1
|
Li S, Jin B, Ma Y, Yang X, Fan J, Xie Y, Xu C, Dai X, Wang M, Liu Q, Fu T, Liu Y, Tan W. Proteome Fishing for CRISPR/Cas12a-Based Orthogonal Multiplex Aptamer Sensing. J Am Chem Soc 2024; 146:19874-19885. [PMID: 39007743 DOI: 10.1021/jacs.4c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.
Collapse
Affiliation(s)
- Shuangqin Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Baichuan Jin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yintao Ma
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Xu Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jinlong Fan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yueli Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenlu Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Mengjie Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiqi Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Ting Fu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Rajeev A, Kansara K, Bhatia D. Navigating the challenges and exploring the perspectives associated with emerging novel biomaterials. Biomater Sci 2024; 12:3565-3581. [PMID: 38832912 DOI: 10.1039/d4bm00376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The field of biomaterials is a continuously evolving interdisciplinary field encompassing biological sciences, materials sciences, chemical sciences, and physical sciences with a multitude of applications realized every year. However, different biomaterials developed for different applications have unique challenges in the form of biological barriers, and addressing these challenges simultaneously is also a challenge. Nevertheless, immense progress has been made through the development of novel materials with minimal adverse effects such as DNA nanostructures, specific synthesis strategies based on supramolecular chemistry, and modulating the shortcomings of existing biomaterials through effective functionalization techniques. This review discusses all these aspects of biomaterials, including the challenges at each level of their development and application, proposed countermeasures for these challenges, and some future directions that may have potential benefits.
Collapse
Affiliation(s)
- Ashwin Rajeev
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| | - Krupa Kansara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| | - Dhiraj Bhatia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat - 382355, India.
| |
Collapse
|
3
|
Oh JY, Jana B, Seong J, An EK, Go EM, Jin S, Ok HW, Seu MS, Bae JH, Lee C, Lee S, Kwon TH, Seo JK, Choi E, Jin JO, Kwak SK, Lah MS, Ryu JH. Unveiling the Power of Cloaking Metal-Organic Framework Platforms via Supramolecular Antibody Conjugation. ACS NANO 2024; 18:15790-15801. [PMID: 38847355 DOI: 10.1021/acsnano.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Targeted drug delivery systems based on metal-organic frameworks (MOFs) have progressed tremendously since inception and are now widely applicable in diverse scientific fields. However, translating MOF agents directly to targeted drug delivery systems remains a challenge due to the biomolecular corona phenomenon. Here, we observed that supramolecular conjugation of antibodies to the surface of MOF particles (MOF-808) via electrostatic interactions and coordination bonding can reduce protein adhesion in biological environments and show stealth shields. Once antibodies are stably conjugated to particles, they were neither easily exchanged with nor covered by biomolecule proteins, which is indicative of the stealth effect. Moreover, upon conjugation of the MOF particle with specific targeted antibodies, namely, anti-CD44, human epidermal growth factor receptor 2 (HER2), and epidermal growth factor receptor (EGFR), the resulting hybrid exhibits an augmented targeting efficacy toward cancer cells overexpressing these receptors, such as HeLa, SK-BR-3, and 4T1, as evidenced by flow cytometry. The therapeutic effectiveness of the antibody-conjugated MOF (anti-M808) was further evaluated through in vivo imaging and the assessment of tumor inhibition effects using IR-780-loaded EGFR-M808 in a 4T1 tumor xenograft model employing nude mice. This study therefore provides insight into the use of supramolecular antibody conjugation as a promising method for developing MOF-based drug delivery systems.
Collapse
Affiliation(s)
- Jun Yong Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Junmo Seong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun-Koung An
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Eun Min Go
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hae Won Ok
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Min-Seok Seu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jong-Hoon Bae
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Chaiheon Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seonghwan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eunshil Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myoung Soo Lah
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
4
|
Li ZZ, Zhong NN, Cao LM, Cai ZM, Xiao Y, Wang GR, Liu B, Xu C, Bu LL. Nanoparticles Targeting Lymph Nodes for Cancer Immunotherapy: Strategies and Influencing Factors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308731. [PMID: 38327169 DOI: 10.1002/smll.202308731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Immunotherapy has emerged as a potent strategy in cancer treatment, with many approved drugs and modalities in the development stages. Despite its promise, immunotherapy is not without its limitations, including side effects and suboptimal efficacy. Using nanoparticles (NPs) as delivery vehicles to target immunotherapy to lymph nodes (LNs) can improve the efficacy of immunotherapy drugs and reduce side effects in patients. In this context, this paper reviews the development of LN-targeted immunotherapeutic NP strategies, the mechanisms of NP transport during LN targeting, and their related biosafety risks. NP targeting of LNs involves either passive targeting, influenced by NP physical properties, or active targeting, facilitated by affinity ligands on NP surfaces, while alternative methods, such as intranodal injection and high endothelial venule (HEV) targeting, have uncertain clinical applicability and require further research and validation. LN targeting of NPs for immunotherapy can reduce side effects and increase biocompatibility, but risks such as toxicity, organ accumulation, and oxidative stress remain, although strategies such as biodegradable biomacromolecules, polyethylene glycol (PEG) coating, and impurity addition can mitigate these risks. Additionally, this work concludes with a future-oriented discussion, offering critical insights into the field.
Collapse
Affiliation(s)
- Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Ze-Min Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, 288 Herston Road, Brisbane, 4066, Australia
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, #237 Luoyu Road, Wuhan, 430079, China
| |
Collapse
|
5
|
Neal CJ, Kolanthai E, Wei F, Coathup M, Seal S. Surface Chemistry of Biologically Active Reducible Oxide Nanozymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211261. [PMID: 37000888 DOI: 10.1002/adma.202211261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed.
Collapse
Affiliation(s)
- Craig J Neal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
| | - Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32816, USA
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| |
Collapse
|
6
|
Poulsen KM, Albright MC, Niemuth NJ, Tighe RM, Payne CK. Interaction of TiO 2 nanoparticles with lung fluid proteins and the resulting macrophage inflammatory response. ENVIRONMENTAL SCIENCE. NANO 2023; 10:2427-2436. [PMID: 38009084 PMCID: PMC10669912 DOI: 10.1039/d3en00179b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Inhalation is a major exposure route to nanoparticles. Following inhalation, nanoparticles first interact with the lung lining fluid, a complex mixture of proteins, lipids, and mucins. We measure the concentration and composition of lung fluid proteins adsorbed on the surface of titanium dioxide (TiO2) nanoparticles. Using proteomics, we find that lung fluid results in a unique protein corona on the surface of the TiO2 nanoparticles. We then measure the expression of three cytokines (interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and macrophage inflammatory protein 2 (MIP-2)) associated with lung inflammation. We find that the corona formed from lung fluid leads to elevated expression of these cytokines in comparison to bare TiO2 nanoparticles or coronas formed from serum or albumin. These experiments show that understanding the concentration and composition of the protein corona is essential for understanding the pulmonary response associated with human exposure to nanoparticles.
