1
|
Negrescu AM, Mitran V, Draghicescu W, Popescu S, Pirvu C, Ionascu I, Soare T, Uzun S, Croitoru SM, Cimpean A. TiO2 Nanotubes Functionalized with Icariin for an Attenuated In Vitro Immune Response and Improved In Vivo Osseointegration. J Funct Biomater 2022; 13:jfb13020043. [PMID: 35466225 PMCID: PMC9036299 DOI: 10.3390/jfb13020043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022] Open
Abstract
Due to their superior mechanical and chemical properties, titanium (Ti) and its alloys have been widely used as orthopedic implantable devices. However, their bioinertness represents a limitation, which can be overcome by employing various surface modifications, such as TiO2 nanotube (TNT) fabrication via electrochemical anodization. Anodic TNTs present tunable dimensions and unique structures, turning them into feasible drug delivery platforms. In the present work, TNTs were loaded with icariin (Ica) through an adhesive intermediate layer of polydopamine (DP), and their in vitro and in vivo biological performance was evaluated. The successful fabrication of the modified surfaces was verified by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), and contact angle measurements (CA), while the in vitro release of Ica was evaluated via UV-VIS spectrophotometry. In terms of in vitro behaviour, comparative studies on RAW 264.7 macrophages demonstrated that the TNT substrates, especially TNT-DP-Ica, elicited a lower inflammatory response compared to the Ti support. Moreover, the in vivo implantation studies evinced generation of a reduced fibrotic capsule around this implant and increased thickness of the newly formed bone tissue at 1 month and 3 months post-implantation, respectively. Overall, our results indicate that the controlled release of Ica from TNT surfaces could result in an improved osseointegration process.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (V.M.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (V.M.)
| | - Wanda Draghicescu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania; (W.D.); (S.P.); (C.P.)
| | - Simona Popescu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania; (W.D.); (S.P.); (C.P.)
| | - Cristian Pirvu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania; (W.D.); (S.P.); (C.P.)
- Faculty of Medical Engineering, University Politehnica of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania
| | - Iuliana Ionascu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 105 Spl. Independentei, 050097 Bucharest, Romania; (I.I.); (T.S.); (S.U.)
| | - Teodoru Soare
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 105 Spl. Independentei, 050097 Bucharest, Romania; (I.I.); (T.S.); (S.U.)
| | - Seralp Uzun
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 105 Spl. Independentei, 050097 Bucharest, Romania; (I.I.); (T.S.); (S.U.)
| | - Sorin Mihai Croitoru
- Machines and Manufacturing Systems Department, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania;
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.-M.N.); (V.M.)
- Correspondence: ; Tel.: +40-21-318-1575 (ext. 106)
| |
Collapse
|
2
|
Evaluating the Toxicity and Histological Effects of Al 2O 3 Nanoparticles on Bone Tissue in Animal Model: A Case-Control Study. J Toxicol 2020; 2020:8870530. [PMID: 33299410 PMCID: PMC7707951 DOI: 10.1155/2020/8870530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/13/2020] [Accepted: 11/15/2020] [Indexed: 11/17/2022] Open
Abstract
The applications of nanostructures have been limited by their different toxicities. So, the investigation of these toxicities is necessary before nanostructure application. This study aimed to evaluate the effect of aluminum oxide (Al2O3) nanoparticles on bone density in Wistar rat. Al2O3 nanoparticle was prepared by the sol-gel method. Characterization was done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Sixty-four male adult Wistar rats were divided into eight groups including six groups intravenously treated with Al2O3 nanoparticle at concentrations of 25, 50, 100, 250, 500, and 1000 µg/ml: one group received food and water as the control group, and one group received food and water as well as intravenously distilled water as an injection control group. After 41 days, bone density was analyzed by dual-energy X-ray absorptiometry (DEXA). According to X-ray diffraction, the average particle size for Al2O3 nanoparticles was 20.85 nm. The data of densitometry showed that the bone density of right and left foot was reduced in concentrations of 250, 500, and 1000 µg/ml that were statistically significant in comparison with the control group. The reduction of bone density was increased with the enhancement of nanostructures concentration. The effect of Al2O3 nanoparticles on bone density was similar in the left and right legs. Histopatholological assessment also showed that Al2O3 nanoparticles (250, 500, and 1000 µg/ml) lead to significant reduction of trabeculae. Empty lacunae are observed in these three groups. Considering that high concentrations of Al2O3 nanoparticles had toxicity on bone tissue, it must be used by more caution, especially its use as a coating in different devices such as implants, surgical instruments, and bone prostheses.
