1
|
Cano-Garrido O, Serna N, Unzueta U, Parladé E, Mangues R, Villaverde A, Vázquez E. Protein scaffolds in human clinics. Biotechnol Adv 2022; 61:108032. [PMID: 36089254 DOI: 10.1016/j.biotechadv.2022.108032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/30/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
Fundamental clinical areas such as drug delivery and regenerative medicine require biocompatible materials as mechanically stable scaffolds or as nanoscale drug carriers. Among the wide set of emerging biomaterials, polypeptides offer enticing properties over alternative polymers, including full biocompatibility, biodegradability, precise interactivity, structural stability and conformational and functional versatility, all of them tunable by conventional protein engineering. However, proteins from non-human sources elicit immunotoxicities that might bottleneck further development and narrow their clinical applicability. In this context, selecting human proteins or developing humanized protein versions as building blocks is a strict demand to design non-immunogenic protein materials. We review here the expanding catalogue of human or humanized proteins tailored to execute different levels of scaffolding functions and how they can be engineered as self-assembling materials in form of oligomers, polymers or complex networks. In particular, we emphasize those that are under clinical development, revising their fields of applicability and how they have been adapted to offer, apart from mere mechanical support, highly refined functions and precise molecular interactions.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| |
Collapse
|
2
|
Seras-Franzoso J, Cano-Garrido O, Peternel S, Arís A, Garcia-Fruitós E. Purification of Inclusion Bodies Produced in Bacteria and Yeast. Methods Mol Biol 2022; 2406:401-416. [PMID: 35089571 DOI: 10.1007/978-1-0716-1859-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Purification of inclusion bodies (IBs) is gaining importance due to the raising of novel applications for these submicron particulate protein clusters, with potential uses in the biomedical and biotechnological fields among others. Here, we present five optimized methods to purify IBs adapting classical procedures to the material nature, as well as the requirements of the producer cell (Gram-negative bacteria, Gram-positive bacteria, or yeast) and the IB final application.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Caldes de Montbui, Spain.
| |
Collapse
|
3
|
Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering. Polymers (Basel) 2021; 13:polym13203453. [PMID: 34685212 PMCID: PMC8539307 DOI: 10.3390/polym13203453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment. Here, we report for the first time the use of Freon R134a for generating porous polymer matrices, specifically polylactide (PLA). PLA scaffolds processed with Freon R134a exhibited larger pore sizes, and total porosity, and appropriate mechanical properties compared with those achieved by scCO2 processing. PLGA scaffolds processed with Freon R134a were highly porous and showed a relatively fragile structure. Human mesenchymal stem cells (MSCs) attached to PLA scaffolds processed with Freon R134a, and their metabolic activity increased during culturing. In addition, MSCs displayed spread morphology on the PLA scaffolds processed with Freon R134a, with a well-organized actin cytoskeleton and a dense matrix of fibronectin fibrils. Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles, used as bioactive factors, enhanced the scaffolds' cytocompatibility. These findings indicate that gas foaming using compressed Freon R134a could represent a cost-effective and environmentally friendly fabrication technology to produce polymeric scaffolds for tissue engineering approaches.
Collapse
|
4
|
Potential of MMP-9 based nanoparticles at optimizing the cow dry period: pulling apart the effects of MMP-9 and nanoparticles. Sci Rep 2020; 10:11299. [PMID: 32647244 PMCID: PMC7347913 DOI: 10.1038/s41598-020-67176-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
The cow dry period is a non-milking interval where the mammary gland involutes and regenerates to guarantee an optimal milk production in the subsequent lactation. Important bottlenecks such as the high risk of intramammary infections complicate the process. Antibiotics have been routinely used as a preventive treatment but the concerns about potential antibiotic resistance open a new scenario in which alternative strategies have to be developed. Matrix metalloproteinase-9 (MMP-9) is an enzyme able to degrade the extracellular matrix, triggering the involution and immune function of cow mammary gland. We have studied the infusion into the mammary gland of MMP-9 inclusion bodies as protein-based nanoparticles, demonstrating that 1.2 mg of MMP-9 enhanced the involution and immune function of the cow mammary gland. However, the comparison of the effects triggered by the administration of an active and an inactive form of MMP-9 led to conclude that the response observed in the bovine mammary gland was mainly due to the protein format but not to the biological activity of the MMP-9 embedded in the inclusion body. This study provides relevant information on the future use of protein inclusion bodies in cow mammary gland and the role of MMP-9 at dry-off.
