1
|
Yu Y, Qiu L. Nanotherapy therapy for acute respiratory distress syndrome: a review. Front Med (Lausanne) 2024; 11:1492007. [PMID: 39712175 PMCID: PMC11658980 DOI: 10.3389/fmed.2024.1492007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a complex and life-threatening disease characterized by severe respiratory failure. The lethality of ARDS remains alarmingly high, especially with the persistent ravages of coronavirus disease 2019 (COVID-19) in recent years. ARDS is one of the major complications of neocoronavirus pneumonia and the leading cause of death in infected patients. The large-scale outbreak of COVID-19 has greatly increased the incidence and mortality of ARDS. Despite advancements in our understanding of the causes and mechanisms of ARDS, the current clinical practice is still limited to the use of supportive medications to alleviate its progression. However, there remains a pressing need for effective therapeutic drugs to combat this devastating disease. In this comprehensive review, we discuss the commonly used therapeutic drugs for ARDS, including steroids, vitamin C, targeted inhibitors, and heparin. While these medications have shown some promise in managing ARDS, there is still a significant gap in the availability of definitive treatments. Moreover, we highlight the potential of nanocarrier delivery systems, such as liposomes, lipid nanoparticles, polymer nanoparticles, and inorganic nanoparticles, as promising therapeutic approaches for ARDS in the future. These innovative delivery systems have demonstrated encouraging results in early clinical trials and offer the potential for more targeted and effective treatment options. Despite the promising early results, further clinical trials are necessary to fully assess the efficacy and safety of nanotherapies for ARDS. Additionally, more in-depth research should be conducted to focus on the continuous development of precision therapies targeting different stages of ARDS development or different triggers. This will provide more ideas and rationale for the treatment of ARDS and ultimately lead to better patient outcomes.
Collapse
Affiliation(s)
| | - Liping Qiu
- Haining People’s Hospital, Haining Branch, The First Affiliated Hospital, Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
2
|
Czerniel J, Gostyńska A, Jańczak J, Stawny M. A critical review of the novelties in the development of intravenous nanoemulsions. Eur J Pharm Biopharm 2023; 191:36-56. [PMID: 37586663 DOI: 10.1016/j.ejpb.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoemulsions have gained increasing attention in recent years as a drug delivery system due to their ability to improve the solubility and bioavailability of poorly water-soluble drugs. This systematic review aimed to collect and critically analyze recent novelties in developing, designing, and optimizing intravenous nanoemulsions appearing in articles published between 2017 and 2022. The applied methodology involved searching two electronic databases PubMed and Scopus, using the keyword "nanoemulsion" in combination with "intravenous" or "parenteral". The resulting original articles were classified by the method of preparation into different categories. An overview of the current methods used for the preparation of such formulations, including high- and low-energy emulsification, was provided. The advantages and disadvantages of these methods were discussed, as well as their potential impact on the properties of the developed intravenous nanoemulsions. The problem of inconsistency in intravenous nanoemulsion terminology may lead to misunderstandings and misinterpretations of their properties and applications was also undertaken. Finally, the regulatory aspects of intravenous nanoemulsions, the state of the art in the field of intravenous emulsifiers, and the future perspectives were presented.
Collapse
Affiliation(s)
- Joanna Czerniel
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Aleksandra Gostyńska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland.
| | - Julia Jańczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka, 60 - 780 Poznan, Poland
| |
Collapse
|
3
|
Lin P, Gao R, Fang Z, Yang W, Tang Z, Wang Q, Wu Y, Fang J, Yu W. Precise nanodrug delivery systems with cell-specific targeting for ALI/ARDS treatment. Int J Pharm 2023; 644:123321. [PMID: 37591476 DOI: 10.1016/j.ijpharm.2023.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common acute and critical diseases in clinics and have no effective treatment to date. With the concept of "precision medicine", research into the precise drug delivery of therapeutic and diagnostic drugs has become a frontier in nanomedicine research and has entered the era of design of precise nanodrug delivery systems (NDDSs) with cell-specific targeting. Owing to the distinctive characteristics of ALI/ARDS, designing NDDSs for specific focal sites is an important strategy for changing drug distribution in the body and specifically increasing drug concentration at target sites while decreasing drug concentration at non-target sites. This strategy enhances drug efficacy, reduces adverse reactions, and ensures accurate nano-targeted treatment. On the basis of the characteristics of pathological ALI/ARDS microenvironments, this paper reviews NDDSs targeting vascular endothelial cells, neutrophils, alveolar macrophages, and alveolar epithelial cells to provide reference for designing accurate NDDSs for ALI/ARDS and novel insights into targeted treatments for ALI/ARDS.
