1
|
Cui L, Pi J, Qin B, Cui T, Liu Z, Lei L, Wu S. Advanced application of carbohydrate-based micro/nanoparticles for rheumatoid arthritis. Int J Biol Macromol 2024; 269:131809. [PMID: 38677672 DOI: 10.1016/j.ijbiomac.2024.131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/29/2024]
Abstract
Rheumatoid arthritis (RA) is a kind of synovitis and progressive joint destruction disease. Dysregulated immune cell activation, inflammatory cytokine overproduction, and subsequent reactive oxidative species (ROS) production contribute to the RA process. Carbohydrates, including cellulose, chitosan, alginate and dextran, are among the most abundant and important biomolecules in nature and are widely used in biomedicine. Carbohydrate-based micro/nanoparticles(M/NPs) as functional excipients have the ability to improve the bioavailability, solubility and stability of numerous drugs used in RA therapy. For on-demand therapy, smart reactive M/NPs have been developed to respond to a variety of chemical and physical stimuli, including light, temperature, enzymes, pH and ROS, alternating their physical and macroscopic properties, resulting in innovative new drug delivery systems. In particular, advanced products with targeted dextran or hyaluronic acid are exploiting multiple beneficial properties at the same time. In addition to those that respond, there are promising new derivatives in development with microenvironment and chronotherapy effects. In this review, we provide an overview of these recent developments and an outlook on how this class of agents will further shape the landscape of drug delivery for RA treatment.
Collapse
Affiliation(s)
- Linxian Cui
- Geriatric Diseases Institute of Chengdu/Cancer Prevention and Treatment Institute of Chengdu, Department of Cardiology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, Sichuan 611130, PR China
| | - Jinkui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Boquan Qin
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ting Cui
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zhenfei Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Shizhou Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
2
|
Maurya R, Misro L, Boini T, Radhakrishnan T, Nair PG, Gaidhani SN, Jain A. Transforming Medicinal Oil into Advanced Gel: An Update on Advancements. Gels 2024; 10:342. [PMID: 38786260 PMCID: PMC11121385 DOI: 10.3390/gels10050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 05/25/2024] Open
Abstract
The present study delves into the evolution of traditional Ayurvedic oil preparations through innovative strategies to develop advanced gel formulations, aiming at amplifying their therapeutic efficacy. Ayurvedic oils have a rich historical context in healing practices, yet their conversion into contemporary gel-based formulations represents a revolutionary approach to augment their medicinal potential. The primary objective of this transformation is to leverage scientific advancements and modern pharmaceutical techniques to enhance the application, absorption, and overall therapeutic impact of these traditional remedies. By encapsulating the essential constituents of Ayurvedic oils within gel matrices, these novel strategies endeavor to improve their stability, bioavailability, and targeted delivery mechanisms. This review highlights the fusion of traditional Ayurvedic wisdom with cutting-edge pharmaceutical technology, paving the way for more effective and accessible utilization of these revered remedies in modern healthcare.
Collapse
Affiliation(s)
- Rahul Maurya
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Lakshminarayana Misro
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thirupataiah Boini
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Thulasi Radhakrishnan
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Parvathy G. Nair
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Sudesh N. Gaidhani
- National Ayurveda Research Institute for Panchakarma, CCRAS, Ministry of AYUSH, Government of India, Cheruthuruthy, Thrissur 679531, India; (L.M.); (T.B.); (T.R.); (P.G.N.); (S.N.G.)