Collapse
|
5
|
Martínez-Miguel M, Kyvik AR, M Ernst L, Martínez-Moreno A, Cano-Garrido O, Garcia-Fruitós E, Vazquez E, Ventosa N, Guasch J, Veciana J, Villaverde A, Ratera I. Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance. J Mater Chem B 2020; 8:5080-5088. [PMID: 32400840 DOI: 10.1039/d0tb00702a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In tissue engineering, biological, physical, and chemical inputs have to be combined to properly mimic cellular environments and successfully build artificial tissues which can be designed to fulfill different biomedical needs such as the shortage of organ donors or the development of in vitro disease models for drug testing. Inclusion body-like protein nanoparticles (pNPs) can simultaneously provide such physical and biochemical stimuli to cells when attached to surfaces. However, this attachment has only been made by physisorption. To provide a stable anchoring, a covalent binding of lactic acid bacteria (LAB) produced pNPs, which lack the innate pyrogenic impurities of Gram-negative bacteria like Escherichia coli, is presented. The reported micropatterns feature a robust nanoscale topography with an unprecedented mechanical stability. In addition, they are denser and more capable of influencing cell morphology and orientation. The increased stability and the absence of pyrogenic impurities represent a step forward towards the translation of this material to a clinical setting.
Collapse
Affiliation(s)
- Marc Martínez-Miguel
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gifre-Renom L, Ugarte-Berzal E, Martens E, Boon L, Cano-Garrido O, Martínez-Núñez E, Luque T, Roca-Pinilla R, Conchillo-Solé Ò, Ferrer-Miralles N, Villaverde A, Opdenakker G, Garcia-Fruitós E, Arís A. Recombinant Protein-Based Nanoparticles: Elucidating their Inflammatory Effects In Vivo and their Potential as a New Therapeutic Format. Pharmaceutics 2020; 12:pharmaceutics12050450. [PMID: 32414218 PMCID: PMC7284881 DOI: 10.3390/pharmaceutics12050450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022] Open
Abstract
Bacterial inclusion bodies (IBs) are protein-based nanoparticles of a few hundred nanometers formed during recombinant protein production processes in different bacterial hosts. IBs contain active protein in a mechanically stable nanostructured format that has been broadly characterized, showing promising potential in different fields such as tissue engineering, protein replacement therapies, cancer, and biotechnology. For immunomodulatory purposes, however, the interference of the format immunogenic properties—intrinsic to IBs—with the specific effects of the therapeutic protein is still an uncovered gap. For that, active and inactive forms of the catalytic domain of a matrix metalloproteinase-9 (MMP-9 and mutMMP-9, respectively) have been produced as IBs and compared with the soluble form for dermal inflammatory effects in mmp9 knock-out mice. After protein injections in air-pouches in the mouse model, MMP-9 IBs induce local neutrophil recruitment and increase pro-inflammatory chemokine levels, lasting for at least two days, whereas the effects triggered by the soluble MMP-9 format fade out after 3 h. Interestingly, the IB intrinsic effects (mutMMP-9 IBs) do not last more than 24 h. Therefore, it may be concluded that IBs could be used for the delivery of therapeutic proteins, such as immunomodulating proteins while preserving their stability in the specific tissue and without triggering important unspecific inflammatory responses due to the protein format.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain; (L.G.-R.); (R.R.-P.)
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (E.U.-B.); (E.M.); (L.B.); (G.O.)
