1
|
Calero M, Moleiro LH, Sayd A, Dorca Y, Miquel-Rio L, Paz V, Robledo-Montaña J, Enciso E, Acción F, Herráez-Aguilar D, Hellweg T, Sánchez L, Bortolozzi A, Leza JC, García-Bueno B, Monroy F. Lipid nanoparticles for antisense oligonucleotide gene interference into brain border-associated macrophages. Front Mol Biosci 2022; 9:887678. [PMID: 36406277 PMCID: PMC9671215 DOI: 10.3389/fmolb.2022.887678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
A colloidal synthesis’ proof-of-concept based on the Bligh–Dyer emulsion inversion method was designed for integrating into lipid nanoparticles (LNPs) cell-permeating DNA antisense oligonucleotides (ASOs), also known as GapmeRs (GRs), for mRNA interference. The GR@LNPs were formulated to target brain border-associated macrophages (BAMs) as a central nervous system (CNS) therapy platform for silencing neuroinflammation-related genes. We specifically aim at inhibiting the expression of the gene encoding for lipocalin-type prostaglandin D synthase (L-PGDS), an anti-inflammatory enzyme expressed in BAMs, whose level of expression is altered in neuropsychopathologies such as depression and schizophrenia. The GR@LNPs are expected to demonstrate a bio-orthogonal genetic activity reacting with L-PGDS gene transcripts inside the living system without interfering with other genetic or biochemical circuitries. To facilitate selective BAM phagocytosis and avoid subsidiary absorption by other cells, they were functionalized with a mannosylated lipid as a specific MAN ligand for the mannose receptor presented by the macrophage surface. The GR@LNPs showed a high GR-packing density in a compact multilamellar configuration as structurally characterized by light scattering, zeta potential, and transmission electronic microscopy. As a preliminary biological evaluation of the mannosylated GR@LNP nanovectors into specifically targeted BAMs, we detected in vivo gene interference after brain delivery by intracerebroventricular injection (ICV) in Wistar rats subjected to gene therapy protocol. The results pave the way towards novel gene therapy platforms for advanced treatment of neuroinflammation-related pathologies with ASO@LNP nanovectors.
Collapse
Affiliation(s)
- Macarena Calero
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
| | - Lara H. Moleiro
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Aline Sayd
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Yeray Dorca
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Lluis Miquel-Rio
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Verónica Paz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Robledo-Montaña
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Eduardo Enciso
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Fernando Acción
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Diego Herráez-Aguilar
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Madrid, Spain
| | - Thomas Hellweg
- Physikalische und Biophysikalische Chemie, Universität Bielefeld, Bielefeld, Germany
| | - Luis Sánchez
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
| | - Analía Bortolozzi
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- Institut d’Investigacions Biomèdiques de Barcelona, Spanish National Research Council (CSIC) 08036 Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan C. Leza
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
| | - Borja García-Bueno
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) ISCIII. Madrid, Madrid, Spain
- *Correspondence: Borja García-Bueno, ; Francisco Monroy,
| | - Francisco Monroy
- Department of Physical Chemistry, Faculty of Chemistry, Complutense University, Madrid, Spain
- Health Research Institute Hospital 12 de Octubre (Imas12), Madrid, Spain
- *Correspondence: Borja García-Bueno, ; Francisco Monroy,
| |
Collapse
|
2
|
Nicoleta B, Lidia B, Daniela-Laura B, Vasile B, Jean-Pierre C. Nanostructuring Effect of Nano-CeO 2 Particles Reinforcing Cobalt Matrix during Electrocodeposition Process. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2923. [PMID: 36079961 PMCID: PMC9457645 DOI: 10.3390/nano12172923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The electrodeposition method was used to obtain nanostructured layers of Co/nano-CeO2 on 304L stainless steel, from a cobalt electrolyte in which different concentrations of CeO2 nanoparticles (0, 10, 20, and 30 g/L) were dispersed. The electrodeposition was performed at room temperature using three current densities (23, 48, and 72 mA cm-2), and the time was kept constant at 90 min. The influence of current densities and nanoparticle concentrations on the characteristics of the obtained nanostructured layers is also discussed. An X-ray diffractometer (XRD) was used to investigate the phase structure and cobalt crystallite size of the nanostructured layers, and a contact angle (sessile drop method) was used to assess the wettability of the electrodeposited layers. The roughness of the surfaces was also studied. The results show that the nanostructured layers became more hydrophilic with increasing nanoparticle concentration and increasing current density. In the case of pure cobalt deposits, an increase in the current density led to an increase in the size of the cobalt crystallites in the electrodeposited layer, while for the Co/nano-CeO2 nanostructured layers, the size of the crystallites decreased with increasing current density. This confirms the nanostructuring effect of nano-CeO2 electrocodeposited with cobalt.