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| |
Collapse
|
3
|
Bafna PS, Patil PH, Maru SK, Mutha RE. Cissus quadrangularis L: A comprehensive multidisciplinary review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114355. [PMID: 34181958 DOI: 10.1016/j.jep.2021.114355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cissus quadrangularis L. is a perennial herb of the Vitaceae family and is utilized comprehensively as a medicinal herb in most tropical regions by various names. This herb is documented to possess a wide-ranging ethnomedicinal uses in malaria, fever, epilepsy, gout, piles, skin diseases, colic, etc. AIM OF THE REVIEW: A organized summary of the botany, traditional uses, phytochemistry, pharmacology, toxicology, available marketed formulations and filed patents were presented to explore the future therapeutic potential and scientific potential of this herb. MATERIALS AND METHODS For a review of the literature, various databases were searched, including PubMed, EMBASE, and Scopus etc. From, total 408 records of this herb, we have screened 155 articles consist of desired information and available as full text. Present manuscript is structured from comprehensive information on this herb from screened 155 records. Plant taxonomy was confirmed to the database "The Plant List". RESULTS Phytochemical assessment as a whole indicated the presence of flavonoids, triterpenoids, alkaloids, saponins, iridoids, stilbenes, vitamins, steroids, and glycosides. A toxicity study revealed that its LD50 value is above 3000 mg/kg in animals indicating its safety. A variety of pharmacological studies of aerial parts of this herb by different extracts have demonstrated analgesic, anti-inflammatory, anticonvulsant, antimicrobial, anticancer, anti-osteoporotic activity and other bone-related disorders to justify its name as Hadjod. Still, the herb has been utilized in clinical practice and several patents were filed in India and US for its antiosteoporotic property. CONCLUSION The studies on Cissus quadrangularis Linn. are extensive, but gaps still remain. The molecular mechanism, structure-activity relationship, potential synergistic and antagonistic effects of these components needs to be further elucidated. These findings suggest the need for further research on this herb for the management of several other chronic ailments.
Collapse
Affiliation(s)
- Piyush S Bafna
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Payal H Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Saurabh K Maru
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Rakesh E Mutha
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India.
| |
Collapse
|
4
|
Kumar V, Leekha A, Kaul A, Mishra AK, Verma AK. Role of folate-conjugated glycol-chitosan nanoparticles in modulating the activated macrophages to ameliorate inflammatory arthritis: in vitro and in vivo activities. Drug Deliv Transl Res 2021; 10:1057-1075. [PMID: 32363539 DOI: 10.1007/s13346-020-00765-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activated macrophages are the primary targets in rheumatoid arthritis (RA) management. So, we report efficacious, dual-functional Methotrexate (MTX) loaded folate-conjugated pH-responsive glycol-chitosan nanoparticles (MFGCN) prepared by nano-precipitation and zero-order cross-linking reaction for targeting inflamed arthritic tissue. Physical characterization by DLS, SEM and TEM indicated a spherical, smooth morphology with a diameter ~ 300 nm. 1H NMR and FTIR indicated folic acid conjugation to GC by zero-order cross-linkers. In vitro release kinetics in PBS showed pH-responsive and sustained release behaviour of MFGCN. Enhanced cellular uptake and cytotoxicity of MFGCN in LPS(+)RAW and activated peritoneal macrophages (Mϕ) were observed when compared to LPS(-)RAW cells. MFGCN-induced mitochondrial membrane potential (MMP) perturbations indicated apoptosis. Oxidative stress was evident by significant increase in ROS and RNS, 4 h post incubation with MFGCN. Negligible hemolysis by FGCN and MFGCN on rat RBC's indicated biocompatibility. In vivo biodistribution of MFGCN in adjuvant-induced arthritis (AIA) rats indicated RA targetability. Prolonged blood circulation coupled with higher concentrations of 99mTc-MFGCN at the arthritic site was observed post 24 h of injection. The gamma scintigraphic image confirmed accumulation of radiolabelled MFGCN in arthritic paw when compared to the non-inflamed paw, confirming the selective uptake of 99mTc-MFGCN by folate-overexpressing macrophages in the arthritic synovium thereby proving its targeted efficacy and theranostic potential. In AIA rats, MFGCN lowers arthritic signs, improves antioxidant response and decreases pro-inflammatory cytokines, suggesting its potential in targeting activated macrophages of synovium. Graphical abstract.