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (E.U.-B.); (E.M.); (L.B.); (G.O.)
| | - Lise Boon
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (E.U.-B.); (E.M.); (L.B.); (G.O.)
| | - Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.C.-G.); (E.M.-N.); (T.L.); (Ò.C.-S.); (N.F.-M.); (A.V.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Esther Martínez-Núñez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.C.-G.); (E.M.-N.); (T.L.); (Ò.C.-S.); (N.F.-M.); (A.V.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08193 Barcelona, Spain
| | - Teresa Luque
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.C.-G.); (E.M.-N.); (T.L.); (Ò.C.-S.); (N.F.-M.); (A.V.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Roca-Pinilla
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain; (L.G.-R.); (R.R.-P.)
| | - Òscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.C.-G.); (E.M.-N.); (T.L.); (Ò.C.-S.); (N.F.-M.); (A.V.)
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.C.-G.); (E.M.-N.); (T.L.); (Ò.C.-S.); (N.F.-M.); (A.V.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (O.C.-G.); (E.M.-N.); (T.L.); (Ò.C.-S.); (N.F.-M.); (A.V.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (E.U.-B.); (E.M.); (L.B.); (G.O.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain; (L.G.-R.); (R.R.-P.)
- Correspondence: (E.G.-F.); (A.A.); Tel.: +34-934-674-040 (E.G.-F. & A.A.)
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain; (L.G.-R.); (R.R.-P.)
- Correspondence: (E.G.-F.); (A.A.); Tel.: +34-934-674-040 (E.G.-F. & A.A.)
| |
Collapse
|
7
|
Gifre-Renom L, Seras-Franzoso J, Rafael D, Andrade F, Cano-Garrido O, Martinez-Trucharte F, Ugarte-Berzal E, Martens E, Boon L, Villaverde A, Opdenakker G, Schwartz S, Arís A, Garcia-Fruitós E. The Biological Potential Hidden in Inclusion Bodies. Pharmaceutics 2020; 12:pharmaceutics12020157. [PMID: 32075316 PMCID: PMC7076398 DOI: 10.3390/pharmaceutics12020157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/01/2023] Open
Abstract
Inclusion bodies (IBs) are protein nanoclusters obtained during recombinant protein production processes, and several studies have demonstrated their potential as biomaterials for therapeutic protein delivery. Nevertheless, IBs have been, so far, exclusively sifted by their biological activity in vitro to be considered in further protein-based treatments in vivo. Matrix metalloproteinase-9 (MMP-9) protein, which has an important role facilitating the migration of immune cells, was used as model protein. The MMP-9 IBs were compared with their soluble counterpart and with MMP-9 encapsulated in polymeric-based micelles (PM) through ionic and covalent binding. The soluble MMP-9 and the MMP-9-ionic PM showed the highest activity values in vitro. IBs showed the lowest activity values in vitro, but the specific activity evolution in 50% bovine serum at room temperature proved that they were the most stable format. The data obtained with the use of an air-pouch mouse model showed that MMP-9 IBs presented the highest in vivo activity compared to the soluble MMP-9, which was associated only to a low and a transitory peak of activity. These results demonstrated that the in vivo performance is the addition of many parameters that did not always correlate with the in vitro behavior of the protein of interest, becoming especially relevant at evaluating the potential of IBs as a protein-based nanomaterial for therapeutic purposes.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain;
| | - Joaquin Seras-Franzoso
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d’Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (J.S.-F.); (D.R.); (F.A.); (F.M.-T.)
| | - Diana Rafael
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d’Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (J.S.-F.); (D.R.); (F.A.); (F.M.-T.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain; (O.C.-G.); (A.V.)
| | - Fernanda Andrade
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d’Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (J.S.-F.); (D.R.); (F.A.); (F.M.-T.)
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-180 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-180 Porto, Portugal
| | - Olivia Cano-Garrido
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain; (O.C.-G.); (A.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Francesc Martinez-Trucharte
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d’Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (J.S.-F.); (D.R.); (F.A.); (F.M.-T.)
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (E.U.-B.); (E.M.); (L.B.); (G.O.)
| | - Erik Martens
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (E.U.-B.); (E.M.); (L.B.); (G.O.)
| | - Lise Boon
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (E.U.-B.); (E.M.); (L.B.); (G.O.)
| | - Antonio Villaverde
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain; (O.C.-G.); (A.V.)
