1
|
Kobzev D, Semenova O, Aviel-Ronen S, Kulyk O, Carmieli R, Mirzabekov T, Gellerman G, Patsenker L. Sonodynamic Therapy for HER2+ Breast Cancer with Iodinated Heptamethine Cyanine-Trastuzumab Conjugate. Int J Mol Sci 2024; 25:10137. [PMID: 39337633 PMCID: PMC11431973 DOI: 10.3390/ijms251810137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The first example of sonodynamic therapy (SDT) with a cyanine dye-antibody conjugate is reported. The aim of this study was to evaluate the sonodynamic efficacy of a trastuzumab-guided diiodinated heptamethine cyanine-based sensitizer, 2ICy7-Ab, versus its non-iodinated counterpart, Cy7-Ab, in a human epidermal growth factor receptor 2-positive (HER2+) xenograft model. In addition, the combined sonodynamic and photodynamic (PDT) effects were investigated. A single intravenous injection of 2ICy7-Ab followed by sonication or combined sonication and photoirradiation in mice resulted in complete tumor growth suppression compared with the nontreated control and showed no detectable toxicity to off-target tissues. In contrast, Cy7-Ab provided only a moderate therapeutic effect (~1.4-1.6-fold suppression). SDT with 2ICy7-Ab resulted in a 3.5-fold reduction in tumor volume within 45 days and exhibited 13-fold greater tumor suppression than PDT alone. In addition, 2ICy7-Ab showed more durable sonostability than photostability. The sonotoxicity of the iodinated versus noniodinated counterparts is attributed to the increased generation of hydroxyl radicals, superoxide, and singlet oxygen. We observed no significant contribution of PDT to the efficacy of the combined SDT and PDT, indicating that SDT with 2ICy7-Ab is superior to PDT alone. These new findings set the stage for the application of cyanine-antibody conjugates for fluorescently monitored targeted sonodynamic treatment of cancer.
Collapse
Affiliation(s)
- Dmytro Kobzev
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Olga Semenova
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Sarit Aviel-Ronen
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Sheba Medical Center, Tel-Hashomer, Ramat Gan 52621, Israel
| | - Olesia Kulyk
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel;
| | | | - Gary Gellerman
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| | - Leonid Patsenker
- Department of Chemical Sciences, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (D.K.); (O.S.); (O.K.); (G.G.)
| |
Collapse
|
2
|
Hajareh Haghighi F, Mercurio M, Cerra S, Salamone TA, Bianymotlagh R, Palocci C, Romano Spica V, Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J Mater Chem B 2023; 11:2334-2366. [PMID: 36847384 DOI: 10.1039/d2tb02576k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In recent years, titanium(IV) dioxide nanoparticles (TiO2NPs) have shown promising potential in various biological applications such as antimicrobials, drug delivery, photodynamic therapy, biosensors, and tissue engineering. For employing TiO2NPs in these fields, their nanosurface must be coated or conjugated with organic and/or inorganic agents. This modification can improve their stability, photochemical properties, biocompatibility, and even surface area for further conjugation with other molecules such as drugs, targeting molecules, polymers, etc. This review describes the organic-based modification of TiO2NPs and their potential applications in the mentioned biological fields. In the first part of this review, around 75 recent publications (2017-2022) are mentioned on the common TiO2NP modifiers including organosilanes, polymers, small molecules, and hydrogels, which improve the photochemical features of TiO2NPs. In the second part of this review, we presented 149 recent papers (2020-2022) about the use of modified TiO2NPs in biological applications, in which specific bioactive modifiers are introduced in this part with their advantages. In this review, the following information is presented: (1) the common organic modifiers for TiO2NPs, (2) biologically important modifiers and their benefits, and (3) recent publications on biological studies on the modified TiO2NPs with their achievements. This review shows the paramount significance of the organic-based modification of TiO2NPs to enhance their biological effectiveness, paving the way toward the development of advanced TiO2-based nanomaterials in nanomedicine.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Martina Mercurio
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | - Roya Bianymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
3
|
Maleki A, Seyedhamzeh M, Yuan M, Agarwal T, Sharifi I, Mohammadi A, Kelicen-Uğur P, Hamidi M, Malaki M, Al Kheraif AA, Cheng Z, Lin J. Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206253. [PMID: 36642806 DOI: 10.1002/smll.202206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 721302, India
| | - Ibrahim Sharifi
- Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, 64165478, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Sıhhiye, Ankara, 06430, Turkey
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
- Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, Zanjan, 45156-13191, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
4
|
Arnett LP, Rana R, Chung WWY, Li X, Abtahi M, Majonis D, Bassan J, Nitz M, Winnik MA. Reagents for Mass Cytometry. Chem Rev 2023; 123:1166-1205. [PMID: 36696538 DOI: 10.1021/acs.chemrev.2c00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 μm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.