Collapse
Affiliation(s)
- Karsten M Poulsen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
| | - Michaela C Albright
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Nicholas J Niemuth
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
- Present address: Department of Biomedical Engineering, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, 27599
| | - Robert M Tighe
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
| |
Collapse
|
7
|
Wang J, Zhao Y, Nie G. Intelligent nanomaterials for cancer therapy: recent progresses and future possibilities. MEDICAL REVIEW (2021) 2023; 3:321-342. [PMID: 38235406 PMCID: PMC10790212 DOI: 10.1515/mr-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 01/19/2024]
Abstract
Intelligent nanomedicine is currently one of the most active frontiers in cancer therapy development. Empowered by the recent progresses of nanobiotechnology, a new generation of multifunctional nanotherapeutics and imaging platforms has remarkably improved our capability to cope with the highly heterogeneous and complicated nature of cancer. With rationally designed multifunctionality and programmable assembly of functional subunits, the in vivo behaviors of intelligent nanosystems have become increasingly tunable, making them more efficient in performing sophisticated actions in physiological and pathological microenvironments. In recent years, intelligent nanomaterial-based theranostic platforms have showed great potential in tumor-targeted delivery, biological barrier circumvention, multi-responsive tumor sensing and drug release, as well as convergence with precise medication approaches such as personalized tumor vaccines. On the other hand, the increasing system complexity of anti-cancer nanomedicines also pose significant challenges in characterization, monitoring and clinical use, requesting a more comprehensive and dynamic understanding of nano-bio interactions. This review aims to briefly summarize the recent progresses achieved by intelligent nanomaterials in tumor-targeted drug delivery, tumor immunotherapy and temporospatially specific tumor imaging, as well as important advances of our knowledge on their interaction with biological systems. In the perspective of clinical translation, we have further discussed the major possibilities provided by disease-oriented development of anti-cancer nanomaterials, highlighting the critical importance clinically-oriented system design.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Heidarzadeh M, Zarebkohan A, Rahbarghazi R, Sokullu E. Protein corona and exosomes: new challenges and prospects. Cell Commun Signal 2023; 21:64. [PMID: 36973780 PMCID: PMC10041507 DOI: 10.1186/s12964-023-01089-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Recent advances in extracellular vesicle (EVs) detection and isolation methods have led to the development of novel therapeutic modalities. Among different types of EVs, exosomes (Exos) can transfer different signaling biomolecules and exhibit several superior features compared to whole-cell-based therapies. Therapeutic factors are normally loaded into the Exo lumen or attached to their surface for improving the on-target delivery rate and regenerative outcomes. Despite these advantages, there are several limitations in the application of Exos in in vivo conditions. It was suggested that a set of proteins and other biological compounds are adsorbed around Exos in aqueous phases and constitute an external layer named protein corona (PC). Studies have shown that PC can affect the physicochemical properties of synthetic and natural nanoparticles (NPs) after introduction in biofluids. Likewise, PC is generated around EVs, especially Exos in in vivo conditions. This review article is a preliminary attempt to address the interfering effects of PC on Exo bioactivity and therapeutic effects. Video Abstract.
Collapse
Affiliation(s)
- Morteza Heidarzadeh
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Emel Sokullu
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
- Biophysics Department, Koç University School of Medicine, Rumeli Feneri, 34450, Sariyer, Istanbul, Turkey
| |
Collapse
|
9
|
Fahy KM, Eiken MK, Baumgartner KV, Leung KQ, Anderson SE, Berggren E, Bouzos E, Schmitt LR, Asuri P, Wheeler KE. Silver Nanoparticle Surface Chemistry Determines Interactions with Human Serum Albumin and Cytotoxic Responses in Human Liver Cells. ACS OMEGA 2023; 8:3310-3318. [PMID: 36713725 PMCID: PMC9878656 DOI: 10.1021/acsomega.2c06882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Engineered nanomaterials (ENMs) are synthesized with a diversity of surface chemistries that mediate biochemical interactions and physiological response to the particles. In this work, silver engineered nanomaterials (AgENMs) are used to evaluate the role of surface charge in protein interactions and cellular cytotoxicity. The most abundant protein in blood, human serum albumin (HSA), was interacted with 40 nm AgENMs with a range of surface-charged coatings: positively charged branched polyethyleneimine (bPEI), negatively charged citrate (CIT), and circumneutral poly(ethylene glycol) (PEG). HSA adsorption to AgENMs was monitored by UV-vis spectroscopy and dynamic light scattering, while changes to the protein structure were evaluated with circular dichroism spectroscopy. Binding affinity for citrate-coated AgENMs and HSA is largest among the three AgENM coatings; yet, HSA lost the most secondary structure upon interaction with bPEI-coated AgENMs compared to the other two coatings. HSA increased AgENM oxidative dissolution across all particle types, with the greatest dissolution for citrate-coated AgENMs. Results indicate that surface coating is an important consideration in transformation of both the particle and protein upon interaction. To connect results to cellular outcomes, we also performed cytotoxicity experiments with HepG2 cells across all three AgENM types with and without HSA. Results show that bPEI-coated AgENMs cause the greatest loss of cell viability, both with and without inclusion of HSA with the AgENMs. Thus, surface coatings on AgENMs alter both biophysical interactions with proteins and particle cytotoxicity. Within this study set, positively charged bPEI-coated AgENMs cause the greatest disruption to HSA structure and cell viability.
Collapse
Affiliation(s)
- Kira M. Fahy
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Madeline K. Eiken
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Karl V. Baumgartner
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Kaitlyn Q. Leung
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Sarah E. Anderson
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Erik Berggren
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Evangelia Bouzos
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Lauren R. Schmitt
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| | - Prashanth Asuri
- Department
of Bioengineering, Santa Clara University, Santa Clara, California95053, United States
| | - Korin E. Wheeler
- Department
of Chemistry & Biochemistry, Santa Clara
University, Santa
Clara, California95053, United States
| |
Collapse
|
10
|
Poulsen KM, Payne CK. Concentration and composition of the protein corona as a function of incubation time and serum concentration: an automated approach to the protein corona. Anal Bioanal Chem 2022; 414:7265-7275. [PMID: 36018335 DOI: 10.1007/s00216-022-04278-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
Nanoparticles in contact with proteins form a "corona" of proteins adsorbed on the nanoparticle surface. Subsequent biological responses are then mediated by the adsorbed proteins rather than the bare nanoparticles. The use of nanoparticles as nanomedicines and biosensors would be greatly improved if researchers were able to predict which specific proteins will adsorb on a nanoparticle surface. We use a recently developed automated workflow with a liquid handling robot and low-cost proteomics to determine the concentration and composition of the protein corona formed on carboxylate-modified iron oxide nanoparticles (200 nm) as a function of incubation time and serum concentration. We measure the concentration of the resulting protein corona with a colorimetric assay and the composition of the corona with proteomics, reporting both abundance and enrichment relative to the fetal bovine serum (FBS) proteins used to form the corona. Incubation time was found to be an important parameter for corona concentration and composition at high (100% FBS) incubation concentrations, with only a slight effect at low (10%) FBS concentrations. In addition to these findings, we describe two methodological advances to help reduce the cost associated with protein corona experiments. We have automated the digest step necessary for proteomics and measured the variability between triplicate samples at each stage of the proteomics experiments. Overall, these results demonstrate the importance of understanding the multiple parameters that influence corona formation, provide new tools for corona characterization, and advance bioanalytical research in nanomaterials.
Collapse
Affiliation(s)
- Karsten M Poulsen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Henry SJW, Dejneka A, Stephanopoulos N, Lunov O. The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomater 2022; 146:10-22. [PMID: 35523414 PMCID: PMC9590281 DOI: 10.1016/j.actbio.2022.04.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
DNA nanotechnology has yielded remarkable advances in composite materials with diverse applications in biomedicine. The specificity and predictability of building 3D structures at the nanometer scale make DNA nanotechnology a promising tool for uses in biosensing, drug delivery, cell modulation, and bioimaging. However, for successful translation of DNA nanostructures to real-world applications, it is crucial to understand how they interact with living cells, and the consequences of such interactions. In this review, we summarize the current state of knowledge on the interactions of DNA nanostructures with cells. We identify key challenges, from a cell biology perspective, that influence progress towards the clinical translation of DNA nanostructures. We close by providing an outlook on what questions must be addressed to accelerate the clinical translation of DNA nanostructures. STATEMENT OF SIGNIFICANCE: Self-assembled DNA nanostructures (DNs) offers unique opportunities to overcome persistent challenges in the nanobiotechnology field. However, the interactions between engineered DNs and living cells are still not well defined. Critical systematization of current cellular models and biological responses triggered by DNs is a crucial foundation for the successful clinical translation of DNA nanostructures. Moreover, such an analysis will identify the pitfalls and challenges that are present in the field, and provide a basis for overcoming those challenges.
Collapse
Affiliation(s)
- Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic; Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Skylar J W Henry
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, United States; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281, United States
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Nicholas Stephanopoulos
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85281, United States; Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, AZ 85281, United States.