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, University of Leuven, 3000 Leuven, Belgium; (E.U.-B.); (E.M.); (L.B.); (G.O.)
| | - Simó Schwartz
- Drug Delivery & Targeting, CIBBIM-Nanomedicine, Vall d’Hebron Institut of Research (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (J.S.-F.); (D.R.); (F.A.); (F.M.-T.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain; (O.C.-G.); (A.V.)
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain;
- Correspondence: (A.A.); (E.G.-F.); Tel.: +34-934-674-040 (A.A. & E.G.-F.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain;
- Correspondence: (A.A.); (E.G.-F.); Tel.: +34-934-674-040 (A.A. & E.G.-F.)
| |
Collapse
|
8
|
Céspedes MV, Cano-Garrido O, Álamo P, Sala R, Gallardo A, Serna N, Falgàs A, Voltà-Durán E, Casanova I, Sánchez-Chardi A, López-Laguna H, Sánchez-García L, Sánchez JM, Unzueta U, Vázquez E, Mangues R, Villaverde A. Engineering Secretory Amyloids for Remote and Highly Selective Destruction of Metastatic Foci. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907348. [PMID: 31879981 DOI: 10.1002/adma.201907348] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/28/2019] [Indexed: 05/05/2023]
Abstract
Functional amyloids produced in bacteria as nanoscale inclusion bodies are intriguing but poorly explored protein materials with wide therapeutic potential. Since they release functional polypeptides under physiological conditions, these materials can be potentially tailored as mimetic of secretory granules for slow systemic delivery of smart protein drugs. To explore this possibility, bacterial inclusion bodies formed by a self-assembled, tumor-targeted Pseudomonas exotoxin (PE24) are administered subcutaneously in mouse models of human metastatic colorectal cancer, for sustained secretion of tumor-targeted therapeutic nanoparticles. These proteins are functionalized with a peptidic ligand of CXCR4, a chemokine receptor overexpressed in metastatic cancer stem cells that confers high selective cytotoxicity in vitro and in vivo. In the mouse models of human colorectal cancer, time-deferred anticancer activity is detected after the subcutaneous deposition of 500 µg of PE24-based amyloids, which promotes a dramatic arrest of tumor growth in the absence of side toxicity. In addition, long-term prevention of lymphatic, hematogenous, and peritoneal metastases is achieved. These results reveal the biomedical potential and versatility of bacterial inclusion bodies as novel tunable secretory materials usable in delivery, and they also instruct how therapeutic proteins, even with high functional and structural complexity, can be packaged in this convenient format.
Collapse
Affiliation(s)
- María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Olivia Cano-Garrido
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Nanoligent SL, Edifici EUREKA, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Patricia Álamo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Rita Sala
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Alberto Gallardo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Aïda Falgàs
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Eric Voltà-Durán
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Isolda Casanova
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | | | - Hèctor López-Laguna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Julieta M Sánchez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) (CONICET-Universidad Nacional de Córdoba), ICTA & Cátedra de Química Biológica, Departamento de Química, FCEFyN, UNC, Av. Velez Sarsfield 1611, X 5016GCA, Córdoba, Argentina
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques Sant Pau and Josep Carreras Research Institute, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
9
|
Pesarrodona M, Jauset T, Díaz‐Riascos ZV, Sánchez‐Chardi A, Beaulieu M, Seras‐Franzoso J, Sánchez‐García L, Baltà‐Foix R, Mancilla S, Fernández Y, Rinas U, Schwartz S, Soucek L, Villaverde A, Abasolo I, Vázquez E. Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900849. [PMID: 31559131 PMCID: PMC6755514 DOI: 10.1002/advs.201900849] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/11/2019] [Indexed: 05/07/2023]
Abstract
Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44-targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.