Collapse
|
3
|
Koleoso M, Feng X, Xue Y, Li Q, Munshi T, Chen X. Micro/nanoscale magnetic robots for biomedical applications. Mater Today Bio 2020; 8:100085. [PMID: 33299981 PMCID: PMC7702192 DOI: 10.1016/j.mtbio.2020.100085] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022] Open
Abstract
Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward the achievement of commercialization for these devices.
Collapse
Affiliation(s)
- M. Koleoso
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - X. Feng
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Y. Xue
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Q. Li
- School of Engineering, Institute for Energy Systems, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - T. Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK
| | - X. Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| |
Collapse
|
4
|
Ma Q, Song Y, Sun W, Cao J, Yuan H, Wang X, Sun Y, Shum HC. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903359. [PMID: 32274317 PMCID: PMC7141073 DOI: 10.1002/advs.201903359] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Living cells have evolved over billions of years to develop structural and functional complexity with numerous intracellular compartments that are formed due to liquid-liquid phase separation (LLPS). Discovery of the amazing and vital roles of cells in life has sparked tremendous efforts to investigate and replicate the intracellular LLPS. Among them, all-aqueous emulsions are a minimalistic liquid model that recapitulates the structural and functional features of membraneless organelles and protocells. Here, an emerging all-aqueous microfluidic technology derived from micrometer-scaled manipulation of LLPS is presented; the technology enables the state-of-art design of advanced biomaterials with exquisite structural proficiency and diversified biological functions. Moreover, a variety of emerging biomedical applications, including encapsulation and delivery of bioactive gradients, fabrication of artificial membraneless organelles, as well as printing and assembly of predesigned cell patterns and living tissues, are inspired by their cellular counterparts. Finally, the challenges and perspectives for further advancing the cell-inspired all-aqueous microfluidics toward a more powerful and versatile platform are discussed, particularly regarding new opportunities in multidisciplinary fundamental research and biomedical applications.
Collapse
Affiliation(s)
- Qingming Ma
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Yang Song
- Wallace H Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory School of MedicineAtlantaGA30332USA
| | - Wentao Sun
- Center for Basic Medical ResearchTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Hao Yuan
- Institute of Applied MechanicsNational Taiwan UniversityTaipei10617Taiwan
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Ho Cheung Shum
- Department of Mechanical EngineeringUniversity of Hong KongPokfulam RoadHong Kong
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI)Shenzhen518000China
| |
Collapse
|
5
|
Kotnala A, Zheng Y. Digital Assembly of Colloidal Particles for Nanoscale Manufacturing. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2019; 36:1900152. [PMID: 33041521 PMCID: PMC7546242 DOI: 10.1002/ppsc.201900152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 06/11/2023]
Abstract
From unravelling the most fundamental phenomena to enabling applications that impact our everyday lives, the nanoscale world holds great promise for science, technology and medicine. However, the extent of its practical realization would rely on manufacturing at the nanoscale. Among the various nanomanufacturing approaches being investigated, the bottom-up approach involving assembly of colloidal nanoparticles as building blocks is promising. Compared to a top-down lithographic approach, particle assembly exhibits advantages such as smaller feature size, finer control of chemical composition, less defects, lower material wastage, and higher scalability. The capability to assemble colloidal particles one by one or "digitally" has been heavily sought as it mimics the natural way of making matter and enables construction of nanomaterials with sophisticated architectures. This progress report provides an insight into the tools and techniques for digital assembly of particles, including their working mechanisms and demonstrated particle assemblies. Examples of nanomaterials and nanodevices are presented to demonstrate the strength of digital assembly in nanomanufacturing.
Collapse
Affiliation(s)
- Abhay Kotnala
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
6
|
Fakharzadeh S, Kalanaky S, Hafizi M, Nazaran MH, Zardooz H. DIBc, a nanochelating-based nano metal-organic framework, shows anti-diabetic effects in high-fat diet and streptozotocin-induced diabetic rats. Int J Nanomedicine 2019; 14:2145-2156. [PMID: 30988614 PMCID: PMC6443220 DOI: 10.2147/ijn.s196050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aims Despite daily increase in diabetic patients in the world, currently approved medications for this disease, at best, only reduce its progression speed. Using novel technologies is a solution for synthetizing more efficient medicines. In the present study, we evaluated anti-diabetic effects of DIBc, a nano metal–organic framework, which is synthetized based on nanochelating technology. Methods High-fat diet and streptozotocin-induced diabetic rats were treated by DIBc or metformin for 6 weeks. Results DIBc decreased plasma glucose, triglyceride, cholesterol, high-density lipoprotein, and low-density lipoprotein compared with diabetic and metformin groups. In DIBc-treated rats, significant homeostasis model assessment of insulin resistance index, malondialdehyde, and tumor necrosis factor-α decrease was observed. H&E staining showed increased islet number and area in DIBc-treated rats compared with diabetic controls. Conclusion The results showed anti-diabetic effects of nanochelating-based framework. So DIBc, as a nano structure, has the capacity to be evaluated in future studies as a novel anti-diabetic agent.