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| |
Collapse
|
12
|
Jaiswal N, Halder S, Mahata N, Chanda N. Bi-Functional Gold Nanorod-Protein Conjugates with Biomimetic BSA@Folic Acid Corona for Improved Tumor Targeting and Intracellular Delivery of Therapeutic Proteins in Colon Cancer 3D Spheroids. ACS APPLIED BIO MATERIALS 2022; 5:1476-1488. [PMID: 35285613 DOI: 10.1021/acsabm.1c01216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gold nanorods (AuNRs) remain well-developed inorganic nanocarriers of small molecules for a plethora of biomedical and therapeutic applications. However, the delivery of therapeutic proteins using AuNRs with high protein loading capacity (LC), serum stability, excellent target specificity, and minimal off-target protein release is not known. Herein, we report two bi-functional AuNR-protein nanoconjugates, AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA, supramolecularly coated with folic acid-modified BSA (BSAFA) acting as biomimetic protein corona to demonstrate targeted cytosolic delivery of enhanced green fluorescent protein (EGFP) and therapeutic ribonuclease A enzyme (RNase A) in their functional forms. AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA exhibit high LCs of ∼42 and ∼54%, respectively, increased colloidal stability, and rapid protein release in the presence of biological thiols. As a nanocarrier, AuNR@EGFP-BSAFA and AuNR@RNaseA-BSAFA show resistance to corona formation in high-serum media even after 24 h, guaranteeing a greater circulation lifetime. Folate receptor-targeting BSAFA on the AuNR surface facilitates the receptor-mediated internalization, followed by the release of EGFP and RNase A in HT29 cells. The green fluorescence dispersed throughout the cell's cytoplasm indicates successful cytosolic delivery of EGFP by AuNR@EGFP-BSAFA. AuNR@RNaseA-BSAFA-mediated therapeutic RNase A delivery in multicellular 3D spheroids of HT29 cells exhibits a radical reduction in the cellular RNA fluorescence intensity to 38%, signifying RNA degradation and subsequent cell death. The versatile nanoformulation strategy in terms of the anisotropic particle morphology, protein type, and ability for targeted delivery in the functional form makes the present AuNR-protein nanoconjugates a promising platform for potential application in cancer management.
Collapse
Affiliation(s)
- Namita Jaiswal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India.,Material Processing and Microsystem Laboratory, CSIR─Central Mechanical Engineering Research Institute, Durgapur 713209, India
| | - Sudeshna Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Nripen Chanda
- Material Processing and Microsystem Laboratory, CSIR─Central Mechanical Engineering Research Institute, Durgapur 713209, India
| |
Collapse
|
13
|
Akhter MH, Khalilullah H, Gupta M, Alfaleh MA, Alhakamy NA, Riadi Y, Md S. Impact of Protein Corona on the Biological Identity of Nanomedicine: Understanding the Fate of Nanomaterials in the Biological Milieu. Biomedicines 2021; 9:1496. [PMID: 34680613 PMCID: PMC8533425 DOI: 10.3390/biomedicines9101496] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles (NPs) in contact with a biological medium are rapidly comprehended by a number of protein molecules resulting in the formation of an NP-protein complex called protein corona (PC). The cell sees the protein-coated NPs as the synthetic identity is masked by protein surfacing. The PC formation ultimately has a substantial impact on various biological processes including drug release, drug targeting, cell recognition, biodistribution, cellular uptake, and therapeutic efficacy. Further, the composition of PC is largely influenced by the physico-chemical properties of NPs viz. the size, shape, surface charge, and surface chemistry in the biological milieu. However, the change in the biological responses of the new substrate depends on the quantity of protein access by the NPs. The PC-layered NPs act as new biological entities and are recognized as different targeting agents for the receptor-mediated ingress of therapeutics in the biological cells. The corona-enveloped NPs have both pros and cons in the biological system. The review provides a brief insight into the impact of biomolecules on nanomaterials carrying cargos and their ultimate fate in the biological milieu.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Manish Gupta
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India;
| | - Mohamed A. Alfaleh
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- King Fahd Medical Research Center, Vaccines and Immunotherapy Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.A.); (N.A.A.)
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Johnson L, Aglas L, Soh WT, Geppert M, Hofer S, Hofstätter N, Briza P, Ferreira F, Weiss R, Brandstetter H, Duschl A, Himly M. Structural Alterations of Antigens at the Material Interface: An Early Decision Toolbox Facilitating Safe-by-Design Nanovaccine Development. Int J Mol Sci 2021; 22:10895. [PMID: 34639235 PMCID: PMC8509464 DOI: 10.3390/ijms221910895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Nanomaterials have found extensive interest in the development of novel vaccines, as adjuvants and/or carriers in vaccination platforms. Conjugation of protein antigens at the particle surface by non-covalent adsorption is the most widely used approach in licensed particulate vaccines. Hence, it is essential to understand proteins' structural integrity at the material interface in order to develop safe-by-design nanovaccines. In this study, we utilized two model proteins, the wild-type allergen Bet v 1 and its hypoallergenic fold variant (BM4), to compare SiO2 nanoparticles with Alhydrogel® as particulate systems. A set of biophysical and functional assays including circular dichroism spectroscopy and proteolytic degradation was used to examine the antigens' structural integrity at the material interface. Conjugation of both biomolecules to the particulate systems decreased their proteolytic stability. However, we observed qualitative and quantitative differences in antigen processing concomitant with differences in their fold stability. These changes further led to an alteration in IgE epitope recognition. Here, we propose a toolbox of biophysical and functional in vitro assays for the suitability assessment of nanomaterials in the early stages of vaccine development. These tools will aid in safe-by-design innovations and allow fine-tuning the properties of nanoparticle candidates to shape a specific immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Martin Himly
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.J.); (L.A.); (W.T.S.); (M.G.); (S.H.); (N.H.); (P.B.); (F.F.); (R.W.); (H.B.); (A.D.)
| |
Collapse
|
15
|
Jiang C, Wang X, Teng B, Wang Z, Li F, Zhao Y, Guo Y, Zeng Q. Peptide-Targeted High-Density Lipoprotein Nanoparticles for Combinatorial Treatment against Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35248-35265. [PMID: 34284582 DOI: 10.1021/acsami.1c02074] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sonic hedgehog (SHH) signaling pathway exhibits aberrant activation in triple-negative breast cancer (TNBC), wherein it regulates several malignant phenotypes related to tumor metastasis. GANT61, an inhibitor of the SHH signaling pathway, may offer promise when administered in combination with conventional chemotherapy to treat metastatic TNBC. However, poor bioavailability and substantial off-target toxicity limit its clinical application. To address these limitations, we designed a peptide-functionalized dual-targeting delivery system encapsulating paclitaxel and GANT61 in tLyP-1 peptide-modified reconstituted high-density lipoprotein nanoparticle (tLyP-1-rHDL-PTX/GANT61 NP) for metastatic TNBC treatment. The apolipoprotein A-1 and tLyP-1 peptide modified on the surface of nanoparticles enable the delivery system to target tumor cells by binding to the overexpressed scavenger receptor B type I and neuropilin-1 receptor. Moreover, the tLyP-1 peptide also enables the deep tumor penetration of nanoparticles further facilitating paclitaxel and GANT61 delivery. Increased cellular uptake of the nanoparticles was observed in both MDA-MB-231, BT-549 tumor cells, and their 3D tumor spheroids. A series of in vitro experiments reveal that GANT61 was able to suppress key metastasis-related tumor cell activities including angiogenesis, migration, invasion, and stemness. Owing to more effective drug administration, the metastasis suppression efficiency of GANT61 was significantly enhanced by the dual-targeting tLyP-1-rHDL delivery system. Meanwhile, the codelivery of paclitaxel and GANT61 by dual-targeting tLyP-1-rHDL nanoparticles demonstrated superior efficiency of disrupting proliferation and inducing apoptosis in tumor cells compared with drug solutions. In a spontaneous metastasis breast cancer NCG mice model, the tLyP-1-rHDL-PTX/GANT61 nanoparticles exhibited highly tumor-specific distribution and result in significant inhibition of the primary tumor growth and dramatic reduction of lung metastasis without obvious side effects. The present work suggests that a combination of the SHH signaling pathway suppression and chemotherapy assisted by peptide-functionalized targeting tLyP-1-rHDL nanoparticles may provide a promising strategy for metastatic TNBC treatment.