Collapse
Affiliation(s)
- Mireia Pesarrodona
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
| | - Toni Jauset
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
| | - Zamira V. Díaz‐Riascos
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Alejandro Sánchez‐Chardi
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaAv. Diagonal 64308028BarcelonaSpain
| | - Marie‐Eve Beaulieu
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
| | - Joaquin Seras‐Franzoso
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Laura Sánchez‐García
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Ricardo Baltà‐Foix
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Sandra Mancilla
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Yolanda Fernández
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Ursula Rinas
- Leibniz University of HannoverTechnical Chemistry and Life ScienceCallinstr. 530167HannoverGermany
- Helmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Simó Schwartz
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)08010BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Antonio Villaverde
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Ibane Abasolo
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Esther Vázquez
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| |
Collapse
|
10
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
11
|
Tatkiewicz WI, Seras-Franzoso J, Garcia-Fruitós E, Vazquez E, Kyvik AR, Guasch J, Villaverde A, Veciana J, Ratera I. Surface-Bound Gradient Deposition of Protein Nanoparticles for Cell Motility Studies. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25779-25786. [PMID: 29989793 DOI: 10.1021/acsami.8b06821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A versatile evaporation-assisted methodology based on the coffee-drop effect is described to deposit nanoparticles on surfaces, obtaining for the first time patterned gradients of protein nanoparticles (pNPs) by using a simple custom-made device. Fully controllable patterns with specific periodicities consisting of stripes with different widths and distinct nanoparticle concentration as well as gradients can be produced over large areas (∼10 cm2) in a fast (up to 10 mm2/min), reproducible, and cost-effective manner using an operational protocol optimized by an evolutionary algorithm. The developed method opens the possibility to decorate surfaces "a-la-carte" with pNPs enabling different categories of high-throughput studies on cell motility.
Collapse
Affiliation(s)
- Witold I Tatkiewicz
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Elena Garcia-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - A R Kyvik
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
- Dynamic Biomaterials for Cancer Immunotherapy , Max Planck Partner Group, ICMAB-CSIC , Campus UAB , 08193 Bellaterra , Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials , Institut de Ciència de Materials de Barcelona (CSIC) , Campus UAB , 08193 Bellaterra , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 08193 Bellaterra , Spain
| |
Collapse
|
12
|
Rinas U, Garcia-Fruitós E, Corchero JL, Vázquez E, Seras-Franzoso J, Villaverde A. Bacterial Inclusion Bodies: Discovering Their Better Half. Trends Biochem Sci 2017; 42:726-737. [PMID: 28254353 DOI: 10.1016/j.tibs.2017.01.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 01/07/2023]
Abstract
Bacterial inclusion bodies (IBs) are functional, non-toxic amyloids occurring in recombinant bacteria showing analogies with secretory granules of the mammalian endocrine system. The scientific interest in these mesoscale protein aggregates has been historically masked by their status as a hurdle in recombinant protein production. However, progressive understanding of how the cell handles the quality of recombinant polypeptides and the main features of their intriguing molecular organization has stimulated the interest in inclusion bodies and spurred their use in diverse technological fields. The engineering and tailoring of IBs as functional protein particles for materials science and biomedicine is a good example of how formerly undesired bacterial byproducts can be rediscovered as promising functional materials for a broad spectrum of applications.
Collapse
Affiliation(s)
- Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - José Luis Corchero
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain; Molecular Biology and Biochemistry Research Center for Nanomedicine (Cibbim-Nanomedicine), Hospital Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
13
|
Zhang Y, Zhou Y, Zhou X, Zhao B, Chai J, Liu H, Zheng Y, Wang J, Wang Y, Zhao Y. Preparation of a nano- and micro-fibrous decellularized scaffold seeded with autologous mesenchymal stem cells for inguinal hernia repair. Int J Nanomedicine 2017; 12:1441-1452. [PMID: 28260890 PMCID: PMC5327914 DOI: 10.2147/ijn.s125409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Prosthetic meshes used for hernioplasty are usually complicated with chronic pain due to avascular fibrotic scar or mesh shrinkage. In this study, we developed a tissue-engineered mesh (TEM) by seeding autologous bone marrow-derived mesenchymal stem cells onto nanosized fibers decellularized aorta (DA). DA was achieved by decellularizing the aorta sample sequentially with physical, mechanical, biological enzymatic digestion, and chemical detergent processes. The tertiary structure of DA was constituted with micro-, submicro-, and nanosized fibers, and the original strength of fresh aorta was retained. Inguinal hernia rabbit models were treated with TEMs or acellular meshes (AMs). After implantation, TEM-treated rabbit models showed no hernia recurrence, whereas AM-treated animals displayed bulges in inguinal area. At harvest, TEMs were thicker, have less adhesion, and have stronger mechanical strength compared to AMs (P<0.05). Moreover, TEM showed better cell infiltration, tissue regeneration, and neovascularization (P<0.05). Therefore, these cell-seeded DAs with nanosized fibers have potential for use in inguinal hernioplasty.