Collapse
Affiliation(s)
- Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Yueguo Wu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Jie Fang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou 310013, China.
| | - Wenying Yu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
4
|
Huang C, You Q, Xu J, Wu D, Chen H, Guo Y, Xu J, Hu M, Qian H. An mTOR siRNA-Loaded Spermidine/DNA Tetrahedron Nanoplatform with a Synergistic Anti-Inflammatory Effect on Acute Lung Injury. Adv Healthc Mater 2022; 11:e2200008. [PMID: 35167728 DOI: 10.1002/adhm.202200008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is characterized by severe inflammation and damage to the lung air-blood barrier, resulting in respiratory function damage and life-threatening outcomes. Macrophage polarization plays an essential role in the occurrence, development, and outcome of ALI. As drug carriers, self-assembled DNA nanostructures can potentially overcome the drawbacks and limitations of traditional anti-inflammatory agents owing to their nontoxicity, programmability, and excellent structural control at the nanoscale. A small interfering RNA (siRNA) and drug dual therapy nanoplatform are proposed and constructed here to combat ALI. The nanoplatform consists of a spermidine-assembled DNA tetrahedron and four mammalian target of rapamycin siRNAs. Spermidine serves as a mediator of drug delivery vehicle synthesis and a drug that alters macrophage polarization. Both spermidine and siRNA exert anti-inflammatory effects in vitro and in vivo by regulating the macrophage phenotype. More importantly, these factors exhibit a synergistic anti-inflammatory effect by promoting macrophage autophagy. For the first time, an anti-inflammatory dual therapy strategy that uses self-assembled DNA nanostructures as nontoxic, programmable delivery vehicles is proposed and demonstrated through this work. Future work on utilizing DNA nanostructures for the treatment of noncancerous diseases such as ALI is highly promising and desirable.
Collapse
Affiliation(s)
- Chaowang Huang
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Qianyi You
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Jing Xu
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Di Wu
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Huaping Chen
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Yuhang Guo
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Jiancheng Xu
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Mingdong Hu
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Hang Qian
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| |
Collapse
|
5
|
Wang H, Shuai X, Ye S, Zhang R, Wu M, Jiang S, Li Y, Wu D, He J. Recent advances in the development of bitter gourd seed oil: from chemical composition to potential applications. Crit Rev Food Sci Nutr 2022; 63:10678-10690. [PMID: 35648048 DOI: 10.1080/10408398.2022.2081961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-conventional seed oils are being considered novelty foods due to the unique properties of their chemical constituents. Numerous such seed oils serve as nutritional and functional supplements, making them a point of interest for scholars. Bitter gourd (Momordica charantia L.) seed oil (BGSO) has been widely used in folk medicine worldwide for the treatment of different pathologies, such as diabetes, cancer, and several inflammatory diseases. Therefore, its nutritional and medicinal value has been extensively studied. Considering the potential use of BGSO, it is imperative to have a comprehensive understanding of this product to develop and use its biologically active ingredients in innovative food and pharmaceutical products. An extensive understanding of BGSO would also help improve the economic feasibility of the bitter gourd seed processing industry and help prevent environmental pollution associated with the raw waste produced during the processing of bitter gourd seeds. This review addresses the potential uses of BGSO in terms of food and pharmaceuticals industry perspectives and comprehensively summarizes the oil extraction process, chemical composition, biological activity, and the application prospects of BGSO in clinical medicine.