Collapse
Affiliation(s)
- Chuli Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xingyue Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Biyun Teng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhe Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fenghe Li
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Guo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qiu Zeng
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Fu D, Wang Z, Tu Y, Peng F. Interactions between Biomedical Micro-/Nano-Motors and the Immune Molecules, Immune Cells, and the Immune System: Challenges and Opportunities. Adv Healthc Mater 2021; 10:e2001788. [PMID: 33506650 DOI: 10.1002/adhm.202001788] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Mobile micro- and nano-motors (MNMs) emerge as revolutionary platforms for biomedical applications, including drug delivery, biosensing, non-invasive surgery, and cancer therapy. While for applications in biomedical fields and practical clinical translation, the interactions of these untethered tiny machines with the immune system is an essential issue to be considered. This review highlights the recent approaches of surpassing immune barriers to prevent foreign motors from triggering immune responses. In addition to trials focusing on the function preservation of MNMs, examples of versatile MNMs working with the immune components (immune molecules, immune cells and the whole system) to achieve cancer immunotherapy, immunoassay, and detoxification are outlined. The immune interference part provides researchers an idea about what is the limit presented by the immune components. The coworking part suggests ways to bypass or even utilize the limit. With interdisciplinary cooperation of nanoengineering, materials science, and immunology field, the rationally designed functional MNMs are expected to provide novel opportunities for the biomedical field.
Collapse
Affiliation(s)
- Dongmei Fu
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Zhen Wang
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical Science Southern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and Engineering Sun‐Yat‐sen University Guangzhou 510275 China
| |
Collapse
|
17
|
Mushtaq A, Li L, A A, Grøndahl L. Chitosan Nanomedicine in Cancer Therapy: Targeted Delivery and Cellular Uptake. Macromol Biosci 2021; 21:e2100005. [PMID: 33738977 DOI: 10.1002/mabi.202100005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Nanomedicine has gained much attention for the management and treatment of cancers due to the distinctive physicochemical properties of the drug-loaded particles. Chitosan's cationic nature is attractive for the development of such particles for drug delivery, transfection, and controlled release. The particle properties can be improved by modification of the polymer or the particle themselves. The physicochemical properties of chitosan particles are analyzed in 126 recent studies, which allows to highlight their impact on passive and active targeted drug delivery, cellular uptake, and tumor growth inhibition (TGI). From 2012 to 2019, out of 40 in vivo studies, only 4 studies are found reporting a reduction in tumor size by using chitosan particles while all other studies reported tumor growth inhibition relative to controls. A total of 23 studies are analyzed for cellular uptake including 12 studies reporting cellular uptake mechanisms. Understanding and exploiting the processes involved in targeted delivery, endocytosis, and exocytosis by controlling the physicochemical properties of chitosan particles are important for the development of safe and efficient nanomedicine. It is concluded based on the recent literature available on chitosan particles that combination therapies can play a pivotal role in transformation of chitosan nanomedicine from bench to bedside.
Collapse
Affiliation(s)
- Asim Mushtaq
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Anitha A
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia
| | - Lisbeth Grøndahl
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 68, Cooper Road, Brisbane, Queensland, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Building 75, Corner of College and Cooper Road, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
18
|
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. NATURE REVIEWS. MATERIALS 2021; 6:766-783. [PMID: 34026278 PMCID: PMC8132739 DOI: 10.1038/s41578-021-00315-x] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Biomolecule-based nanostructures are inherently multifunctional and harbour diverse biological activities, which can be explored for cancer nanomedicine. The supramolecular properties of biomolecules can be precisely programmed for the design of smart drug delivery vehicles, enabling efficient transport in vivo, targeted drug delivery and combinatorial therapy within a single design. In this Review, we discuss biomolecule-based nanostructures, including polysaccharides, nucleic acids, peptides and proteins, and highlight their enormous design space for multifunctional nanomedicines. We identify key challenges in cancer nanomedicine that can be addressed by biomolecule-based nanostructures and survey the distinct biological activities, programmability and in vivo behaviour of biomolecule-based nanostructures. Finally, we discuss challenges in the rational design, characterization and fabrication of biomolecule-based nanostructures, and identify obstacles that need to be overcome to enable clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Kopac T. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: A critical review. Int J Biol Macromol 2020; 169:290-301. [PMID: 33340622 DOI: 10.1016/j.ijbiomac.2020.12.108] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022]
Abstract
Proteins are biopolymers of highly varied structures taking part in almost all processes occurring in living cells. When nanoparticles (NPs) interact with proteins in biological environments, they are surrounded by a layer of biomolecules, mainly proteins adsorbing to the surfaces. This protein rich layer formed around NPs is called the "protein corona". Consequential interactions between NPs and proteins are governed due to the characteristics of the corona. The features of NPs such as the size, surface chemistry, charge are the critical factors influencing the behavior of protein corona. Molecular properties and protein corona composition affect the cellular uptake of NPs. Understanding and analyzing protein corona formation in relation to protein-NP properties, and elucidating its biological implications play an important role in bio-related nano-research studies. Protein-NP interactions have been studied extensively for the purpose of investigating the potential use of NPs as carriers in drug delivery systems. Further study should focus on exploring the effects of various characteristic parameters, such as the particle size, modifier type, temperature, pH on protein-NP interactions, providing toxicity information of novel NPs. In this contribution, important aspects related to protein corona forming, influential factors, novel findings and future perspectives on protein-NP interactions are overviewed.
Collapse
Affiliation(s)
- Turkan Kopac
- Department of Chemistry, Zonguldak Bülent Ecevit University, 67100 Zonguldak, Turkey; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan(1).
| |
Collapse
|
20
|
Gardner L, Warrington J, Rogan J, Rothwell DG, Brady G, Dive C, Kostarelos K, Hadjidemetriou M. The biomolecule corona of lipid nanoparticles contains circulating cell-free DNA. NANOSCALE HORIZONS 2020; 5:1476-1486. [PMID: 32853302 DOI: 10.1039/d0nh00333f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The spontaneous adsorption of biomolecules onto the surface of nanoparticles (NPs) in complex physiological biofluids has been widely investigated over the last decade. Characterisation of the protein composition of the 'biomolecule corona' has dominated research efforts, whereas other classes of biomolecules, such as nucleic acids, have received no interest. Scarce, speculative statements exist in the literature about the presence of nucleic acids in the biomolecule corona, with no previous studies attempting to describe the contribution of genomic content to the blood-derived NP corona. Herein, we provide the first experimental evidence of the interaction of circulating cell-free DNA (cfDNA) with lipid-based NPs upon their incubation with human plasma samples, obtained from healthy volunteers and ovarian carcinoma patients. Our results also demonstrate an increased amount of detectable cfDNA in patients with cancer. Proteomic analysis of the same biomolecule coronas revealed the presence of histone proteins, suggesting an indirect, nucleosome-mediated NP-cfDNA interaction. The finding of cfDNA as part of the NP corona, offers a previously unreported new scope regarding the chemical composition of the 'biomolecule corona' and opens up new possibilities for the potential exploitation of the biomolecule corona for the enrichment and analysis of blood-circulating nucleic acids.
Collapse
Affiliation(s)
- Lois Gardner
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Awotunde O, Okyem S, Chikoti R, Driskell JD. Role of Free Thiol on Protein Adsorption to Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9241-9249. [PMID: 32686419 DOI: 10.1021/acs.langmuir.0c01550] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-gold nanoparticle (AuNP) bioconjugates have many potential applications in nanomedicine. A thorough understanding of the interaction between the protein and the AuNP is critical to engineering these functional bioconjugates with desirable properties. In this work, we investigate the role of free thiols presented by the protein on the stability of the protein-AuNP conjugate. Human serum albumin (HSA) was modified with 2-iminothiolane (Traut's reagent) to introduce additional thiols onto the protein surface, and three variants of HSA were synthesized to present 1, 5, and 20 free thiols by controlling the molar excess of the chemical modifier. Protein exchange studies on AuNPs were conducted using these HSA species and an IgG antibody which exhibited 10 free thiols. Antibody-AuNP conjugates were synthesized, purified, and dispersed in solutions containing each of the HSA species. No protein exchange was detected with the HSA or modified HSA containing 5 thiols; however, 85% of the antibody was displaced on the AuNP surface by the extensively thiolated HSA presenting 20 free thiols. Furthermore, the impact of the protein adsorption sequence was probed in which each of the HSA species were preadsorbed onto the AuNP and dispersed in a solution of antibody. The antibody fully displaced the HSA with a single thiol from the AuNP within 3 h, required 24 h to completely displace the modified HSA containing 5 thiols, and was unable to displace the modified HSA containing 20 thiols. These results indicate that the number of Au-S interactions governs the binding interaction between the protein and the AuNP. This work provides further insight into the protein-AuNP binding mechanism and identifies important design principles for engineered proteins to optimize bioconjugates.