Collapse
Affiliation(s)
| | | | - Xu Zhou
- Department of Oncology and Vascular Intervention Radiology
| | - Bin Zhao
- Medical College, Xiamen University
| | - Jie Chai
- Medical College, Xiamen University
| | | | | | | | - Yaozong Wang
- Department of Orthopaedics, Zhongshan Hospital, Xiamen University, Xiamen, People’s Republic of China
| | - Yilin Zhao
- Department of Oncology and Vascular Intervention Radiology
| |
Collapse
|
14
|
Unzueta U, Seras-Franzoso J, Céspedes MV, Saccardo P, Cortés F, Rueda F, Garcia-Fruitós E, Ferrer-Miralles N, Mangues R, Vázquez E, Villaverde A. Engineering tumor cell targeting in nanoscale amyloidal materials. NANOTECHNOLOGY 2017; 28:015102. [PMID: 27893441 DOI: 10.1088/0957-4484/28/1/015102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial inclusion bodies are non-toxic, mechanically stable and functional protein amyloids within the nanoscale size range that are able to naturally penetrate into mammalian cells, where they deliver the embedded protein in a functional form. The potential use of inclusion bodies in protein delivery or protein replacement therapies is strongly impaired by the absence of specificity in cell binding and penetration, thus preventing targeting. To address this issue, we have here explored whether the genetic fusion of two tumor-homing peptides, the CXCR4 ligands R9 and T22, to an inclusion body-forming green fluorescent protein (GFP), would keep the interaction potential and the functionality of the fused peptides and then confer CXCR4 specificity in cell binding and further uptake of the materials. The fusion proteins have been well produced in Escherichia coli in their full-length form, keeping the potential for fluorescence emission of the partner GFP. By using specific inhibitors of CXCR4 binding, we have demonstrated that the engineered protein particles are able to penetrate CXCR4+ cells, in a receptor-mediated way, without toxicity or visible cytopathic effects, proving the availability of the peptide ligands on the surface of inclusion bodies. Since no further modification is required upon their purification, the biological production of genetically targeted inclusion bodies opens a plethora of cost-effective possibilities in the tissue-specific intracellular transfer of functional proteins through the use of structurally and functionally tailored soft materials.
Collapse
Affiliation(s)
- Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs. Sci Rep 2016; 6:35765. [PMID: 27775083 PMCID: PMC5075894 DOI: 10.1038/srep35765] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022] Open
Abstract
In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system.