Collapse
Affiliation(s)
- Vijay Kumar
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Ankita Leekha
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - Anita Kamra Verma
- NanoBiotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
Roy HS, Singh R, Ghosh D. Recent advances in nanotherapeutic strategies that target nitric oxide pathway for preventing cartilage degeneration. Nitric Oxide 2021; 109-110:1-11. [PMID: 33571602 DOI: 10.1016/j.niox.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is an important inflammatory mediator involved in the development and progression of osteoarthritis (OA). Increased production of NO in the affected joints promote cartilage damage. As NO synthesis is catalysed by the inducible NO synthase (iNOS) enzyme, iNOS inhibition serves as an attractive therapeutic target to prevent NO release. Despite a number of direct and indirect iNOS inhibitor molecules demonstrating chondro-protective effect, none have reached the clinic. Its limited bioavailability and adverse side effects served as a deterrent for pursuing clinical trials in OA patients. With the advent of nanotechnology, interest in targeting NO for preventing cartilage degeneration has revived. In this article, we discuss the limitations of the existing molecules and provide an insight on recent nanotechnology-based strategies that have been explored for the diagnosis and inhibition of NO in OA. These approaches hold promise in reviving the hitherto under explored potential of targeting NO to address OA.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Rupali Singh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India.
| |
Collapse
|
6
|
V. E, Krishnan K, Bhattacharyya A, R. S. Advances in Ayurvedic medicinal plants and nanocarriers for arthritis treatment and management: A review. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Verma J, Bhoyar B. Management of juvenile spondyloarthropathy through Ayurveda:- a case report. J Ayurveda Integr Med 2020; 12:143-147. [PMID: 32768345 PMCID: PMC8039353 DOI: 10.1016/j.jaim.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/08/2020] [Accepted: 06/11/2020] [Indexed: 11/25/2022] Open
Abstract
Juvenile Spondyloarthropathies are the inflammatory arthritis before the age of 16 years and are characterized by the involvement of both synovium and enthesis leading to spinal and oligoarticular peripheral arthritis, principally in genetically predisposed (HLA-B27) individuals. These arthropathies are having poorer chance of remission with conventional treatment in comparison to other juvenile arthritis; with less than 20% going into remission within five years of diagnosis. This paper is a retrospective observational study of this condition in one patient receiving Ayurvedic treatment in Paediatric Unit of Ch. Brahm Prakash Ayurved Charak Sansthan. A 15 years adolescent boy with the complaints of inability to stand and walk due to pain and swelling in large joints of body; was carried to Balroga OPD by parents. On the basis of history, physical examination and investigations, the condition is diagnosed Aamavata as per ayurvedic approach and juvenile spondyloarthropathy as per modern medical science. This case is managed on the principle of treatment of Aamavata with administration of Ajamodadi churnam and Mishreya ark as deepana-pachana drugs followed by administration of Simhnad Guggulu and Lakshadi Guggulu with Maharasnadi kashayam and Dashmoolaristam for 3 months. Rheumayoga gold was also given from 4th week onward for 3 months. Panchkarma in the form of Baluka swedana and Kshara basti was also administered for 2 weeks after one month of oral medication. This treatment results in complete remission of all the signs and symptoms including pain and swelling of joints. The case is followed up for next three years without any relapse or progression in the disease. The case study infers that early intervention of Ayurvedic treatment in juvenile spondyloarthropathies may result in complete remission as well as may prevent progression of the disease. The case study provides a good hope for the management of this ailment as well as new ray for research.
Collapse
Affiliation(s)
- Jitesh Verma
- Department of Kaumarbhritya, Ch. Brahm Prakash Ayurved Charak Sansthan, Khera Dabar, Najafgarh, New Delhi, 73, India.