Collapse
Affiliation(s)
- Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Rishika Chikoti
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
22
|
Physical Properties of Nanoparticles That Result in Improved Cancer Targeting. JOURNAL OF ONCOLOGY 2020; 2020:5194780. [PMID: 32765604 PMCID: PMC7374236 DOI: 10.1155/2020/5194780] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/26/2020] [Accepted: 05/30/2020] [Indexed: 11/17/2022]
Abstract
The therapeutic efficacy of drugs is dependent upon the ability of a drug to reach its target, and drug penetration into tumors is limited by abnormal vasculature and high interstitial pressure. Chemotherapy is the most common systemic treatment for cancer but can cause undesirable adverse effects, including toxicity to the bone marrow and gastrointestinal system. Therefore, nanotechnology-based drug delivery systems have been developed to reduce the adverse effects of traditional chemotherapy by enhancing the penetration and selective drug retention in tumor tissues. A thorough knowledge of the physical properties (e.g., size, surface charge, shape, and mechanical strength) and chemical attributes of nanoparticles is crucial to facilitate the application of nanotechnology to biomedical applications. This review provides a summary of how the attributes of nanoparticles can be exploited to improve therapeutic efficacy. An ideal nanoparticle is proposed at the end of this review in order to guide future development of nanoparticles for improved drug targeting in vivo.
Collapse
|
23
|
Shamsian A, Sepand MR, Javaheri Kachousangi M, Dara T, Ostad SN, Atyabi F, Ghahremani MH. Targeting Tumorigenicity of Breast Cancer Stem Cells Using SAHA/Wnt-b Catenin Antagonist Loaded Onto Protein Corona of Gold Nanoparticles. Int J Nanomedicine 2020; 15:4063-4078. [PMID: 32606664 PMCID: PMC7295335 DOI: 10.2147/ijn.s234636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Among various theories for the origin of cancer, the "stemness phenotype model" suggests a dynamic feature for tumor cells in which non-cancer stem cells (non-CSCs) can inter-convert to CSCs. Differentiation with histone-deacetylase inhibitor, vorinostat (SAHA), can induce stem cells to differentiate as well as enforces non-CSCs to reprogram to CSCs. To avoid this undesirable effect, one can block the Wnt-βcatenin pathway. Thus, a dual delivery system of SAHA and a Wnt-βcatenin blocker will be beneficial in the induction of differentiation of CSCs. Protein corona (PC) formation in nanoparticle has a biologic milieu, and despite all problematic properties, it can be employed as a medium for dual loading of the drugs. MATERIALS AND METHODS We prepared sphere gold nanoparticles (GNPs) with human plasma protein corona loaded with SAHA as differentiating agent and PKF118-310 (PKF) as a Wnt-βcatenin antagonist. The MCF7 breast cancer stem cells were treated with NPs and the viability and differentiation were evaluated by Western blotting and sphere formation assay. RESULTS We found that both drugs loaded onto corona-capped GNPs had significant cytotoxicity in comparison to bare GNP-corona. Data demonstrated an increase in stem cell population and upregulation of mesenchymal marker, Snail by SAHA-loaded GNPs treatment; however, the combination of PKF loaded GNPs along with SAHA-loaded GNPs resulted in a reduction of stem cell populations and Snail marker. We have shown that in MCF7 and its CSCs simultaneous treatment with SAHA and PKF118-310 induced differentiation and inhibition of Snail induction. CONCLUSION Our study reveals the PC-coated GNPs as a biocompatible career for both hydrophilic (PKF) and hydrophobic (SAHA) agents which can decrease breast cancer stem cell populations along with reduced stemness state regression.
Collapse
Affiliation(s)
- Azam Shamsian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziye Javaheri Kachousangi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Dara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation. NANOSCALE 2020; 12:10240-10253. [PMID: 32356537 DOI: 10.1039/d0nr02788j] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid and accurate diagnosis of sepsis remains clinically challenging. The lack of specific biomarkers that can differentiate sepsis from non-infectious systemic inflammatory diseases often leads to excessive antibiotic treatment. Novel diagnostic tests are urgently needed to rapidly and accurately diagnose sepsis and enable effective treatment. Despite investment in cutting-edge technologies available today, the discovery of disease-specific biomarkers in blood remains extremely difficult. The highly dynamic environment of plasma restricts access to vital diagnostic information that can be obtained by proteomic analysis. Here, we employed clinically used lipid-based nanoparticles (AmBisome®) as an enrichment platform to analyze the human plasma proteome in the setting of sepsis. We exploited the spontaneous interaction of plasma proteins with nanoparticles (NPs) once in contact, called the 'protein corona', to discover previously unknown disease-specific biomarkers for sepsis diagnosis. Plasma samples obtained from non-infectious acute systemic inflammation controls and sepsis patients were incubated ex vivo with AmBisome® liposomes, and the resultant protein coronas were thoroughly characterised and compared by mass spectrometry (MS)-based proteomics. Our results demonstrate that the proposed nanoparticle enrichment technology enabled the discovery of 67 potential biomarker proteins that could reproducibly differentiate non-infectious acute systemic inflammation from sepsis. This study provides proof-of-concept evidence that nanoscale-based 'omics' enrichment technologies have the potential to substantially improve plasma proteomics analysis and to uncover novel biomarkers in a challenging clinical setting.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, UK.
| | | | | | | | | |
Collapse
|
25
|
Jayaram DT, Payne CK. Intracellular Generation of Superoxide by TiO2 Nanoparticles Decreases Histone Deacetylase 9 (HDAC9), an Epigenetic Modifier. Bioconjug Chem 2020; 31:1354-1361. [DOI: 10.1021/acs.bioconjchem.0c00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Dhanya T. Jayaram
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Ke X, Howard GP, Tang H, Cheng B, Saung MT, Santos JL, Mao HQ. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev 2019; 151-152:72-93. [PMID: 31626825 DOI: 10.1016/j.addr.2019.09.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have been gaining prominence as delivery vehicles for modulating immune responses to improve treatments against cancer and autoimmune diseases, enhancing tissue regeneration capacity, and potentiating vaccination efficacy. Various engineering approaches have been extensively explored to control the NP physical and chemical properties including particle size, shape, surface charge, hydrophobicity, rigidity and surface targeting ligands to modulate immune responses. This review examines a specific set of physical and chemical characteristics of NPs that enable efficient delivery targeted to secondary lymphoid tissues, specifically the lymph nodes and immune cells. A critical analysis of the structure-property-function relationship will facilitate further efforts to engineer new NPs with unique functionalities, identify novel utilities, and improve the clinical translation of NP formulations for immunotherapy.