Collapse
Affiliation(s)
- Loryn P Arnett
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Rahul Rana
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Wilson Wai-Yip Chung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Xiaochong Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mahtab Abtahi
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Daniel Majonis
- Standard BioTools Canada Inc. (formerly Fluidigm Canada Inc.), 1380 Rodick Road, Suite 400, Markham, OntarioL3R 4G5, Canada
| | - Jay Bassan
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
5
|
Jo S, Sun IC, Ahn CH, Lee S, Kim K. Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:120-137. [PMID: 35184560 DOI: 10.1021/acsami.1c22803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In view of the fact that the blood-brain barrier (BBB) prevents the transport of imaging probes and therapeutic agents to the brain and thus hinders the diagnosis and treatment of brain-related disorders, methods of circumventing this problem (e.g., ultrasound-mediated nanoparticle delivery) have drawn much attention. Among the related techniques, focused ultrasound (FUS) is a favorite means of enhancing drug delivery via transient BBB opening. Photoacoustic brain imaging relies on the conversion of light into heat and the detection of ultrasound signals from contrast agents, offering the benefits of high resolution and large penetration depth. The extensive versatility and adjustable physicochemical properties of nanoparticles make them promising therapeutic agents and imaging probes, allowing for successful brain imaging and treatment through the combined action of ultrasound and nanoparticulate agents. FUS-induced BBB opening enables nanoparticle-based drug delivery systems to efficiently access the brain. Moreover, photoacoustic brain imaging using nanoparticle-based contrast agents effectively visualizes brain morphologies or diseases. Herein, we review the progress in the simultaneous use of nanoparticles and ultrasound in brain research, revealing the potential of ultrasound-mediated nanoparticle delivery for the effective diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- SeongHoon Jo
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Republic of Korea
| | - Sangmin Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Liu D, Dai X, Ye L, Wang H, Qian H, Cheng H, Wang X. Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1838. [PMID: 35959642 DOI: 10.1002/wnan.1838] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Glioblastoma multiforme (GBM) represents the most common and fatal form of primary invasive brain tumors as it affects a great number of patients each year and has a median overall survival of approximately 14.6 months after diagnosis. Despite intensive treatment, almost all patients with GBM experience recurrence, and their 5-year survival rate is approximately 5%. At present, the main clinical treatment strategy includes surgical resection, radiotherapy, and chemotherapy. However, tumor heterogeneity, blood-brain barrier, glioma stem cells, and DNA damage repair mechanisms hinder efficient GBM treatment. The emergence of nanometer-scale diagnostic and therapeutic approaches in cancer medicine due to the establishment of nanotechnology provides novel and promising tools that will allow us to overcome these difficulties. This review summarizes the application and recent progress in nanotechnology-based monotherapies (e.g., chemotherapy) and combination cancer treatment strategies (chemotherapy-based combined cancer therapy) for GBM and describes the synergistic enhancement between these combination therapies as well as the current standard therapy for brain cancer and its deficiencies. These combination therapies that can reduce individual drug-related toxicities and significantly enhance therapeutic efficiency have recently undergone rapid development. The mechanisms underlying these different nanotechnology-based therapies as well as the application of nanotechnology in GBM (e.g., in photodynamic therapy and chemodynamic therapy) have been systematically summarized here in an attempt to review recent developments and to identify promising directions for future research. This review provides novel and clinically significant insights and directions for the treatment of GBM, which is of great clinical importance. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China.,Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, Manbachi A, Tyler BM. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers (Basel) 2022; 14:4920. [PMID: 36230843 PMCID: PMC9563027 DOI: 10.3390/cancers14194920] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