| | - Bharat Bhoyar
- Department of Kaumarbhritya, Ch. Brahm Prakash Ayurved Charak Sansthan, Khera Dabar, Najafgarh, New Delhi, 73, India
| |
Collapse
|
8
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
9
|
Ghosh S, Ghosh S, Sil PC. Role of nanostructures in improvising oral medicine. Toxicol Rep 2019; 6:358-368. [PMID: 31080743 PMCID: PMC6502743 DOI: 10.1016/j.toxrep.2019.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/14/2019] [Indexed: 12/18/2022] Open
Abstract
The most preferable mode of drugs administration is via the oral route but physiological barriers such as pH, enzymatic degradation etc. limit the absolute use of this route. Herein lies the importance of nanotechnology having a wide range of applications in the field of nano-medicine, particularly in drug delivery systems. The exclusive properties particularly small size and high surface area (which can be modified as required), exhibited by these nanoparticlesrender these structures more suitable for the purpose of drug delivery. Various nanostructures, like liposomes, dendrimers, mesoporous silica nanoparticles, etc. have been designed for the said purpose. These nanostructures have several advantages over traditional administration of medicine. Apart from overcoming the pharmacokinetic and pharmacodynamics limitations of many potential therapeutic molecules, they may also be useful for advanced drug delivery purposes like targeted drug delivery, controlled release, enhanced permeability and retention (EPR) effect. In this review, we attempt to describe an up-to-date knowledge on various strategically devised nanostructures to overcome the problems related to oral drug administration.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- AD, Alzheimer’s disease
- AMCNS, cationic niosome-based azithromycin delivery systems
- AP, acetylpuerarin
- AT1R, angiotensin II receptor type 1
- AmB, amphotericin B
- BCRP, breast cancer resistance protein
- CNL, conventional lipid nanoparticles
- CSC, core shell corona nanolipoparticles
- DCK, N-deoxycholyl-l-lysyl-methylester
- DDS, drug delivery system
- DM, diabetes mellitus
- DOX, doxorubicin
- Drug delivery system
- EPR, enhanced permeability and retention effect
- FRET, Foster resonance energy transfer
- GI, gastrointestinal
- GMO, glyceryl monoolein
- IBD, inflammatory bowel disease
- LG, Lakshadi Guggul
- LNC, Lipid Nanocapsule
- MFS, Miltefosine
- MNBNC, Micronucleated Binucleated Cells
- MSN, mesoporous silica nanoparticle
- MTX, methotrexate
- NP, nanoparticle
- NPC, nanoparticulate carriers
- NSAID, non-steroidal anti-inflammatory drug
- Nanostructures
- OA, osteoarthritis
- OXA, oxaliplatin
- Oral medicine
- PAMAM, poly (amidoamine)
- PD, Parkinson’s disease
- PEG, polyethylene glycol
- PIP, 1-piperoylpiperidine
- PLGA, polylactic-co-glycolic acid
- PNL, PEGylated lipid nanoparticles
- PZQ, praziquantel
- SLN, solid lipid nanoparticle
- SMA, styrene maleic acid
- SMEDD, self microemulsifying drug delivery system
- TB, tuberculosis
- TNBS, trinitrobenzenesulphonic acid
- TPGS, tocopheryl polyethylene glycol succinate
- Tmf, tamoxifen
- WGA, wheat germ agglutinin
- pSi, porous silicon
- pSiO, porous silica oxide
Collapse
|
10
|
Hu Q, Chen Q, Yan X, Ding B, Chen D, Cheng L. Chondrocyte affinity peptide modified PAMAM conjugate as a nanoplatform for targeting and retention in cartilage. Nanomedicine (Lond) 2018. [PMID: 29528264 DOI: 10.2217/nnm-2017-0335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIM To develop a nanocarrier for targeted delivery of agents to the cartilage. MATERIALS & METHODS Chondrocyte affinity peptide modified PEGylated polyamidoamine conjugates (CAP-PEG-PAMAM) were prepared and rhodamine B isothiocyanate (RB) fluorophore was linked on them for comparative biological tracing and profiling. RESULTS CAP4-PP-RB exhibited much more efficient cellular uptake in vitro than that of PEG-PAMAM-RB. Both the conjugates were likely internalized by chondrocytes via clathrin and caveolin co-mediated endocytosis, and delivered to lysosomes. In vivo imaging demonstrated the fluorescein-labeled nanocarrier was capable to persist in the joint cavity of rats for a prolonged time. Furthermore, the CAP4-PEG-PAMAM showed a good biocompatibility and enhanced penetration effects in vivo. CONCLUSION CAP-PEG-PAMAM could be an effective nanocarrier for intra-articular delivery of agents to cartilage.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Fujian Medical University, Fuzhou 350108, PR China
| | - Qing Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiuyun Yan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Bomei Ding
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Dawei Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lifang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
11
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium-based biomaterials with good biosafety and bio-absorbability are promising for biomedical applications such as diagnosis, treatment, and theranostics.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Lian-Hua Fu