Collapse
Affiliation(s)
- Bogatu Nicoleta
- Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domnească Street, 800008 Galati, RO, Romania
- Competences Center, Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, 800008 Galati, RO, Romania
| | - Benea Lidia
- Competences Center, Interfaces-Tribocorrosion-Electrochemical Systems, Dunarea de Jos University of Galati, 47 Domnească Street, 800008 Galati, RO, Romania
| | - Buruiană Daniela-Laura
- Faculty of Engineering, Dunarea de Jos University of Galati, 47 Domnească Street, 800008 Galati, RO, Romania
| | - Bașliu Vasile
- Cross-Border Faculty, Dunarea de Jos University of Galati, 47 Domnească Street, 800201 Galati, RO, Romania
| | - Celis Jean-Pierre
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B 2450-3001 Leuven, Belgium
| |
Collapse
|
3
|
Makuku R, Werthel JD, Zanjani LO, Nabian MH, Tantuoyir MM. New frontiers of tendon augmentation technology in tissue engineering and regenerative medicine: a concise literature review. J Int Med Res 2022; 50:3000605221117212. [PMID: 35983666 PMCID: PMC9393707 DOI: 10.1177/03000605221117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tissue banking programs fail to meet the demand for human organs and tissues for
transplantation into patients with congenital defects, injuries, chronic
diseases, and end-stage organ failure. Tendons and ligaments are among the most
frequently ruptured and/or worn-out body tissues owing to their frequent use,
especially in athletes and the elderly population. Surgical repair has remained
the mainstay management approach, regardless of scarring and adhesion formation
during healing, which then compromises the gliding motion of the joint and
reduces the quality of life for patients. Tissue engineering and regenerative
medicine approaches, such as tendon augmentation, are promising as they may
provide superior outcomes by inducing host-tissue ingrowth and tendon
regeneration during degradation, thereby decreasing failure rates and morbidity.
However, to date, tendon tissue engineering and regeneration research has been
limited and lacks the much-needed human clinical evidence to translate most
laboratory augmentation approaches to therapeutics. This narrative review
summarizes the current treatment options for various tendon pathologies, future
of tendon augmentation, cell therapy, gene therapy, 3D/4D bioprinting,
scaffolding, and cell signals.
Collapse
Affiliation(s)
- Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Jean-David Werthel
- Department of Orthopedic and Trauma Surgery, Shariati Hospital, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Oryadi Zanjani
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Mohammad Hossein Nabian
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), School of Medicine, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Orthopedic Surgery, Hospital Ambroise Pare, Boulogne-Billancourt, France.,Biomedical Engineering Unit, University of Ghana Medical Centre, Accra, Ghana
| |
Collapse
|
4
|
Lim CL, Raju CS, Mahboob T, Kayesth S, Gupta KK, Jain GK, Dhobi M, Nawaz M, Wilairatana P, de Lourdes Pereira M, Patra JK, Paul AK, Rahmatullah M, Nissapatorn V. Precision and Advanced Nano-Phytopharmaceuticals for Therapeutic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:238. [PMID: 35055257 PMCID: PMC8778544 DOI: 10.3390/nano12020238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023]
Abstract
Phytopharmaceuticals have been widely used globally since ancient times and acknowledged by healthcare professionals and patients for their superior therapeutic value and fewer side-effects compared to modern medicines. However, phytopharmaceuticals need a scientific and methodical approach to deliver their components and thereby improve patient compliance and treatment adherence. Dose reduction, improved bioavailability, receptor selective binding, and targeted delivery of phytopharmaceuticals can be likely achieved by molding them into specific nano-formulations. In recent decades, nanotechnology-based phytopharmaceuticals have emerged as potential therapeutic candidates for the treatment of various communicable and non-communicable diseases. Nanotechnology combined with phytopharmaceuticals broadens the therapeutic perspective and overcomes problems associated with plant medicine. The current review highlights the therapeutic application of various nano-phytopharmaceuticals in neurological, cardiovascular, pulmonary, and gastro-intestinal disorders. We conclude that nano-phytopharmaceuticals emerge as promising therapeutics for many pathological conditions with good compliance and higher acceptance.