Collapse
|
16
|
Rueda F, Gasser B, Sánchez-Chardi A, Roldán M, Villegas S, Puxbaum V, Ferrer-Miralles N, Unzueta U, Vázquez E, Garcia-Fruitós E, Mattanovich D, Villaverde A. Functional inclusion bodies produced in the yeast Pichia pastoris. Microb Cell Fact 2016; 15:166. [PMID: 27716225 PMCID: PMC5045588 DOI: 10.1186/s12934-016-0565-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bacterial inclusion bodies (IBs) are non-toxic protein aggregates commonly produced in recombinant bacteria. They are formed by a mixture of highly stable amyloid-like fibrils and releasable protein species with a significant extent of secondary structure, and are often functional. As nano structured materials, they are gaining biomedical interest because of the combination of submicron size, mechanical stability and biological activity, together with their ability to interact with mammalian cell membranes for subsequent cell penetration in absence of toxicity. Since essentially any protein species can be obtained as IBs, these entities, as well as related protein clusters (e.g., aggresomes), are being explored in biocatalysis and in biomedicine as mechanically stable sources of functional protein. One of the major bottlenecks for uses of IBs in biological interfaces is their potential contamination with endotoxins from producing bacteria. RESULTS To overcome this hurdle, we have explored here the controlled production of functional IBs in the yeast Pichia pastoris (Komagataella spp.), an endotoxin-free host system for recombinant protein production, and determined the main physicochemical and biological traits of these materials. Quantitative and qualitative approaches clearly indicate the formation of IBs inside yeast, similar in morphology, size and biological activity to those produced in E. coli, that once purified, interact with mammalian cell membranes and penetrate cultured mammalian cells in absence of toxicity. CONCLUSIONS Structurally and functionally similar from those produced in E. coli, the controlled production of IBs in P. pastoris demonstrates that yeasts can be used as convenient platforms for the biological fabrication of self-organizing protein materials in absence of potential endotoxin contamination and with additional advantages regarding, among others, post-translational modifications often required for protein functionality.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Mònica Roldán
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Verena Puxbaum
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau (IIB-Sant Pau), Hospital de la Santa Creu i Sant Pau, C/Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
17
|
Vazquez E, Mangues R, Villaverde A. Functional recruitment for drug delivery through protein-based nanotechnologies. Nanomedicine (Lond) 2016; 11:1333-6. [PMID: 27221076 DOI: 10.2217/nnm-2016-0090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Ramon Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Biomedical Research Institute Sant Pau (IIB-SantPau) & Josep Carreras Leukemia Research Institute, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
18
|
Rueda F, Céspedes MV, Sánchez-Chardi A, Seras-Franzoso J, Pesarrodona M, Ferrer-Miralles N, Vázquez E, Rinas U, Unzueta U, Mamat U, Mangues R, García-Fruitós E, Villaverde A. Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli. Microb Cell Fact 2016; 15:59. [PMID: 27059706 PMCID: PMC4826532 DOI: 10.1186/s12934-016-0457-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Production of recombinant drugs in process-friendly endotoxin-free bacterial factories targets to a lessened complexity of the purification process combined with minimized biological hazards during product application. The development of nanostructured recombinant materials in innovative nanomedical activities expands such a need beyond plain functional polypeptides to complex protein assemblies. While Escherichia coli has been recently modified for the production of endotoxin-free proteins, no data has been so far recorded regarding how the system performs in the fabrication of smart nanostructured materials. Results We have here explored the nanoarchitecture and in vitro and in vivo functionalities of CXCR4-targeted, self-assembling protein nanoparticles intended for intracellular delivery of drugs and imaging agents in colorectal cancer. Interestingly, endotoxin-free materials exhibit a distinguishable architecture and altered size and target cell penetrability than counterparts produced in conventional E. coli strains. These variant nanoparticles show an eventual proper biodistribution and highly specific and exclusive accumulation in tumor upon administration in colorectal cancer mice models, indicating a convenient display and function of the tumor homing peptides and high particle stability under physiological conditions. Discussion The observations made here support the emerging endotoxin-free E. coli system as a robust protein material producer but are also indicative of a particular conformational status and organization of either building blocks or oligomers. This appears to be promoted by multifactorial stress-inducing conditions upon engineering of the E. coli cell envelope, which impacts on the protein quality control of the cell factory.
Collapse
Affiliation(s)
- Fabián Rueda
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - María Virtudes Céspedes
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB-SantPau) and Josep Carreras Leukemia Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Cibbim-Nanomedicine, Hospital Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Mireia Pesarrodona
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry & Life Science, Hannover, Germany.,Helmholtz Centre for Infection Research, Inhoffenstraße 7, Brunswick, Germany
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB-SantPau) and Josep Carreras Leukemia Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Uwe Mamat
- Division of Structural Biochemistry, Priority Area Asthma and Allergy, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 23845, Borstel, Germany
| | - Ramón Mangues
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB-SantPau) and Josep Carreras Leukemia Research Institute, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
| | - Elena García-Fruitós
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.,Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, Caldes de Montbui, 08140, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain. .,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
19
|
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Molecular, Cell & Systems Biology, CMVLS, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Manus JP Biggs
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| |
Collapse
|