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical
- Measurements and Ultrasound Imaging
- Laboratory of Evolutionary Theranostics
- School of Biomedical Engineering
- Health Science Center
| |
Collapse
|
12
|
Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage 2017; 25:1577-1587. [PMID: 28705606 DOI: 10.1016/j.joca.2017.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/09/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) as a debilitating affliction of joints currently affects millions of people and remains an unsolved problem. The disease involves multiple cellular and molecular pathways that converge on the progressive destruction of cartilage. Activation of cartilage regenerative potential and specific targeting pathogenic mediators have been the major focus of research efforts aimed at slowing the progression of cartilage degeneration and preserve joint function. This review will summarize recent key discoveries toward better understanding of the complex mechanisms behind OA development and highlight the latest advances in basic and clinical research in the approach for cartilage regeneration. Prospectively, more potent therapeutic strategies against progressive cartilage deterioration may use a combination of cytotherapy, pharmacotherapy, and bioscaffoldings for improved chondrogenic differentiation and stem/progenitor cell homing as well as the concomitant reduced enzymatic matrix degradation and inflammation. Further, treatments need to be provided with increased preciseness of targeted therapy. One might expect that the regenerative therapies could potentially control or even possibly cure OA if performed at early stages of the disease.
Collapse
Affiliation(s)
- M H Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R Xiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J B Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Q Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Kanwar JR, Kamalapuram SK, Krishnakumar S, Kanwar RK. Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER-/PR-/HER2-). Nanomedicine (Lond) 2016; 11:249-68. [DOI: 10.2217/nnm.15.199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To unravel the multimodal nanotheranostic ability of Fe3O4-saturated bovine lactoferrin nanocapsules (FebLf NCs) in claudin-low, triple-negative breast cancer model. Materials & methods: Xenograft study was performed to examine biocompatibility, antitumor efficacy and multimodal nanotheranostic action in combination with near-infrared live mice imaging. Results: FebLf NCs exhibited a size range of 80 nm ± 5 nm with observed superparamagnetism. FebLf NCs successfully internalized into breast cancer cells through receptor-mediated endocytosis and induced apoptosis through the downregulation of inhibitor of apoptosis survivin and livin proteins. Investigations revealed a remarkable biocompatibility, anticancer efficacy of the FebLf NCs. Near-infrared imaging observations confirmed selective localization of multimodal FebLf NCs at the tumor site and lead to time-dependent reduction of tumor growth. Conclusion: FebLf NCs can be safe, biocompatible nanotheranostic approach for real-time imaging and monitoring the effect of drugs in real time and have potentials in future clinical trials.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Sishir K Kamalapuram
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Subramanian Krishnakumar
- L&T Ophthalmic Pathology Department, In charge Stem Cell Laboratory & Nano-biotechnology Laboratory Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
14
|
Anand N, Kanwar RK, Sehgal R, Kanwar JR. Antiparasitic and immunomodulatory potential of oral nanocapsules encapsulated lactoferrin protein against Plasmodium berghei. Nanomedicine (Lond) 2015; 11:47-62. [PMID: 26654428 DOI: 10.2217/nnm.15.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To analyze the effect of native buffalo lactoferrin (buLf) protein along with its nanoformulation using alginate-enclosed, chitosan-conjugated, calcium phosphate buffalo Lf nanocapsules (AEC-CCo-CP-buLf NCs) against rodent parasite Plasmodium berghei. MATERIALS & METHODS BALB/c mice were infected with malaria parasite and efficacy of the proteins (buLf and NCs) was evaluated by measuring parasitemia, initialization, role of miRNA in absorption of NCs, parasite load by histopathology and quantitative determination, cytokine levels, bioavailability and immunohistochemistry to localize Lf protein. RESULTS NCs significantly reduced the parasite load in mice compared with buLf and untreated group. NCs were found to be modulating the disease profile of mice as shown by immunohistochemistry, free radical ion production and higher survival tendency. CONCLUSION Our study confirms that NCs internalized and changed the expression of miRNAs that further enhanced their uptake in various organs leading to inhibitory effect against the parasite as well as maintenance of the Fe metabolism.