Collapse
Affiliation(s)
- Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chandramathi S. Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Tooba Mahboob
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Sunil Kayesth
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India;
| | - Kamal K. Gupta
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi 110019, India;
| | - Gaurav Kumar Jain
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India; (G.K.J.); (M.D.)
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India; (G.K.J.); (M.D.)
| | - Muhammad Nawaz
- Department of Nano-Medicine, Institute for Research and Medical Consultations ((IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Korea;
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Private Bag 26, Hobart, TAS 7001, Australia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
5
|
Laayati M, Mekkaoui AA, Fkhar L, Ait Ali M, Anane H, Bahsis L, El Firdoussi L, El Houssame S. Synergistic effect of GO/SrFe 12O 19 as magnetic hybrid nanocatalyst for regioselective ring-opening of epoxides with amines under eco-friendly conditions. RSC Adv 2022; 12:11139-11154. [PMID: 35425079 PMCID: PMC8996129 DOI: 10.1039/d2ra00984f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022] Open
Abstract
Highly efficient magnetically separable hybrid GO/SrFe12O19 nanocomposite was synthesized, as catalyst for epoxide ring-opening, via dispersing M-type strontium hexaferrite (SrFe12O19) on graphene oxide (GO) sheets.
Collapse
Affiliation(s)
- Mouhsine Laayati
- Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, BP 145, Khouribga 25000, Morocco
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Ayoub Abdelkader Mekkaoui
- Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, BP 145, Khouribga 25000, Morocco
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Lahcen Fkhar
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Mustapha Ait Ali
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco
- Laboratoire de Chimie de Coordination et d'Analytique (LCCA), Département de Chimie, Faculté des Sciences d'El Jadida, Université Chouaïb Doukkali, El Jadida, Morocco
| | - Larbi El Firdoussi
- Laboratoire de Chimie Moléculaire, Equipe de Chimie de Coordination et de Catalyse, Département de Chimie, Faculté des Sciences Semlalia, BP 2390, Marrakech 40001, Morocco
| | - Soufiane El Houssame
- Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, BP 145, Khouribga 25000, Morocco
| |
Collapse
|
6
|
Cheng L, Suresh K S, He H, Rajput RS, Feng Q, Ramesh S, Wang Y, Krishnan S, Ostrovidov S, Camci-Unal G, Ramalingam M. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. Int J Nanomedicine 2021; 16:4289-4319. [PMID: 34211272 PMCID: PMC8239380 DOI: 10.2147/ijn.s311001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.
Collapse
Affiliation(s)
- Lijia Cheng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Shoma Suresh K
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hongyan He
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Ritu Singh Rajput
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Qiyang Feng
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Saravanan Ramesh
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Yuzhuang Wang
- School of Basic Medicine, Chengdu University, Chengdu, 610106, People’s Republic of China
| | - Sasirekha Krishnan
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Serge Ostrovidov
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular, and Molecular Theranostics, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
7
|
Maziero JS, Thipe VC, Rogero SO, Cavalcante AK, Damasceno KC, Ormenio MB, Martini GA, Batista JGS, Viveiros W, Katti KK, Raphael Karikachery A, Dhurvas Mohandoss D, Dhurvas RD, Nappinnai M, Rogero JR, Lugão AB, Katti KV. Species-Specific in vitro and in vivo Evaluation of Toxicity of Silver Nanoparticles Stabilized with Gum Arabic Protein. Int J Nanomedicine 2020; 15:7359-7376. [PMID: 33061384 PMCID: PMC7537814 DOI: 10.2147/ijn.s250467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction We report, herein, in vitro, and in vivo toxicity evaluation of silver nanoparticles stabilized with gum arabic protein (AgNP-GP) in Daphnia similis, Danio rerio embryos and in Sprague Dawley rats. Purpose The objective of this investigation was to evaluate in vitro and in vivo toxicity of silver nanoparticles stabilized with gum arabic protein (AgNP-GP), in multispecies due to the recognition that toxicity evaluations beyond a single species reflect the environmental realism. In the present study, AgNP-GP was synthesized through the reduction of silver salt using the tri-alanine-phosphine peptide (commonly referred to as “Katti Peptide”) and stabilized using gum arabic protein. Methods In vitro cytotoxicity tests were performed according to ISO 10993–5 protocols to assess cytotoxicity index (IC50) values. Acute ecotoxicity (EC50) studies were performed using Daphnia similis, according to the ABNT NBR 15088 protocols. In vivo toxicity also included evaluation of acute embryotoxicity using Danio rerio (zebrafish) embryos following the OECD No. 236 guidelines. We also used Sprague Dawley rats to assess the toxicity of AgNP-GP in doses from 2.5 to 10.0 mg kg−1 body weight. Results AgNP-GP nanoparticles were characterized through UV (405 nm), core size (20±5 nm through TEM), hydrodynamic size (70–80 nm), Zeta (ζ) potential (- 26 mV) using DLS and Powder X ray diffraction (PXRD) and EDS. PXRD showed pattern consistent with the Ag (1 1 1) peak. EC50 in Daphnia similis was 4.40 (3.59–5.40) μg L−1. In the zebrafish species, LC50 was 177 μg L−1. Oral administration of AgNP-GP in Sprague Dawley rats for a period of 28 days revealed no adverse effects in doses of up to 10.0 mg kg−1 b.w. in both male and female animals. Conclusion The non-toxicity of AgNP-GP in rats offers a myriad of applications of AgNP-GP in health and hygiene for use as antibiotics, antimicrobial and antifungal agents.