Collapse
Affiliation(s)
- Saideh Fakharzadeh
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, .,Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran, .,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran,
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran,
| | | | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, .,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
7
|
BRITO ADRIANNEM, BELLETI ELISANGELA, MENEZES LUCIVALDOR, LANFREDI ALEXANDREJ, NANTES-CARDOS ISELIL. Proteins and Peptides at the Interfaces of Nanostructures. ACTA ACUST UNITED AC 2019; 91:e20181236. [DOI: 10.1590/0001-3765201920181236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
|
8
|
Understanding the Pathological Basis of Neurological Diseases Through Diagnostic Platforms Based on Innovations in Biomedical Engineering: New Concepts and Theranostics Perspectives. MEDICINES 2018; 5:medicines5010022. [PMID: 29495320 PMCID: PMC5874587 DOI: 10.3390/medicines5010022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
The pace of advancement of genomics and proteomics together with the recent understanding of the molecular basis behind rare diseases could lead in the near future to significant advances in the diagnosing and treating of many pathological conditions. Innovative diagnostic platforms based on biomedical engineering (microdialysis and proteomics, biochip analysis, non-invasive impedance spectroscopy, etc.) are introduced at a rapid speed in clinical practice: this article primarily aims to highlight how such platforms will advance our understanding of the pathological basis of neurological diseases. An overview of the clinical challenges and regulatory hurdles facing the introduction of such platforms in clinical practice, as well as their potential impact on patient management, will complement the discussion on foreseeable theranostic perspectives. Indeed, the techniques outlined in this article are revolutionizing how we (1) identify biomarkers that better define the diagnostic criteria of any given disease, (2) develop research models, and (3) exploit the externalities coming from innovative pharmacological protocols (i.e., those based on monoclonal antibodies, nanodrugs, etc.) meant to tackle the molecular cascade so far identified.
Collapse
|
9
|
Kim J, Sinha S, Solomon M, Perez-Herrero E, Hsu J, Tsinas Z, Muro S. Co-coating of receptor-targeted drug nanocarriers with anti-phagocytic moieties enhances specific tissue uptake versus non-specific phagocytic clearance. Biomaterials 2017; 147:14-25. [PMID: 28923682 PMCID: PMC5667353 DOI: 10.1016/j.biomaterials.2017.08.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Nanocarriers (NCs) help improve the performance of therapeutics, but their removal by phagocytes in the liver, spleen, tissues, etc. diminishes this potential. Although NC functionalization with polyethylene glycol (PEG) lowers interaction with phagocytes, it also reduces interactions with tissue cells. Coating NCs with CD47, a protein expressed by body cells to avoid phagocytic removal, offers an alternative. Previous studies showed that coating CD47 on non-targeted NCs reduces phagocytosis, but whether this alters binding and endocytosis of actively-targeted NCs remains unknown. To evaluate this, we used polymer NCs targeted to ICAM-1, a receptor overexpressed in many diseases. Co-coating of CD47 on anti-ICAM NCs reduced macrophage phagocytosis by ∼50% for up to 24 h, while increasing endothelial-cell targeting by ∼87% over control anti-ICAM/IgG NCs. Anti-ICAM/CD47 NCs were endocytosed via the CAM-mediated pathway with efficiency similar (0.99-fold) to anti-ICAM/IgG NCs. Comparable outcomes were observed for NCs targeted to PECAM-1 or transferrin receptor, suggesting broad applicability. When injected in mice, anti-ICAM/CD47 NCs reduced liver and spleen uptake by ∼30-50% and increased lung targeting by ∼2-fold (∼10-fold over IgG NCs). Therefore, co-coating NCs with CD47 and targeting moieties reduces macrophage phagocytosis and improves targeted uptake. This strategy may significantly improve the efficacy of targeted drug NCs.