Collapse
|
27
|
Affiliation(s)
- Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
28
|
Barui AK, Oh JY, Jana B, Kim C, Ryu J. Cancer‐Targeted Nanomedicine: Overcoming the Barrier of the Protein Corona. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900124] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ayan Kumar Barui
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Jun Yong Oh
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Batakrishna Jana
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Chaekyu Kim
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Ja‐Hyoung Ryu
- Department of ChemistryUlsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
29
|
Huai Y, Hossen MN, Wilhelm S, Bhattacharya R, Mukherjee P. Nanoparticle Interactions with the Tumor Microenvironment. Bioconjug Chem 2019; 30:2247-2263. [PMID: 31408324 PMCID: PMC6892461 DOI: 10.1021/acs.bioconjchem.9b00448] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compared to normal tissues, the tumor microenvironment (TME) has a number of aberrant characteristics including hypoxia, acidosis, and vascular abnormalities. Many researchers have sought to exploit these anomalous features of the TME to develop anticancer therapies, and several nanoparticle-based cancer therapeutics have resulted. In this Review, we discuss the composition and pathophysiology of the TME, introduce nanoparticles (NPs) used in cancer therapy, and address the interaction between the TME and NPs. Finally, we outline both the potential problems that affect TME-based nanotherapy and potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Yanyan Huai
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Md Nazir Hossen
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Stefan Wilhelm
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Resham Bhattacharya
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
30
|
Ruiz G, Ryan N, Rutschke K, Awotunde O, Driskell JD. Antibodies Irreversibly Adsorb to Gold Nanoparticles and Resist Displacement by Common Blood Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10601-10609. [PMID: 31335148 DOI: 10.1021/acs.langmuir.9b01900] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gold nanoparticles (AuNPs) functionalized with proteins to impart desirable surface properties have been developed for many nanobiotechnology applications. A strong interaction between the protein and nanoparticle is critical to the formation of a stable conjugate to realize the potential of these emerging technologies. In this work, we examine the robustness of a protein layer adsorbed onto gold nanoparticles while under the stress of a physiological environment that could potentially lead to protein exchange on the nanoparticle surface. The adsorption interaction of common blood plasma proteins (transferrin, human serum albumin, and fibrinogen) and anti-horseradish peroxidase antibody onto AuNPs is investigated by nanoparticle tracking analysis. Our data show that a monolayer of protein is formed at saturation for each protein, and the maximum size increase for the conjugate, relative to the AuNP core, correlates with the protein size. The binding affinity of each protein to the AuNP is extracted from a best fit of the adsorption isotherm to the Hill equation. The antibody displays the greatest affinity (Kd = 15.2 ± 0.8 nM) that is ∼20-65 times stronger than the affinity of the other plasma proteins. Antibody-AuNP conjugates were prepared, purified, and suspended in solutions of blood plasma proteins to evaluate the stability of the antibody layer. An enzyme-mediated assay confirms that the antibody-AuNP interaction is irreversible, and the adsorbed antibody resists displacement by the plasma proteins. This work provides insight into the capabilities and potential limitations of antibody-AuNP-enabled technologies in biological systems.
Collapse
Affiliation(s)
- Guadalupe Ruiz
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Nicki Ryan
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Kylie Rutschke
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Olatunde Awotunde
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Jeremy D Driskell
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| |
Collapse
|
31
|
Nienhaus K, Nienhaus GU. Towards a molecular-level understanding of the protein corona around nanoparticles – Recent advances and persisting challenges. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Kumari N, Mathe V, Dongre P. Albumin nanoparticles conjugates binding with glycan - A strategic approach for targeted drug delivery. Int J Biol Macromol 2019; 126:74-90. [DOI: 10.1016/j.ijbiomac.2018.12.184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
|
33
|
Barone FC, Marcinkiewicz C, Li J, Feng Y, Sternberg M, Lelkes PI, Rosenbaum-Halevi D, Gerstenhaber JA, Feuerstein GZ. Long-term biocompatibility of fluorescent diamonds-(NV)-Z~800 nm in rats: survival, morbidity, histopathology, particle distribution and excretion studies (part IV). Int J Nanomedicine 2019; 14:1163-1175. [PMID: 30863052 PMCID: PMC6391148 DOI: 10.2147/ijn.s189048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Thromboembolic events are a major cause of heart attacks and strokes. However, diagnosis of the location of high risk vascular clots is hampered by lack of proper technologies for their detection. We recently reported on bio-engineered fluorescent diamond-(NV)-Z~800nm (FNDP-(NV)) conjugated with bitistatin (Bit) and proven its ability to identify iatrogenic blood clots in the rat carotid artery in vivo by Near Infra-Red (NIR) monitored by In Vivo Imaging System (IVIS). PURPOSE The objective of the present research was to assess the in vivo biocompatibility of FNDP-(NV)-Z~800nm infused intravenously to rats. Multiple biological variables were assessed along this 12 week study commissioned in anticipation of regulatory requirements for a long-term safety assessment. METHODS Rats were infused under anesthesia with aforementioned dose of the FNDP-(NV), while equal number of animals served as control (vehicle treated). Over the 12 week observation period rats were tested for thriving, motor, sensory and cognitive functions. At the termination of study, blood samples were obtained under anesthesia for comprehensive hematology and biochemical assays. Furthermore, 6 whole organs (liver, spleen, brain, heart, lung and kidney) were collected and examined ex vivo for FNDP-NV) via NIR monitored by IVIS and histochemical inspection. RESULTS All animals survived, thrived (no change in body and organ growth). Neuro-behavioral functions remain intact. Hematology and biochemistry (including liver and kidney functions) were normal. Preferential FNDP-(NV) distribution identified the liver as the main long-term repository. Certified pathology reports indicated no outstanding of finding in all organs. CONCLUSION The present study suggests outstanding biocompatibility of FNDP-(NV)-Z~800nm after long-term exposure in the rat.
Collapse
Affiliation(s)
- Frank C Barone
- SUNY Downstate Medical Center, Department of Neurology, Brooklyn, NY, USA
| | - Cezary Marcinkiewicz
- Debina Diagnostic Inc., Newtown Square, PA, USA,
- Department of Bioengineering, Temple University, College of Engineering, Philadelphia, PA, USA,
| | - Jie Li
- SUNY Downstate Medical Center, Department of Neurology, Brooklyn, NY, USA
| | - Yi Feng
- WuXi AppTec (Suzhou) Co., Ltd., China
| | | | - Peter I Lelkes
- Department of Bioengineering, Temple University, College of Engineering, Philadelphia, PA, USA,
| | | | - Jonathan A Gerstenhaber
- Department of Bioengineering, Temple University, College of Engineering, Philadelphia, PA, USA,
| | | |
Collapse
|
34
|
Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat Commun 2018; 9:4548. [PMID: 30382085 PMCID: PMC6208370 DOI: 10.1038/s41467-018-06979-4] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Targeted drug delivery using nanoparticles can minimize the side effects of conventional pharmaceutical agents and enhance their efficacy. However, translating nanoparticle-based agents into clinical applications still remains a challenge due to the difficulty in regulating interactions on the interfaces between nanoparticles and biological systems. Here, we present a targeting strategy for nanoparticles incorporated with a supramolecularly pre-coated recombinant fusion protein in which HER2-binding affibody combines with glutathione-S-transferase. Once thermodynamically stabilized in preferred orientations on the nanoparticles, the adsorbed fusion proteins as a corona minimize interactions with serum proteins to prevent the clearance of nanoparticles by macrophages, while ensuring systematic targeting functions in vitro and in vivo. This study provides insight into the use of the supramolecularly built protein corona shield as a targeting agent through regulating the interfaces between nanoparticles and biological systems.
Collapse
|
35
|
Ning J, Zhang J, Suo T, Yin Z. Spectroscopic studies of human serum albumin exposed to Fe 3 O 4 magnetic nanoparticles coated with sodium oleate: Secondary and tertiary structure, fibrillation, and important functional properties. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Caracciolo G, Palchetti S, Digiacomo L, Chiozzi RZZ, Capriotti AL, Amenitsch H, Tentori PM, Palmieri V, Papi M, Cardarelli F, Pozzi D, Laganà A. Human Biomolecular Corona of Liposomal Doxorubicin: The Overlooked Factor in Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22951-22962. [PMID: 29905462 DOI: 10.1021/acsami.8b04962] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
More than 20 years after its approval by the Food and Drug Administration (FDA), liposomal doxorubicin (DOX) is still the drug of choice for the treatment of breast cancer and other conditions such as ovarian cancer and multiple myeloma. Yet, despite the efforts, liposomal DOX did not satisfy expectations at the clinical level. When liposomal drugs enter a physiological environment, their surface gets coated by a dynamic biomolecular corona (BC). The BC changes liposome's synthetic identity, providing it with a new one, referred to as "biological identity" (size, aggregation state, and BC composition). Today, the concept is emerging that specific BCs may determine either success (e.g., stealth effect and accumulation at the target site) or failure (e.g., rapid blood clearance and off-target interactions) of liposomal drugs. To get a comprehensive investigation of liposome synthetic identity, biological identity, and cellular response as a function of human plasma (HP) concentration, here we used a straightforward combination of quantitative analytical and imaging tools, including dynamic light scattering, microelectrophoresis, synchrotron small-angle X-ray scattering, transmission electron microscopy (TEM), fluorescence lifetime imaging microscopy (FLIM), nano-liquid chromatography tandem mass spectrometry/mass spectrometry (nano-LC-MS/MS), confocal microscopy, flow cytometry, and cell viability assays. Doxoves was selected as a reference. Following exposure to HP, Doxoves was surrounded by a complex BC that changed liposome's synthetic identity. Observations made with nano-LC-MS/MS revealed that the BC of Doxoves did not evolve as a function of HP concentration and was poorly enriched of typical "opsonins" (complement proteins, immunoglobulins, etc.). This provides a possible explanation for the prolonged blood circulation of liposomal DOX. On the other hand, flow cytometry showed that protein binding reduced the internalization of DOX in MCF7 and MDA-MB-435S human breast carcinoma. Combining FLIM and TEM experiments, we clarified that reduction in DOX intracellular content was likely due to the frequent rupture of the liposome membrane and consequent leakage of the cargo. In light of reported results, we are prompted to speculate that a detailed understanding of BC formation, composition, and effects on liposome stability and uptake is an indispensable task of future research in the field, especially along the way to clinical translation of liposomal drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Heinz Amenitsch
- Institute of Inorganic Chemistry , Graz University of Technology , Graz 8010 , Austria
| | - Paolo Maria Tentori
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia , Pisa 56127 , Italy
- NEST, Scuola Normale Superiore , Pisa 56127 , Italy
| | - Valentina Palmieri
- Istituto di Fisica , Universitá Cattolica del Sacro Cuore , Rome 00168 , Italy
| | - Massimiliano Papi
- Istituto di Fisica , Universitá Cattolica del Sacro Cuore , Rome 00168 , Italy
| | - Francesco Cardarelli
- NEST-Scuola Normale Superiore, Istituto Nanoscienze-CNR (CNR-NANO) , Pisa 56126 , Italy
| | | | | |
Collapse
|
37
|
Jayaram DT, Pustulka SM, Mannino RG, Lam WA, Payne CK. Protein Corona in Response to Flow: Effect on Protein Concentration and Structure. Biophys J 2018; 115:209-216. [PMID: 29650368 DOI: 10.1016/j.bpj.2018.02.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.