Collapse
Affiliation(s)
- Joana S Maziero
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Velaphi C Thipe
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil.,Institute of Green Nanotechnology, Department of Radiology, University of Missouri Columbia, Columbia, MO, USA
| | - Sizue O Rogero
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Adriana K Cavalcante
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Kelme C Damasceno
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Matheus B Ormenio
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Gisela A Martini
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Jorge G S Batista
- Laboratório de Biomateriais Poliméricos e Nanotheranóstica, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - William Viveiros
- Laboratório de Ecotoxicologia, Companhia Ambiental do Estado de São Paulo (CETESB), São Paulo, SP, Brazil
| | - Kavita K Katti
- Institute of Green Nanotechnology, Department of Radiology, University of Missouri Columbia, Columbia, MO, USA
| | - Alice Raphael Karikachery
- Institute of Green Nanotechnology, Department of Radiology, University of Missouri Columbia, Columbia, MO, USA
| | | | | | | | - José R Rogero
- Laboratório de Biomateriais Poliméricos e Nanotheranóstica, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Ademar B Lugão
- Laboratório de Ecotoxicologia, Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares (IPEN), Comissão Nacional de Energia Nuclear- IPEN/CNEN-SP, São Paulo, SP, Brazil
| | - Kattesh V Katti
- Institute of Green Nanotechnology, Department of Radiology, University of Missouri Columbia, Columbia, MO, USA
| |
Collapse
|
8
|
Ismail T, Lee HK, Kim C, Kim Y, Lee H, Kim JH, Kwon S, Huh TL, Khang D, Kim SH, Choi SC, Lee HS. Comparative Analysis of the Developmental Toxicity in Xenopus laevis and Danio rerio Induced by Al 2 O 3 Nanoparticle Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2672-2681. [PMID: 31470468 DOI: 10.1002/etc.4584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/08/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Engineered aluminum oxide nanoparticles (Al2 O3 NPs) having high-grade thermal stability and water-dispersion properties are extensively used in different industries and personal care products. Toxicological response evaluation of these NPs is indispensable in assessing the health risks and exposure limits because of their industrial disposal into the aquatic environment. We assessed and compared the developmental toxicity of Al2 O3 NPs in Xenopus laevis and Danio rerio over a period of 96 h using the frog embryo teratogenic assay Xenopus and a fish embryo toxicity assay. Engineered Al2 O3 NP exposure produced dose-dependent embryonic mortality and decreased the embryo length, indicating a negative effect on growth. Moreover, Al2 O3 NPs induced various malformations, such as small head size, a bent/deformed axis, edema, and gut malformation, dose-dependently and altered the expression of heart- and liver-specific genes in both X. laevis and D. rerio, as revealed by whole-mount in-situ hybridization and reverse transcriptase polymerase chain reaction. In conclusion, the toxicological data suggest that Al2 O3 NPs are developmentally toxic and teratogenic and negatively affect the embryonic development of X. laevis and D. rerio. Our study can serve as a model for the toxicological evaluation of nanomaterial exposure on vertebrate development that is critical to ensure human and environmental safety. Environ Toxicol Chem 2019;38:2672-2681. © 2019 SETAC.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyun-Kyung Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Chowon Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Jun-Hyeong Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Song Kwon
- Lee Gil Ya Cancer and Diabetic Institute, Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Tae-Lin Huh
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetic Institute, Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
9
|
Hu X, Song S, Zhu Z, Lai Z, Gao Y, Koh K, Chen H. Visual Detection of Melamine in Urine Based on an AuNPs-Curcumin System. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Sunfengda Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Zhikang Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Key Laboratory of Bio-Energy Crop, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Zhaojia Lai
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yao Gao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan 609-735, Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