Collapse
Affiliation(s)
- Huiling Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Xiaoyan Shuai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Shuxin Ye
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Rui Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Muci Wu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| | - Sijia Jiang
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Yubao Li
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Dong Wu
- China YunHong Holdings Co, Ltd, Wuxue, P.R. China
| | - Jingren He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, P.R. China
- National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, P.R. China
| |
Collapse
|
6
|
Li X, Zhang Z, Guo Z, Zhao L, Liu Y, Ma X, He Q. Macrophage immunomodulatory activity of Acanthopanax senticousus polysaccharide nanoemulsion via activation of P65/JNK/ikkαsignaling pathway and regulation of Th1/Th2 Cytokines. PeerJ 2022; 9:e12575. [PMID: 35036126 PMCID: PMC8711278 DOI: 10.7717/peerj.12575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Nanoemulsions (NE) are used widely in pharmaceutical drug formulations and vaccine preparation, and Acanthopanax senticousus polysaccharide (ASPS) is a natural bioactive compound with immunostimulatory activity. Therefore, NE-loaded ASPS is expected to provide immunological enhancement for effective treatment. In the present study, Acanthopanax senticousus polysaccharide (ASPS was encapsulated into nanoemulsions, the resultant ASPS-NE were coated with a negative charge, and the immune enhancement mechanism of these ASPS-NE formulations was analyzed. The immunosuppressive animal models (70 ICR mice, male) for the study were established using cyclophosphamide. In addition, the activation of splenocyte proliferation, phagocytosis of the macrophages, the ratio of CD4+ to CD8+, the concentrations of the cytokines in serum, Western blot analysis was used for the analysis of the P65/JNK/ikk α signaling pathway in the peritoneal macrophage s. The results revealed that the ASPS-NE could stimulated the proliferation of splenocytes and enhance immunity. The ASPS-NE induced the expression of different cytokines (TNF-α, IFN-γ, IL-2, and IL-6), could activate the expressions of P65, JNK, and ikkα, and regulated the Th1/Th2 cytokines. These findings demonstrated the potential of ASPS-NE formulations for drug delivery and to induce potent and sustained immune responses.
Collapse
Affiliation(s)
- Xianghui Li
- State Key Laboratory of Agricultural Microbiology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhiqiang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhenhuan Guo
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Li Zhao
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yonglu Liu
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xia Ma
- Medicinal Engineering Department of Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Research Center for the inheritance and innovation of Chinese veterinary medicine classic prescriptions, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology/College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm Sin B 2021; 11:3060-3091. [PMID: 33977080 PMCID: PMC8102084 DOI: 10.1016/j.apsb.2021.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- AEC II, alveolar type II epithelial cells
- AM, alveolar macrophages
- ARDS, acute respiratory distress syndrome
- Acute lung injury
- Acute respiratory distress syndrome
- Anti-inflammatory therapy
- BALF, bronchoalveolar lavage fluid
- BSA, bovine serum albumin
- CD, cyclodextrin
- CLP, cecal ligation and perforation
- COVID-19
- COVID-19, coronavirus disease 2019
- DOPE, phosphatidylethanolamine
- DOTAP, 1-diolefin-3-trimethylaminopropane
- DOX, doxorubicin
- DPPC, dipalmitoylphosphatidylcholine
- Drug delivery
- ECM, extracellular matrix
- ELVIS, extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration
- EPCs, endothelial progenitor cells
- EPR, enhanced permeability and retention
- EVs, extracellular vesicles
- EphA2, ephrin type-A receptor 2
- Esbp, E-selectin-binding peptide
- FcgR, Fcγ receptor
- GNP, peptide-gold nanoparticle
- H2O2, hydrogen peroxide
- HO-1, heme oxygenase-1
- ICAM-1, intercellular adhesion molecule-1
- IKK, IκB kinase
- IL, interleukin
- LPS, lipopolysaccharide
- MERS, Middle East respiratory syndrome
- MPMVECs, mouse pulmonary microvascular endothelial cells
- MPO, myeloperoxidase
- MSC, mesenchymal stem cells
- NAC, N-acetylcysteine
- NE, neutrophil elastase
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor-κB
- Nanomedicine
- PC, phosphatidylcholine
- PCB, poly(carboxybetaine)
- PDA, polydopamine
- PDE4, phosphodiesterase 4
- PECAM-1, platelet-endothelial cell adhesion molecule
- PEG, poly(ethylene glycol)
- PEI, polyetherimide
- PEVs, platelet-derived extracellular vesicles
- PLGA, poly(lactic-co-glycolic acid)
- PS-PEG, poly(styrene-b-ethylene glycol)
- Pathophysiologic feature
- RBC, red blood cells
- RBD, receptor-binding domains
- ROS, reactive oxygen species
- S1PLyase, sphingosine-1-phosphate lyase
- SARS, severe acute respiratory syndrome
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC1, syndecan-1
- SORT, selective organ targeting
- SP, surfactant protein
- Se, selenium
- Siglec, sialic acid-binding immunoglobulin-like lectin
- TLR, toll-like receptor
- TNF-α, tumor necrosis factor-α
- TPP, triphenylphosphonium cation
- Targeting strategy
- YSA, YSAYPDSVPMMS
- cRGD, cyclic arginine glycine-d-aspartic acid
- iNOS, inducible nitric oxide synthase
- rSPANb, anti-rat SP-A nanobody
- scFv, single chain variable fragments
Collapse
Affiliation(s)
- Qi Qiao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kexin Cui
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Engineering Research Center for Novel Drug Delivery System, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|