1
|
Karamperis K, Katz S, Melograna F, Ganau FP, Van Steen K, Patrinos GP, Lao O. Genetic ancestry in population pharmacogenomics unravels distinct geographical patterns related to drug toxicity. iScience 2024; 27:110916. [PMID: 39391720 PMCID: PMC11465127 DOI: 10.1016/j.isci.2024.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/18/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Genetic ancestry plays a major role in pharmacogenomics, and a deeper understanding of the genetic diversity among individuals holds immerse promise for reshaping personalized medicine. In this pivotal study, we have conducted a large-scale genomic analysis of 1,136 pharmacogenomic variants employing machine learning algorithms on 3,714 individuals from publicly available datasets to assess the risk proximity of experiencing drug-related adverse events. Our findings indicate that Admixed Americans and Europeans have demonstrated a higher risk of experiencing drug toxicity, whereas individuals with East Asian ancestry and, to a lesser extent, Oceanians displayed a lower risk proximity. Polygenic risk scores for drug-gene interactions did not necessarily follow similar assumptions, reflecting distinct genetic patterns and population-specific differences that vary depending on the drug class. Overall, our results provide evidence that genetic ancestry is a pivotal factor in population pharmacogenomics and should be further exploited to strengthen even more personalized drug therapy.
Collapse
Affiliation(s)
- Kariofyllis Karamperis
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Group of Algorithms for Population Genomics, Department of Genetics, Institut de Biologia Evolutiva, IBE, (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- The Golden Helix Foundation, London, UK
| | - Sonja Katz
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Federico Melograna
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- GIGA-R Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - Francesc P. Ganau
- Group of Algorithms for Population Genomics, Department of Genetics, Institut de Biologia Evolutiva, IBE, (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Kristel Van Steen
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- GIGA-R Molecular and Computational Biology, University of Liège, Liège, Belgium
| | - George P. Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Erasmus University Medical Center, Faculty of Medicine and Health Sciences, Department of Pathology, Clinical Bioinformatics Unit, Rotterdam, the Netherlands
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Genetics and Genomics, Al-Ain, Abu Dhabi, UAE
- United Arab Emirates University, Zayed Center for Health Sciences, Al-Ain, Abu Dhabi, UAE
| | - Oscar Lao
- Group of Algorithms for Population Genomics, Department of Genetics, Institut de Biologia Evolutiva, IBE, (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
2
|
Patrinos GP, Quinones LA, Sukasem C. Editorial: Pharmacogenomics and ethnicity: Prevalence and clinical significance of pharmacogenomic biomarkers in indigenous and other populations. Front Pharmacol 2023; 14:1180487. [PMID: 37063283 PMCID: PMC10090656 DOI: 10.3389/fphar.2023.1180487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Affiliation(s)
- George P. Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- United Arab Emirates University, Zayed Center for Health Sciences, Al-Ain, United Arab Emirates
- *Correspondence: George P. Patrinos,
| | - Luis Abel Quinones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, Bangkok, Thailand
| |
Collapse
|
3
|
Ji X, Ning B, Liu J, Roberts R, Lesko L, Tong W, Liu Z, Shi T. Towards population-specific pharmacogenomics in the era of next-generation sequencing. Drug Discov Today 2021; 26:1776-1783. [PMID: 33892143 DOI: 10.1016/j.drudis.2021.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/22/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
Pharmacogenomics (PGx) has essential roles in identifying optimal drug responders, optimizing dosage regimens and avoiding adverse events. Population-specific therapeutic interventions that tackle the genetic root causes of clinical outcomes are an important precision medicine strategy. In this perspective, we discuss next-generation sequencing genotyping and its significance for population-specific PGx applications. We emphasize the potential of NGS for preemptive pharmacogenotyping, which is crucial to population-specific clinical studies and patient care. We also provide examples that use publicly available population-based genomics data for population-specific PGx studies. Last, we discuss the remaining challenges and regulatory efforts towards improvements in this field.