10
|
Thipe VC, Panjtan Amiri K, Bloebaum P, Raphael Karikachery A, Khoobchandani M, Katti KK, Jurisson SS, Katti KV. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers. Int J Nanomedicine 2019; 14:4413-4428. [PMID: 31417252 PMCID: PMC6592052 DOI: 10.2147/ijn.s204443] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/17/2019] [Indexed: 01/05/2023] Open
Abstract
Background: As part of our continuing quest to enhance the efficacy of bioactive phytochemicals in cancer therapy, we report an innovative green nanotechnology approach toward the use of resveratrol for the production of biocompatible resveratrol-conjugated gold nanoparticles (Res-AuNPs). Our overarching aim is to exploit the inherent pro-apoptotic properties of gold nanoparticles (AuNPs) through synergistic anti-tumor characteristics of resveratrol, with the aim of developing a new class of green nanotechnology-based phytochemical-embedded AuNPs for applications in oncology. Method: Resveratrol was used to reduce Au3+ to Au0 for the synthesis of Res-AuNPs at room temperature and gum arabic (GA) was used to further encapsulate the nanoparticulate surface to increase the overall stability of the AuNPs. This comprehensive study involves the synthesis, full characterization and in vitro stability of Res-AuNPs in various biological media for their ultimate applications as anti-cancer agents against human breast (MDAMB-231), pancreatic (PANC-1) and prostate (PC-3) cancers. Results: This strategy to systematically increase the corona of resveratrol on AuNPs, in order to gain insights into the interrelationship of the phytochemical corona on the overall anti-tumor activities of Res-AuNPs, proved successful. The increased resveratrol corona on Res-AuNPs showed superior anti-cancer effects, attributed to an optimal cellular uptake after 24-hour incubation, while GA provided a protein matrix support for enhanced trans-resveratrol loading onto the surface of the AuNPs. Conclusion: The approach described in this study harnesses the benefits of nutraceuticals and nanoparticles toward the development of Res-AuNPs. We provide compelling evidence that the increased corona of resveratrol on AuNPs enhances the bioavailability of resveratrol so that therapeutically active species can be optimally available in vivo for applications in cancer therapy.
Collapse
Affiliation(s)
- Velaphi C Thipe
- Department of Chemistry, University of Missouri, Columbia, MO 65201, USA.,Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA
| | | | - Pierce Bloebaum
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy
| | - Alice Raphael Karikachery
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Radiology
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Radiology
| | - Kavita K Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Radiology
| | - Silvia S Jurisson
- Department of Chemistry, University of Missouri, Columbia, MO 65201, USA.,University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA
| | - Kattesh V Katti
- Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy.,Department of Radiology.,University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Mahmoud NN, Alkilany AM, Khalil EA, Al-Bakri AG. Nano-Photothermal ablation effect of Hydrophilic and Hydrophobic Functionalized Gold Nanorods on Staphylococcus aureus and Propionibacterium acnes. Sci Rep 2018; 8:6881. [PMID: 29720593 PMCID: PMC5932043 DOI: 10.1038/s41598-018-24837-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The potential photothermal bactericidal activity of hydrophilic functionalized poly ethylene glycol (PEG)-gold nanorods (GNR) and hydrophobic functionalized polystyrene (PS)-GNR was evaluated towards strains of Staphylococcus aureus (S. aureus) and Propionibacterium acnes (P. acnes) by measuring the percentage reduction of bacterial viable count upon GNR excitation with a near infra-red (NIR) laser beam. Our results suggest that functionalized GNR had a minimal bactericidal activity against S. aureus and P. acnes (≤85%, i.e. ≤1 log10 cycle reduction of bacterial viable count). However, the local heat generated upon exciting the functionalized GNR with NIR laser beam has a significant photothermal ablation effect (≥99.99%, i.e. ≥4 log10 cycles reduction of bacterial viable count). Such photothermolysis effect could potentiate the antibacterial activity of GNR, which may call for minimum concentration and side effects of these nanotherapeutics.