Collapse
Affiliation(s)
- Dhanya T Jayaram
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Samantha M Pustulka
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Robert G Mannino
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; Children's Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, Atlanta, Georgia
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; Children's Healthcare of Atlanta, Aflac Cancer & Blood Disorders Center, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Christine K Payne
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
38
|
Khanehzar A, Fraire JC, Xi M, Feizpour A, Xu F, Wu L, Coronado EA, Reinhard BM. Nanoparticle-cell interactions induced apoptosis: a case study with nanoconjugated epidermal growth factor. NANOSCALE 2018; 10:6712-6723. [PMID: 29589623 PMCID: PMC6035871 DOI: 10.1039/c8nr01106k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In addition to the intrinsic toxicity associated with the chemical composition of nanoparticles (NP) and their ligands, biofunctionalized NP can perturb specific cellular processes through NP-cell interactions and induce programmed cell death (apoptosis). In the case of the epidermal growth factor (EGF), nanoconjugation has been shown to enhance the apoptotic efficacy of the ligand, but the critical aspects of the underlying mechanism and its dependence on the NP morphology remain unclear. In this manuscript we characterize the apoptotic efficacy of nanoconjugated EGF as a function of NP size (with sphere diameters in the range 20-80 nm), aspect ratio (A.R., in the range of 4.5 to 8.6), and EGF surface loading in EGFR overexpressing MDA-MB-468 cells. We demonstrate a significant size and morphology dependence in this relatively narrow parameter space with spherical NP with a diameter of approx. 80 nm being much more efficient in inducing apoptosis than smaller spherical NP or rod-shaped NP with comparable EGF loading. The nanoconjugated EGF is found to trigger an EGFR-dependent increase in cytoplasmic reactive oxygen species (ROS) levels but no indications of increased mitochondrial ROS levels or mitochondrial membrane damage are detected at early time points of the apoptosis induction. The increase in cytoplasmic ROS is accompanied by a perturbation of the intracellular glutathione homeostasis, which represents an important check-point for NP-EGF mediated apoptosis. Abrogation of the oxidative stress through the inhibition of EGFR signaling by the EGFR inhibitor AG1478 or addition of antioxidants N-acetyl cysteine (NAC) or tempol, but not trolox, successfully suppressed the apoptotic effect of nanoconjugated EGF. A model to account for the observed morphology dependence of EGF nanoconjugation enhanced apoptosis and the underlying NP-cell interactions is discussed.
Collapse
Affiliation(s)
- Ali Khanehzar
- Department of Chemistry and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gianneli M, Polo E, Lopez H, Castagnola V, Aastrup T, Dawson KA. Label-free in-flow detection of receptor recognition motifs on the biomolecular corona of nanoparticles. NANOSCALE 2018; 10:5474-5481. [PMID: 29511756 DOI: 10.1039/c7nr07887k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanomedicine, nanotargeting and nanotherapeutics have in the last few years faced several difficulties in translating the promising results obtained in vitro to an in vivo scenario. The origin of this discrepancy might be found in the lack of a detailed and realistic characterization of the biological surface of nanoparticles. Despite the capability to engineer nanomaterials with a great variety and a precise control of the surface functionalization, the targeting capability is lost when the nanoparticles are embedded in complex biological media, due to the formation of a biological layer (biomolecular corona). This biological layer represents the ultimate nanoparticle surface, likely to interact with the cell machinery. Therefore, in addition to traditional nanoparticle characterization techniques, a more insightful investigation of the biomolecular corona is needed, including the capability to assess the orientation and functionality of specific key molecular features. Here we present a method for the rapid screening of exposed protein recognition motifs on the surface of nanoparticles exploiting quartz crystal microbalance (QCM). We quantify accessible functional epitopes of transferrin-coated nanoparticles and correlate them to differences in nanoparticle size and functionalization. The target recognition occurs label free in flow, thereby pushing our investigation into a more in vivo-like scenario. Our method is applicable to a wide array of nanoparticles and therefore holds the potential to become an advanced technique for the classification of all kinds of nanobioconstructs based on their biological external functionality.
Collapse
Affiliation(s)
- M Gianneli
- Attana AB, Greta Arwidssons Väg 21, SE-11419 Stockholm, Sweden
| | - E Polo
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland.
| | - H Lopez
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland.
| | - V Castagnola
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland.
| | - T Aastrup
- Attana AB, Greta Arwidssons Väg 21, SE-11419 Stockholm, Sweden
| | - K A Dawson
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Dublin, Ireland.
| |
Collapse
|
40
|
Rodriguez-Quijada C, Sánchez-Purrà M, de Puig H, Hamad-Schifferli K. Physical Properties of Biomolecules at the Nanomaterial Interface. J Phys Chem B 2018; 122:2827-2840. [DOI: 10.1021/acs.jpcb.8b00168] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Maria Sánchez-Purrà
- Department of Engineering, University of Massachusetts, Boston, Massachusetts 02125, United States
| | - Helena de Puig
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts, Boston, Massachusetts 02125, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Charbgoo F, Nejabat M, Abnous K, Soltani F, Taghdisi SM, Alibolandi M, Thomas Shier W, Steele TW, Ramezani M. Gold nanoparticle should understand protein corona for being a clinical nanomaterial. J Control Release 2018; 272:39-53. [DOI: 10.1016/j.jconrel.2018.01.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
|
42
|
Atkinson SP, Andreu Z, Vicent MJ. Polymer Therapeutics: Biomarkers and New Approaches for Personalized Cancer Treatment. J Pers Med 2018; 8:E6. [PMID: 29360800 PMCID: PMC5872080 DOI: 10.3390/jpm8010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Polymer therapeutics (PTs) provides a potentially exciting approach for the treatment of many diseases by enhancing aqueous solubility and altering drug pharmacokinetics at both the whole organism and subcellular level leading to improved therapeutic outcomes. However, the failure of many polymer-drug conjugates in clinical trials suggests that we may need to stratify patients in order to match each patient to the right PT. In this concise review, we hope to assess potential PT-specific biomarkers for cancer treatment, with a focus on new studies, detection methods, new models and the opportunities this knowledge will bring for the development of novel PT-based anti-cancer strategies. We discuss the various "hurdles" that a given PT faces on its passage from the syringe to the tumor (and beyond), including the passage through the bloodstream, tumor targeting, tumor uptake and the intracellular release of the active agent. However, we also discuss other relevant concepts and new considerations in the field, which we hope will provide new insight into the possible applications of PT-related biomarkers.
