- Traditional Chinese Medical Hospital of Xinjiang Urumqi Midong, 1055 Fuqian Road, Midong, Urumqi, Xinjiang 831400, P. R. China
| | - Jiawei Liao
- Department of Graduate School, Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P. R. China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Dandan Liu
- Department of Graduate School, Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P. R. China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| | - Lihua Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, 381 Wushan Road, Guangzhou, Guangdong 510640, P. R. China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
- Department of Orthopedics, Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, Guangdong 510282, P. R. China
| | - Hong Xia
- Department of Graduate School, Guangzhou University of Chinese Medicine, 12 Airport Road, Guangzhou, Guangdong 510405, P. R. China
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Hospital of Orthopedics, General Hospital of Southern Theater Command of PLA, 111 Liuhua Road, Guangzhou, Guangdong 510010, P. R. China
| |
Collapse
|
31
|
Naskar A, Kim KS. Black phosphorus nanomaterials as multi-potent and emerging platforms against bacterial infections. Microb Pathog 2019; 137:103800. [PMID: 31610220 DOI: 10.1016/j.micpath.2019.103800] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 02/09/2023]
Abstract
Black phosphorus (BP) has attracted research interest due to its excellent physiochemical properties in various biomedical applications. However, challenges remain of establishing BP as a practical nanomaterial platform against bacterial infections caused by hard-to-treat pathogens. This review highlights the novel approaches for functional properties and advantages of BP over currently available two-dimensional nanomaterials for antibacterial activity. The latest research findings regarding BP for antibacterial activity, potential as alternative antibacterial approach to current antibiotics, and its promise for the future platform are also considered. We believe that our discussions and perspectives on current topics will provide researchers with an up-to-date and handy reference to apply BP as a beneficial nanostructured biomaterial to the human health against various bacterial infections.
Collapse
Affiliation(s)
- Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
32
|
Graphene–Gold Nanostructures Hybrid Composites Screen-Printed Electrode for the Sensitive Electrochemical Detection of Vancomycin. COATINGS 2019. [DOI: 10.3390/coatings9100652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The most important and well-known glycopeptide antibiotic, vancomycin (VAN), is used for the treatment of severe bacterial infections like methicillin-resistant staphylococcal infections and endocarditis caused by enterococci and sepsis. Taking into account the problem of the development of antibiotic resistance as well as its toxicity, both correlated with the VAN concentration (CVAN) in biological samples, there is need for better and more accessible quantification methods for this antibiotic. Considering all of the above, herein, we present a simple electrochemical method for VAN sensing based on a hybrid graphene-gold nanostructure nanocomposite electrode, which allows double detection directly in the oxidation domain and also indirectly, in reduction, using the electro-active gold nanostructures as a probe to monitor the current changing due to the interaction between gold and VAN. The developed method was able to successfully detect VAN in the linear range of 1–100 µM with a limit of detection (LOD) of 0.29 µM for the direct approach and 0.5 µM for the indirect one. The selectivity of the method was tested in the presence of other antibiotics and drugs. This method was successfully applied for the detection of VAN from human serum samples.
Collapse
|
33
|
Hou Z, Wang Z, Liu R, Li H, Zhang Z, Su T, Yang J, Liu H. The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery. J Nanobiotechnology 2019; 17:88. [PMID: 31426815 PMCID: PMC6699291 DOI: 10.1186/s12951-019-0522-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gold nanoparticles (AuNPs) have been proposed for many applications in medicine and bioanalysis. For use in all these applications, maintaining the stability of AuNPs in solution by suppressing aggregation is paramount. Herein, the effects of amino acids were investigated in stabilizing AuNPs by rationally designed peptide scaffolds. RESULTS Compared to other tested amino acids, phosphotyrosine (pY) significantly stabilized AuNPs. Our results indicated that pY modified AuNPs presented a high level of stability in various solutions, and had good biocompatibility. When a pY-peptide was used in stabilizing AuNPs, the phosphate group could be removed by phosphatases, which subsequently caused the aggregation and the cargo release of AuNPs. In vitro study showed that AuNPs formed aggregation in a phosphatase concentration depending manner. The aggregation of AuNPs was well correlated with the enzymatic activity (R2 = 0.994). In many types of cancer, a significant increase in phosphatases has been observed. Herein, we demonstrated that cancer cells treated with pY modified AuNPs in conjunction with doxorubicin killed SGC-7901 cells with high efficiency, indicating that the pY peptide stabilized AuNPs could be used as carriers for targeted drug delivery. CONCLUSION In summary, pY peptides can act to stabilize AuNPs in various solutions. In addition, the aggregation of pY-AuNPs could be tuned by phosphatase. These results provide a basis for pY-AuNPs acting as potential drug carriers and anticancer efficacy.
Collapse
Affiliation(s)
- Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jeffy Yang
- Schulich Medicine and Dentistry, Western University, London, Canada
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
34
|
Feier B, Blidar A, Vlase L, Cristea C. The complex fingerprint of vancomycin using electrochemical methods and mass spectrometry. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Khandelwal P, Singh DK, Poddar P. Advances in the Experimental and Theoretical Understandings of Antibiotic Conjugated Gold Nanoparticles for Antibacterial Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201900083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Puneet Khandelwal
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| | - Dheeraj K. Singh
- Department of PhysicsInstitute of Infrastructure Technology Research & Management Ahmedabad - 380026 India
| | - Pankaj Poddar
- Physical & Materials Chemistry DivisionCSIR-National Chemical Laboratory Pune - 411008 India
| |
Collapse
|
36
|
Chen YC, Lin KYA, Lin CC, Lu TY, Lin YH, Lin CH, Chen KF. Photoinduced antibacterial activity of NRC03 peptide-conjugated dopamine/nano-reduced graphene oxide against Staphylococcus aureus. Photochem Photobiol Sci 2019; 18:2442-2448. [DOI: 10.1039/c9pp00202b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NRC03-DA/nRGO possessed biocompatible properties and NIR photothermal energy conversion capability. The continuous photoinduced NRC03 peptide release consequently improved the therapeutic efficiency of photothermal therapy against S. aureus.
Collapse
Affiliation(s)
- Y. C. Chen
- Department of Civil Engineering
- National Chi Nan University
- Nantou
- Taiwan
- Department of Biotechnology
| | - K. Y. A. Lin
- Department of Environmental Engineering
- National Chung Hsing University
- Taichung
- Taiwan
| | - C. C. Lin
- Department of Biotechnology
- National Formosa University
- Yunlin
- Taiwan
| | - T. Y. Lu
- Department of Biotechnology
- National Formosa University
- Yunlin
- Taiwan
| | - Y. H. Lin
- Department of Food Technology and Marketing
- Taipei University of Marine Technology
- Taipei
- Taiwan
| | - C. H. Lin
- Department of Biotechnology
- National Formosa University
- Yunlin
- Taiwan
| | - K. F. Chen
- Department of Civil Engineering
- National Chi Nan University
- Nantou
- Taiwan
| |
Collapse
|