Collapse
Affiliation(s)
- Namrata Anand
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Madhya Marg, Sector-12, Chandigarh, 160014, India
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Centre for Molecular and Medical Research (C-MMR), Faculty of Health, Deakin University, Geelong, 75 Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Madhya Marg, Sector-12, Chandigarh, 160014, India
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Centre for Molecular and Medical Research (C-MMR), Faculty of Health, Deakin University, Geelong, 75 Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
15
|
Anand N, Sehgal R, Kanwar RK, Dubey ML, Vasishta RK, Kanwar JR. Oral administration of encapsulated bovine lactoferrin protein nanocapsules against intracellular parasite Toxoplasma gondii. Int J Nanomedicine 2015; 10:6355-69. [PMID: 26504384 PMCID: PMC4605239 DOI: 10.2147/ijn.s85286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is a deadly intracellular parasite known to reside in every nucleated cell and known to cause severe complications in immunocompromised host. Standard drugs are cost effective and cause side effects, therefore, there is a necessity for a new drug molecule with immunomodulatory potential. Lactoferrin (Lf) is a natural milk protein, which has shown antimicrobial properties in its nanoformulation using alginate chitosan calcium phosphate bovine lactoferrin nanocapsules (AEC-CCo-CP-bLf-NCs). The present study was aimed to analyze and compare the effect of bovine Lf (bLf) in its native as well as nanoformulation (AEC-CCo-CP-bLf-NC) against coccidian parasite T. gondii. In vitro analysis has shown a significant increase in nitric oxide production and low parasitemia in in vitro cell culture model. In vivo BALB/c mice model have been used to develop human toxoplasmosis model. After treatment with NCs it has substantially increased the bioavailability of the protein and showed comparatively increased levels of reactive oxygen species, nitric oxide production, and Th1 cytokine which helped in parasite clearance. The mechanism of action of NCs has been clarified by immunoreactivity analysis, which showed accumulation of Lf in macrophages of various visceral organs, which is the site of parasite multiplication. Effect of NCs has significantly decreased (P<0.05) the parasite load in various organs and helped survival of mice till day 25 postinfection. Fe metabolism inside the mice has been found to be maintained even after administration of mono form of Lf, this indicates novelty of Lf protein. From the present study we concluded that nanoformulation did not reduce the therapeutic potential of Lf protein; however, nanoformulation has enhanced the stability of the protein and shown anti-toxoplasmal activity. Our study presents for the first time nanoformulation of Lf protein against Toxoplasma, which has advantages over the standard drug therapy without any side effects.
Collapse
Affiliation(s)
- Namrata Anand
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Mohan Lal Dubey
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vasishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Centre for Molecular and Medical Research, Faculty of Health, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
16
|
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10:6055-74. [PMID: 26451111 PMCID: PMC4592057 DOI: 10.2147/ijn.s92162] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Rebekah Watkins
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Program in Nanoscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chenming Zhang
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
17
|
Roy K, Kanwar RK, Kanwar JR. Molecular targets in arthritis and recent trends in nanotherapy. Int J Nanomedicine 2015; 10:5407-20. [PMID: 26345140 PMCID: PMC4554438 DOI: 10.2147/ijn.s89156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Due to its severity and increasing epidemiology, arthritis needs no description. There are various forms of arthritis most of which are disabling, very painful, and common. In spite of breakthroughs in the field of drug discovery, there is no cure for arthritis that can eliminate the disease permanently and ease the pain. The present review focuses on some of the most successful drugs in arthritis therapy and their side effects. Potential new targets in arthritis therapy such as interleukin-1β, interleukin-17A, tumor necrosis factor alpha, osteopontin, and several others have been discussed here, which can lead to refinement of current therapeutic modalities. Mechanisms for different forms of arthritis have been discussed along with the molecules that act as potential biomarkers for arthritis. Due to the difficulty in monitoring the disease progression to detect the advanced manifestations of the diseases, drug-induced cytotoxicity, and problems with drug delivery; nanoparticle therapy has gained the attention of the researchers. The unique properties of nanoparticles make them highly attractive for the design of novel therapeutics or diagnostic agents for arthritis. The review also focuses on the recent trends in nanoformulation development used for arthritis therapy. This review is, therefore, important because it describes the relevance and need for more arthritis research, it brings forth a critical discussion of successful drugs in arthritis and analyses the key molecular targets. The review also identifies several knowledge gaps in the published research so far along with the proposal of new ideas and future directions in arthritis therapy.