Collapse
Affiliation(s)
- Xiangjun Ji
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences and School of Life Sciences, School of Statistics, East China Normal University, Shanghai 200241, China; Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Baitang Ning
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ruth Roberts
- ApconiX, BioHub at Alderley Park, Alderley Edge SK10 4TG, UK; University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Larry Lesko
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA; Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, University of Florida at Lake Nona, Orlando, FL, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA.
| | - Zhichao Liu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA.
| | - Tieliu Shi
- The Center for Bioinformatics and Computational Biology, The Institute of Biomedical Sciences and School of Life Sciences, School of Statistics, East China Normal University, Shanghai 200241, China; Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, USA; National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
4
|
Stanković B, Kotur N, Gašić V, Klaassen K, Ristivojević B, Stojiljković M, Pavlović S, Zukić B. Pharmacogenomics landscape of COVID-19 therapy response in Serbian population and comparison with worldwide populations. J Med Biochem 2020; 39:488-499. [PMID: 33312066 PMCID: PMC7710379 DOI: 10.5937/jomb0-26725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Since there are no certified therapeutics to treat COVID-19 patients, drug repurposing became important. With lack of time to test individual pharmacogenomics markers, population pharmacogenomics could be helpful in predicting a higher risk of developing adverse reactions and treatment failure in COVID-19 patients. Aim of our study was to identify pharmacogenes and pharmacogenomics markers associated with drugs recommended for COVID-19 treatment, chloroquine/hydroxychloroquine, azithromycin, lopinavir and ritonavir, in population of Serbia and other world populations. METHODS Genotype information of 143 individuals of Serbian origin was extracted from database previously obtained using TruSight One Gene Panel (Illumina). Genotype data of individuals from different world populations were extracted from the 1000 Genome Project. Fisher's exact test was used for comparison of allele frequencies. RESULTS We have identified 11 potential pharmacogenomics markers in 7 pharmacogenes relevant for COVID-19 treatment. Based on high alternative allele frequencies in population and the functional effect of the variants, ABCB1 rs1045642 and rs2032582 could be relevant for reduced clearance of azithromycin, lopinavir and ritonavir drugs and UGT1A7 rs17868323 for hyperbilirubinemia in ritonavir treated COVID-19 patients in Serbian population. SLCO1B1 rs4149056 is a potential marker of lopinavir response, especially in Italian population. Our results confirmed that pharmacogenomics profile of African population is different from the rest of the world. CONCLUSIONS Considering population specific pharmacogenomics landscape, preemptive testing for pharmacogenes relevant for drugs used in COVID-19 treatment could contribute to better understanding of the inconsistency in therapy response and could be applied to improve the outcome of the COVID-19 patients.
Collapse
Affiliation(s)
- Biljana Stanković
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Nikola Kotur
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Vladimir Gašić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Kristel Klaassen
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Bojan Ristivojević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Maja Stojiljković
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Sonja Pavlović
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| | - Branka Zukić
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Biomedicine, Belgrade
| |
Collapse
|
5
|
Mitropoulou C, Litinski V, Kabakchiev B, Rogers S, P Patrinos G. PARC report: health outcomes and value of personalized medicine interventions: impact on patient care. Pharmacogenomics 2020; 21:797-807. [PMID: 32635813 DOI: 10.2217/pgs-2019-0194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The incorporation of personalized medicine interventions into routine healthcare constitutes an opportunity to improve patients' quality of life, as it empowers implementation of innovative, individualized clinical interventions that maximize efficacy and/or minimize the risk of adverse drug reactions. In order to ensure equal access to genomic testing for all patients, the costs associated with these interventions must be reimbursed by payers and insurance bodies. As such, it is of utmost importance to thoroughly evaluate these interventions both in terms of their clinical effectiveness and their economic cost. This article discusses the impact of personalized medicine interventions in terms of both health outcomes and value, which directly impacts on their pricing and reimbursement by the various national healthcare systems.
Collapse
Affiliation(s)
| | | | | | - Sara Rogers
- American Society of Pharmacovigilance, Houston, TX 77225-0433, USA
| | - George P Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, Patras, 26504, Greece.,United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, UAE.,United Arab Emirates University, Zayed Center of Health Sciences, Al-Ain, UAE
| |
Collapse
|
6
|
Sketching the prevalence of pharmacogenomic biomarkers among populations for clinical pharmacogenomics. Eur J Hum Genet 2019; 28:1-3. [PMID: 31485027 DOI: 10.1038/s41431-019-0499-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023] Open
|