Collapse
Affiliation(s)
- Joshua Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Sauradeep Sinha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Edgar Perez-Herrero
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Janet Hsu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Zois Tsinas
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States.
| |
Collapse
|
10
|
Chanakul A, Traiphol R, Traiphol N. Utilization of polydiacetylene/zinc oxide nanocomposites to detect and differentiate organic bases in various media. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Colorimetric sensing of various organic acids by using polydiacetylene/zinc oxide nanocomposites: Effects of polydiacetylene and acid structures. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.09.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Khan MN, Khan TA, Khan Z, Al-Thabaiti SA. Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities. Bioprocess Biosyst Eng 2015; 38:2397-416. [PMID: 26458821 DOI: 10.1007/s00449-015-1477-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
Abstract
The present study explores the reducing and capping potentials of aqueous Raphanus sativus root extract for the synthesis of silver nanomaterials for the first time in the absence and presence of two stabilizers, namely, water-soluble starch and cetyltrimethylammonium bromide (CTAB). The surface properties of silver nanoparticles (AgNPs) were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy dispersion X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) techniques. The mean size of AgNPs, ranging from 3.2 to 6.0 nm, could be facilely controlled by merely varying the initial [extract], [CTAB], [starch], and [Ag(+)] ions. The agglomeration number, average number of silver atoms per nanoparticle, and changes in the fermi potentials were calculated and discussed. The AgNPs were evaluated for their antimicrobial activities against different pathogenic organisms. The inhibition action was due to the structural changes in the protein cell wall.
Collapse
Affiliation(s)
- Mohammad Naved Khan
- Nano-Science Research Lab, Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, 110025, India
| | - Tabrez Alam Khan
- Nano-Science Research Lab, Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi, 110025, India
| | - Zaheer Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
13
|
Traiphol N, Faisadcha K, Potai R, Traiphol R. Fine tuning the color-transition temperature of thermoreversible polydiacetylene/zinc oxide nanocomposites: The effect of photopolymerization time. J Colloid Interface Sci 2015; 439:105-11. [DOI: 10.1016/j.jcis.2014.10.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 01/09/2023]
|
14
|
Chanakul A, Traiphol N, Faisadcha K, Traiphol R. Dual colorimetric response of polydiacetylene/Zinc oxide nanocomposites to low and high pH. J Colloid Interface Sci 2014; 418:43-51. [DOI: 10.1016/j.jcis.2013.11.083] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 12/20/2022]
|
15
|
Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013; 65:104-20. [PMID: 23088863 DOI: 10.1016/j.addr.2012.10.003] [Citation(s) in RCA: 598] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 11/21/2022]
Abstract
Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery.
Collapse
|
16
|
Creasey RG, Voelcker NH, Schultz CJ. Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:711-22. [PMID: 22425601 DOI: 10.1016/j.bbapap.2012.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/26/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
Abstract
Fiber-forming proteins and peptides are being scrutinized as a promising source of building blocks for new nanomaterials. Arabinogalactan-like (AGL) proteins expressed at the symbiotic interface between plant roots and arbuscular mycorrhizal fungi have novel sequences, hypothesized to form polyproline II (PPII) helix structures. The functional nature of these proteins is unknown but they may form structures for the establishment and maintenance of fungal hyphae. Here we show that recombinant AGL1 (rAGL1) and recombinant AGL3 (rAGL3) are extended proteins based upon secondary structural characteristics determined by electronic circular dichroism (CD) spectroscopy and can self-assemble into fibers and microtubes as observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). CD spectroscopy results of synthetic peptides based on repeat regions in AGL1, AGL2 and AGL3 suggest that the synthetic peptides contain significant amounts of extended PPII helices and that these structures are influenced by ionic strength and, at least in one case, by concentration. Point mutations of a single residue of the repeat region of AGL3 resulted in altered secondary structures. Self-assembly of these repeats was observed by means of AFM and optical microscopy. Peptide (APADGK)(6) forms structures with similar morphology to rAGL1 suggesting that these repeats are crucial for the morphology of rAGL1 fibers. These novel self-assembling sequences may find applications as precursors for bioinspired nanomaterials.
Collapse
Affiliation(s)
- Rhiannon G Creasey
- School of Chemical and Physical Sciences, Flinders University of South Australia, Australia.
| | | | | |
Collapse
|
17
|
Shen B, Kezheng W, Xilin S, Lina W. Development of molecular imaging and nanomedicine in China. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:533-44. [PMID: 21850712 DOI: 10.1002/wnan.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid progress of molecular imaging (MI) and the application of nanotechnology in medicine have the potential to advance the foundations of diagnosis, treatment, and prevention of diseases. Although MI and biomedical nanotechnology are still in a formative phase in China, much has been achieved over the last decade. This article provides a commentary on the development and current status of nanomedicine in China, with a selective focus on Chinese nanoparticle synthesis technology, the development of imaging equipment, and the preclinical application of novel MI probes.
Collapse
Affiliation(s)
- Baozhong Shen
- Molecular Imaging Center, Department of Radiology, Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China. ,
| | | | | | | |
Collapse
|