Collapse
Affiliation(s)
- Nouf N Mahmoud
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan.,Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Alaaldin M Alkilany
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Enam A Khalil
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Amal G Al-Bakri
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
12
|
Skarbek C, Delahousse J, Pioche-Durieu C, Baconnais S, Deroussent A, Renevret P, Rivard M, Desmaele D, Martens T, Le Cam E, Couvreur P, Paci A. Poly-isoprenylated ifosfamide analogs: Preactivated antitumor agents as free formulation or nanoassemblies. Int J Pharm 2017; 532:748-756. [PMID: 28546071 DOI: 10.1016/j.ijpharm.2017.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 01/28/2023]
Abstract
Oxazaphosphorines including cyclophosphamide, trofosfamide and ifosfamide (IFO) belong to the alkylating agent class and are indicated in the treatment of numerous cancers. However, IFO is subject to limiting side-effects in high-dose protocols. To circumvent IFO drawbacks in clinical practices, preactivated IFO analogs were designed to by-pass the toxic metabolic pathway. Among these IFO analogs, some of them showed the ability to self-assemble due to the use of a poly-isoprenyloxy chain as preactivating moiety. We present here, the in vitro activity of the nanoassembly formulations of preactivated IFO derivatives with a C-4 geranyloxy, farnesyloxy and squalenoxy substituent on a large panel of tumor cell lines. The chemical and colloidal stabilities of the geranyloxy-IFO (G-IFO), farnesyloxy-IFO (F-IFO) and squalenoxy-IFO (SQ-IFO) NAs were further evaluated in comparison to their free formulation. Finally, pharmacokinetic parameters and maximal tolerated dose of the most potent preactivated IFO analog (G-IFO) were determined and compared to IFO, paving the way to in vivo studies.
Collapse
Affiliation(s)
- Charles Skarbek
- Vectorologie des anticancéreux et des acides nucléiques, UMR 8203, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Julia Delahousse
- Vectorologie des anticancéreux et des acides nucléiques, UMR 8203, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, 94805 Villejuif, France
| | - Catherine Pioche-Durieu
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Sonia Baconnais
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Alain Deroussent
- Vectorologie des anticancéreux et des acides nucléiques, UMR 8203, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Patrice Renevret
- Institut de Chimie et des Matériaux Paris Est Créteil (ICMPE), UMR 7182, CNRS, Université Paris Est (UPEC), 94320 Thiais, France
| | - Michael Rivard
- Institut de Chimie et des Matériaux Paris Est Créteil (ICMPE), UMR 7182, CNRS, Université Paris Est (UPEC), 94320 Thiais, France
| | - Didier Desmaele
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 92296, Châtenay-Malabry, France
| | - Thierry Martens
- Institut de Chimie et des Matériaux Paris Est Créteil (ICMPE), UMR 7182, CNRS, Université Paris Est (UPEC), 94320 Thiais, France
| | - Eric Le Cam
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 92296, Châtenay-Malabry, France
| | - Angelo Paci
- Vectorologie des anticancéreux et des acides nucléiques, UMR 8203, CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France; Service de Pharmacologie, Département de Biologie et Pathologie médicales, Gustave Roussy, 94805 Villejuif, France; Département de Pharmacocinétique & Pharmacie Clinique, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 92296 Châtenay-Malabry, France.