8
|
Canaparo R, Foglietta F, Barbero N, Serpe L. The promising interplay between sonodynamic therapy and nanomedicine. Adv Drug Deliv Rev 2022; 189:114495. [PMID: 35985374 DOI: 10.1016/j.addr.2022.114495] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023]
Abstract
Sonodynamic therapy (SDT) is a non-invasive approach for cancer treatment in which chemical compounds, named sonosensitizers, are activated by non-thermal ultrasound (US), able to deeply penetrate into the tissues. Despite increasing interest, the underlying mechanisms by which US triggers the sonosensitizer therapeutic activity are not yet clearly elucidate, slowing down SDT clinical application. In this review we will discuss the main mechanisms involved in SDT with particular attention to the sonosensitizers involved for each described mechanism, in order to highlight how much important are the physicochemical properties of the sonosensitizers and their cellular localization to predict their bioeffects. Moreover, we will also focus our attention on the pivotal role of nanomedicine providing the sonodynamic anticancer approach with the ability to shape US-responsive agents to enhance specific sonodynamic effects as the sonoluminescence-mediated anticancer effects. Indeed, SDT is one of the biomedical fields that has significantly improved in recent years due to the increased knowledge of nanosized materials. The shift of the nanosystem from a delivery system for a therapeutic agent to a therapeutic agent in itself represents a real breakthrough in the development of SDT. In doing so, we have also highlighted potential areas in this field, where substantial improvements may provide a valid SDT implementation as a cancer therapy.
Collapse
Affiliation(s)
- Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Nadia Barbero
- Department of Chemistry, NIS Interdepartmental Centre and INSTM Reference Centre, University of Torino, 10125 Torino, Italy
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy.
| |
Collapse
|
9
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
10
|
Guo QL, Dai XL, Yin MY, Cheng HW, Qian HS, Wang H, Zhu DM, Wang XW. Nanosensitizers for sonodynamic therapy for glioblastoma multiforme: current progress and future perspectives. Mil Med Res 2022; 9:26. [PMID: 35676737 PMCID: PMC9178901 DOI: 10.1186/s40779-022-00386-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/22/2022] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor, and it is associated with poor prognosis. Its characteristics of being highly invasive and undergoing heterogeneous genetic mutation, as well as the presence of the blood-brain barrier (BBB), have reduced the efficacy of GBM treatment. The emergence of a novel therapeutic method, namely, sonodynamic therapy (SDT), provides a promising strategy for eradicating tumors via activated sonosensitizers coupled with low-intensity ultrasound. SDT can provide tumor killing effects for deep-seated tumors, such as brain tumors. However, conventional sonosensitizers cannot effectively reach the tumor region and kill additional tumor cells, especially brain tumor cells. Efforts should be made to develop a method to help therapeutic agents pass through the BBB and accumulate in brain tumors. With the development of novel multifunctional nanosensitizers and newly emerging combination strategies, the killing ability and selectivity of SDT have greatly improved and are accompanied with fewer side effects. In this review, we systematically summarize the findings of previous studies on SDT for GBM, with a focus on recent developments and promising directions for future research.
Collapse
Affiliation(s)
- Qing-Long Guo
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.,Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xing-Liang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Meng-Yuan Yin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.,Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Hong-Wei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Hai-Sheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Dao-Ming Zhu
- Department of General Surgery and Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xian-Wen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|