Collapse
Affiliation(s)
- Stuart P Atkinson
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Zoraida Andreu
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
43
|
Findlay MR, Freitas DN, Mobed-Miremadi M, Wheeler KE. Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties. ENVIRONMENTAL SCIENCE. NANO 2018; 5:64-71. [PMID: 29881624 PMCID: PMC5986185 DOI: 10.1039/c7en00466d] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proteins encountered in biological and environmental systems bind to engineered nanomaterials (ENMs) to form a protein corona (PC) that alters the surface chemistry, reactivity, and fate of the ENMs. Complexities such as the diversity of the PC and variation with ENM properties and reaction conditions make the PC population difficult to predict. Here, we support the development of predictive models for PC populations by relating biophysicochemical characteristics of proteins, ENMs, and solution conditions to PC formation using random forest classification. The resulting model offers a predictive analysis into the population of PC proteins in Ag ENM systems of various ENM size and surface coatings. With an area under the receiver operating characteristic curve of 0.83 and F1-score of 0.81, a model with strong performance has been constructed based upon experimental data. The weighted contribution of each variable provides recommendations for mechanistic models based upon protein enrichment classification results. Protein biophysical properties such as pI and weight are weighted heavily. Yet, ENM size, surface charge, and solution ionic strength also proved essential to an accurate model. The model can be readily modified and applied to other ENM PC populations. The model presented here represents the first step toward robust predictions of PC fingerprints.
Collapse
Affiliation(s)
- Matthew R Findlay
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, United States
| | - Daniel N Freitas
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, United States
| | - Maryam Mobed-Miremadi
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, United States
| | - Korin E Wheeler
- Department of Chemistry & Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, United States
| |
Collapse
|
44
|
Del Caño R, Mateus L, Sánchez-Obrero G, Sevilla JM, Madueño R, Blázquez M, Pineda T. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties. J Colloid Interface Sci 2017; 505:1165-1171. [PMID: 28715860 DOI: 10.1016/j.jcis.2017.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/26/2022]
Abstract
The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates.
Collapse
Affiliation(s)
- Rafael Del Caño
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Lucia Mateus
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Guadalupe Sánchez-Obrero
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - José Manuel Sevilla
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Rafael Madueño
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Manuel Blázquez
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain
| | - Teresa Pineda
- Department of Physical Chemistry and Applied Thermodynamics, Institute of Fine Chemistry and Nanochemistry, University of Cordoba, Campus Rabanales, Ed. Marie Curie 2ª Planta, E-14014 Córdoba, Spain.
| |
Collapse
|
45
|
Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater 2017; 55:13-27. [PMID: 28377307 DOI: 10.1016/j.actbio.2017.03.055] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/23/2022]
Abstract
In the past few years, concerns of protein-gold nanoparticles (AuNP) interaction have been continuously growing in numerous potential biomedical applications. Despite the advances in tunable size, shape and excellent biocompatibility, unpredictable adverse effects related with protein corona (PC) have critically affected physiological to therapeutic responses. The complexity and uncontrollability of AuNP-PC formation limited the clinical applications of AuNP, e.g. AuNP-based drug delivery systems or imaging agent. Thus, even intensive attempts have been made for in vitro characterizations of PC around AuNP, the extrapolation of these data into in vivo PC responses still lags far behind. However, with accumulated knowledge of corona formation and the unique properties of AuNP, we are now encouraged to move forward to seeking positive exploitations. Herein, we summarize recent researches on interaction of protein and AuNP, aiming at provide a comprehensive understanding of such interaction associated with subsequent biomedical impacts. Importantly, the emerging trends in exploiting of potential applications and opportunities based on protein-AuNP interaction were discussed as well. STATEMENT OF SIGNIFICANCE Gold nanoparticles (AuNPs) have shown great potentials in biomedical areas. However, its practical use is highly limited by protein corona, formed as a result of protein-AuNP interaction. This protein corona surrounding AuNPs is a new identity and the real substance that the organs and cells firstly encounter, and finally makes the behavior of AuNPs in vivo uncontrollable and unpredictable. Therefore, comprehensively understanding such interaction is of great significance for predicting the in vivo fate of AuNPs and for designing advanced AuNPs systems. In this review, we would provide a detailed description of protein-AuNP interaction and launch an interesting discussion on how to use such interaction for smart and controlled AuNPs delivery, which would be a topic of widespread interest.
Collapse
|
46
|
Davidson AM, Brust M, Cooper DL, Volk M. Sensitive Analysis of Protein Adsorption to Colloidal Gold by Differential Centrifugal Sedimentation. Anal Chem 2017; 89:6807-6814. [PMID: 28513153 PMCID: PMC5480231 DOI: 10.1021/acs.analchem.7b01229] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
It
is demonstrated that the adsorption of bovine serum albumin
(BSA) to aqueous gold colloids can be quantified with molecular resolution
by differential centrifugal sedimentation (DCS). This method separates
colloidal particles of comparable density by mass. When proteins adsorb
to the nanoparticles, both their mass and their effective density
change, which strongly affects the sedimentation time. A straightforward
analysis allows quantification of the adsorbed layer. Most importantly,
unlike many other methods, DCS can be used to detect chemisorbed proteins
(“hard corona”) as well as physisorbed proteins (“soft
corona”). The results for BSA on gold colloid nanoparticles
can be modeled in terms of Langmuir-type adsorption isotherms (Hill
model). The effects of surface modification with small thiol-PEG ligands
on protein adsorption are also demonstrated.
Collapse
Affiliation(s)
- Adam M Davidson
- Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| | - Mathias Brust
- Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| | - David L Cooper
- Department of Chemistry, University of Liverpool , Crown Street, Liverpool L69 7ZD, U.K
| | - Martin Volk
- Surface Science Research Centre, Department of Chemistry, University of Liverpool , Abercromby Square, Liverpool L69 3BX, U.K
| |
Collapse
|
47
|
Palchetti S, Pozzi D, Capriotti AL, Barbera GL, Chiozzi RZ, Digiacomo L, Peruzzi G, Caracciolo G, Laganà A. Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells. Colloids Surf B Biointerfaces 2017; 153:263-271. [DOI: 10.1016/j.colsurfb.2017.02.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
|
48
|
Abstract
After administration of nanoparticle (NP) into biological fluids, an NP-protein complex is formed, which represents the "true identity" of NP in our body. Hence, protein-NP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without in vivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment.
Collapse
Affiliation(s)
- Van Hong Nguyen
- Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Beom-Jin Lee
- Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
49
|
Hadjidemetriou M, Kostarelos K. Nanomedicine: Evolution of the nanoparticle corona. NATURE NANOTECHNOLOGY 2017; 12:288-290. [PMID: 28383044 DOI: 10.1038/nnano.2017.61] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine &Health and the National Graphene Institute, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine &Health and the National Graphene Institute, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
50
|
Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. Pharmacol Ther 2017; 178:1-17. [PMID: 28322970 DOI: 10.1016/j.pharmthera.2017.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Considering both cancer's serious impact on public health and the side effects of cancer treatments, strategies towards targeted cancer therapy have lately gained considerable interest. Employment of gold nanoparticles (GNPs), in combination with ionizing and non-ionizing radiations, has been shown to improve the effect of radiation treatment significantly. GNPs, as high-Z particles, possess the ability to absorb ionizing radiation and enhance the deposited dose within the targeted tumors. Furthermore, they can convert non-ionizing radiation into heat, due to plasmon resonance, leading to hyperthermic damage to cancer cells. These observations, also supported by experimental evidence both in vitro and in vivo systems, reveal the capacity of GNPs to act as radiosensitizers for different types of radiation. In addition, they can be chemically modified to selectively target tumors, which renders them suitable for future cancer treatment therapies. Herein, a current review of the latest data on the physical properties of GNPs and their effects on GNP circulation time, biodistribution and clearance, as well as their interactions with plasma proteins and the immune system, is presented. Emphasis is also given with an in depth discussion on the underlying physical and biological mechanisms of radiosensitization. Furthermore, simulation data are provided on the use of GNPs in photothermal therapy upon non-ionizing laser irradiation treatment. Finally, the results obtained from the application of GNPs at clinical trials and pre-clinical experiments in vivo are reported.
Collapse
|