Collapse
Affiliation(s)
- Kislay Roy
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| | - Rupinder Kaur Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| | - Jagat Rakesh Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), Centre for Molecular and Medical Research (C-MMR), Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
18
|
Kanwar JR, Samarasinghe RM, Kumar K, Arya R, Sharma S, Zhou SF, Sasidharan S, Kanwar RK. Cissus quadrangularis inhibits IL-1β induced inflammatory responses on chondrocytes and alleviates bone deterioration in osteotomized rats via p38 MAPK signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2927-40. [PMID: 26089642 PMCID: PMC4467655 DOI: 10.2147/dddt.s77369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Inflammatory mediators are key players in the pathogenesis of osteoarthritis (OA) and bone destruction. Conventional drugs suppress symptomatic activity and have no therapeutic influence on disease. Cissus quadrangularis and Withania somnifera are widely used for the treatment of bone fractures and wounds; however, the cellular and molecular mechanisms regulated by these herbals are still unclear. METHODS We established an in vitro OA culture model by exposing human chondrocytes to proinflammatory cytokine and interleukin (IL)-1β for 36 hours prior to treatment with the herbals: C. quadrangularis, W. somnifera, and the combination of the two herbals. Cell viability, toxicity, and gene expression of OA modifying agents were examined. In addition, expression of survivin, which is crucial for cell growth, was analyzed. In vivo work on osteotomized rats studied the bone and cartilage regenerative effects of C. quadrangularis, W. somnifera, and the combination therapy. RESULTS Exposure of chondrocytes to IL-1β induced significant toxicity and cell death. However, herbal treatment alleviated IL-1β induced cell toxicity and upregulated cell growth and proliferation. C. quadrangularis inhibited gene expression of cytokines and matrix metalloproteinases, known to aggravate cartilage and bone destruction, and augmented expression of survivin by inhibiting p38 MAPK. Interestingly, osteotomized rats treated with C. quadrangularis drastically enhanced alkaline phosphatase and cartilage tissue formation as compared to untreated, W. somnifera only, or the combination of both herbals. CONCLUSION Our findings demonstrate for the first time the signaling mechanisms regulated by C. quadrangularis and W. somnifera in OA and osteogenesis. We suggest that the chondroprotective effects and regenerative ability of these herbals are via the upregulation of survivin that exerts inhibitory effects on the p38 MAPK signaling pathway. These findings thus validate C. quadrangularis as a potential therapeutic for rheumatic disorders.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Geelong Technology Precinct (GTP), Deakin University, Waurn Ponds, VIC, Australia
| | - Rasika M Samarasinghe
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Geelong Technology Precinct (GTP), Deakin University, Waurn Ponds, VIC, Australia
| | - Kuldeep Kumar
- Ayurvedic College, Paprola, Kangra, Himachal Pradesh, India
| | - Ramesh Arya
- Ayurvedic College, Paprola, Kangra, Himachal Pradesh, India
| | - Sanjeev Sharma
- Ayurvedic College, Paprola, Kangra, Himachal Pradesh, India
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Geelong Technology Precinct (GTP), Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
19
|
Kanwar JR, Mahidhara G, Roy K, Sasidharan S, Krishnakumar S, Prasad N, Sehgal R, Kanwar RK. Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc. Nanomedicine (Lond) 2015; 10:35-55. [DOI: 10.2217/nnm.14.132] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: To validate the anticancer efficacy of alginate-enclosed, chitosan-conjugated, calcium phosphate, iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (NCs) with improved sustained release and ability to induce apoptosis by downregulating survivin, as well as cancer stem cells. Materials & methods: The stability, nanotoxicity of the modified nanoformulation was evaluated and their anticancer efficacy was re-examined. Their mechanism of internalization was studied and we identified the role of various miRNAs in absorption of these NCs/iron in various body parts of mice. We determined the effect of these NCs on survivin, stem cell markers, red blood cell count, iron, calcium and zinc concentration in mice, determined the antiangiogenic properties of these NCs and studied their effect on cancer stem-like cells. Results: Spherical NCs (396.1 ± 27.2 nm) exceedingly reduced viability of Caco-2 cells (32 ± 2.83%). The NCs also showed effective internalization and reduction of cancer stem cell markers in triple-positive CD133, survivin and CD44 cancer stem-like cells. Mice treated with the NCs showed no nanotoxicity and did not develop any tumors in xenograft colon cancer models. We found that the serum iron, zinc and calcium absorption were increased. DMT1, LRP, transferrin and lactoferrin receptors were responsible for internalization of the NCs. Different miRNAs were responsible for iron regulation in different organs. Interestingly, NCs inhibited survivin and its different isoforms. Conclusion: Our results confirmed that NCs internalized and changed the expression of selected miRNAs that further enhanced their uptake. The NCs activated both extrinsic, as well as intrinsic apoptotic pathways to induce apoptosis by targeting survivin in cancer cells and cancer stem cells, without inducing any nonspecific nanotoxicity. Apart from inhibiting angiogenesis and stem cell markers, NCs also maintained iron and calcium levels. Original submitted 4 May 2014; Revised submitted 25 June 2014
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Ganesh Mahidhara
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Kislay Roy
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - Subramanian Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Kamalnayan Bajaj Institute for Research in Vision & Ophthalmology, Chennai, India
| | - Neerati Prasad
- Department of Pharmacology, Drug Metabolism & Pharmacokinetics Division (DMPK), University College of Pharmaceutical Science, Kakatiya University, Warangal, Andhra Pradesh, 506009, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Rupinder K Kanwar
- Nanomedicine, Laboratory of Immunology & Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
20
|
Gupta I, Sehgal R, Kanwar RK, Punj V, Kanwar JR. Nanocapsules loaded with iron-saturated bovine lactoferrin have antimicrobial therapeutic potential and maintain calcium, zinc and iron metabolism. Nanomedicine (Lond) 2014; 10:1289-314. [PMID: 25442715 DOI: 10.2217/nnm.14.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM This study aimed to evaluate the potential antimicrobial efficacy of alginate gel-encapsulated ceramic nanocarriers loaded with iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (AEC-CP-Fe-bLf NCs). MATERIALS & METHODS The antimicrobial activities of non-nanoformulated apo (iron free), Fe-bLf and native forms of Australian bLf against pathogenic Salmonella typhimurium (wild strain) were studied in vitro. The efficacy of AEC-CP-Fe-bLf NCs were checked in vivo using Balb/c mice model. RESULTS The study revealed that native bLf is more effective in combating infection than the conventional drug ciprofloxacin (0.4 mg/ml). The efficacy of the drug was also revealed in vivo when BALB/c mice that, after being challenged with S. typhimurium (200 μl of 10(8) CFU/ml suspension), were fed orally with a nanoformulated bLf diet and the infection was observed to be eliminated. However, chronic infection developed in the group of infected mice that did not receive any drug treatment, as well as the mice treated with ciprofloxacin. The immune response to bacterial infection and to various drug treatments thereafter was studied in the mice. CONCLUSION The study concludes that bLf and nanoformulated Fe-bLf are more effective in the treatment of Salmonella-infected mice than ciprofloxacin.
Collapse
Affiliation(s)
- Isha Gupta
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (NLIMBR), Molecular & Medical Research (MMR) Strategic Research Centre, School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, VIC 3217, Australia
| | | | | | | | | |
Collapse
|