| |
Collapse
|
13
|
Silva RA, Giordano RJ, Gutierrez PS, Rocha VZ, Rudnicki M, Kee P, Abdalla DSP, Puech-Leão P, Caramelli B, Arap W, Pasqualini R, Meneghetti JC, Marques FLN, Khoobchandani M, Katti KV, Lugão AB, Kalil J. CTHRSSVVC Peptide as a Possible Early Molecular Imaging Target for Atherosclerosis. Int J Mol Sci 2016; 17:ijms17091383. [PMID: 27563889 PMCID: PMC5037663 DOI: 10.3390/ijms17091383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 11/16/2022] Open
Abstract
The purpose of our work was to select phages displaying peptides capable of binding to vascular markers present in human atheroma, and validate their capacity to target the vascular markers in vitro and in low-density lipoprotein receptor knockout (LDLr(-/-)) mouse model of atherosclerosis. By peptide fingerprinting on human atherosclerotic tissues, we selected and isolated four different peptides sequences, which bind to atherosclerotic lesions and share significant similarity to known human proteins with prominent roles in atherosclerosis. The CTHRSSVVC-phage peptide displayed the strongest reactivity with human carotid atherosclerotic lesions (p < 0.05), when compared to tissues from normal carotid arteries. This peptide sequence shares similarity to a sequence present in the fifth scavenger receptor cysteine-rich (SRCR) domain of CD163, which appeared to bind to CD163, and subsequently, was internalized by macrophages. Moreover, the CTHRSSVVC-phage targets atherosclerotic lesions of a low-density lipoprotein receptor knockout (LDLr(-/-)) mouse model of atherosclerosis in vivo to High-Fat diet group versus Control group. Tetraazacyclododecane-1,4,7,10-tetraacetic acid-CTHRSSVVC peptide (DOTA-CTHRSSVVC) was synthesized and labeled with (111)InCl₃ in >95% yield as determined by high performance liquid chromatography (HPLC), to validate the binding of the peptide in atherosclerotic plaque specimens. The results supported our hypothesis that CTHRSSVVC peptide has a remarkable sequence for the development of theranostics approaches in the treatment of atherosclerosis and other diseases.
Collapse
Affiliation(s)
- Rosemeire A Silva
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil.
| | - Ricardo J Giordano
- Chemistry Institute, Biochemistry Department, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Paulo S Gutierrez
- Laboratory of Pathology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil.
| | - Viviane Z Rocha
- Clinical Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil.
| | - Martina Rudnicki
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences University of São Paulo, São Paulo 05508-000, Brazil.
| | - Patrick Kee
- Division of Cardiology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| | - Dulcinéia S P Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences University of São Paulo, São Paulo 05508-000, Brazil.
| | - Pedro Puech-Leão
- Division of Vascular and Endovascular Surgery, University of São Paulo Medical School, São Paulo 05403-000, Brazil.
| | - Bruno Caramelli
- Clinical Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil.
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Division of Hematology/Oncology and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine Albuquerque, NM 87131, USA.
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Division of Hematology/Oncology and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine Albuquerque, NM 87131, USA.
| | - José C Meneghetti
- Medicine Nuclear Service and Molecular Image, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil.
| | - Fabio L N Marques
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo (LIM43), São Paulo 05403-911, Brazil.
| | - Menka Khoobchandani
- Institute of Green Nanotechnology, Department of Radiology and Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Kattesh V Katti
- Institute of Green Nanotechnology, Department of Radiology and Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Ademar B Lugão
- Nuclear and Energy Research Institute-IPEN/CNEN/São Paulo 05508-000, Brazil.
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil.
| |
Collapse
|
14
|
Sun W, Yang J, Zhu J, Zhou Y, Li J, Zhu X, Shen M, Zhang G, Shi X. Immobilization of iron oxide nanoparticles within alginate nanogels for enhanced MR imaging applications. Biomater Sci 2016; 4:1422-30. [PMID: 27534270 DOI: 10.1039/c6bm00370b] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the design of iron oxide (Fe3O4) nanoparticle (NP)-immobilized alginate (AG) nanogels (NGs) as a novel contrast agent for enhanced magnetic resonance (MR) imaging applications. In this study, an aqueous solution of AG activated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride was double emulsified to form NGs, followed by in situ cross-linking with polyethyleneimine (PEI)-coated Fe3O4 NPs (PEI-Fe3O4 NPs). The resultant Fe3O4 NP-immobilized AG NGs (AG/PEI-Fe3O4 NGs) were characterized via different techniques. Our results reveal that the hybrid NGs with a size of 186.1 ± 33.1 nm are water dispersible, colloidally stable, and cytocompatible in the given concentration range. Importantly, these NGs have a high r2 relaxivity (170.87 mM(-1) s(-1)) due to the high loading of Fe3O4 NPs within the NGs, and can be more significantly uptaken by cancer cells when compared with carboxylated Fe3O4 NPs. The formed AG/PEI-Fe3O4 NGs are able to be used as an effective contrast agent for the MR imaging of cancer cells in vitro and the xenografted tumor model in vivo after intravenous injection. The developed AG/PEI-Fe3O4 NGs may hold great promise for use as a novel contrast agent for the enhanced MR imaging of different biological systems.
Collapse
Affiliation(s)
- Wenjie Sun
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|