1
|
Xue Y, Sun X, Fu J, Rong L, Zhang H, Zhu Y, Yang X, Hu S, Chen J, Fang Y. PI3K/AKT pathway-related microRNA variants in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2023; 70:e30545. [PMID: 37438860 DOI: 10.1002/pbc.30545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Dysregulation of microRNAs (miRNAs) targeting genes in the PI3K/Akt pathway has been implicated in the pathogenesis of childhood acute lymphoblastic leukemia (ALL). However, the impact of genetic variants in these miRNAs on ALL susceptibility has not been extensively explored in the Chinese population. METHODS To address this gap, we conducted a case-control study to evaluate the association between genetic variants in five PI3K/AKT pathway-related miRNAs (miR-149, miR-126, miR-492, miR-612, and miR-423) and childhood ALL susceptibility in the Chinese population. Additionally, we investigated the effects of the rs2292832 mutation on ALL cell proliferation and apoptosis. RESULTS Our analyses revealed that the miR-149 rs2292832 mutant heterozygous CT genotype was more frequent in the control group than in the ALL cases, indicating a protective effect against ALL (adjusted odds ratio [OR] = 0.78, 95% confidence interval [CI] = 0.63-0.97, p = .024). Stratification analyses further revealed that the miR-149 rs2292832 CC genotype was associated with an increased risk of childhood ALL in subgroups of older children, females, those with parents who never smoked or drank alcohol, those living in painted houses, those with B-ALL, and those with high-risk ALL. Finally, we observed that the rs2292832 mutation inhibited ALL cell proliferation and induced apoptosis (p = .001), providing a potential mechanism by which this genetic variant may influence ALL susceptibility. CONCLUSION Our study highlights the significant association between the miR-149 rs2292832 genetic variant and childhood ALL susceptibility in the Chinese population. These findings expand our understanding of the complex genetic landscape underlying ALL and have implications for the development of personalized therapeutic strategies.
Collapse
Affiliation(s)
- Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Sun
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Jinyu Fu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Liucheng Rong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Heng Zhang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yuting Zhu
- Department of Pediatrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyun Yang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- National Children's Medical Center, Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
- Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Zhang S, Li S, Wei Y, Xiong Y, Liu Q, Hu Z, Zeng Z, Tang F, Ouyang Y. Identification of Potential Antigens for Developing mRNA Vaccine for Immunologically Cold Mesothelioma. Front Cell Dev Biol 2022; 10:879278. [PMID: 35846349 PMCID: PMC9284534 DOI: 10.3389/fcell.2022.879278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Messenger RNA vaccines are considered to be a promising strategy in cancer immunotherapy, while their application on mesothelioma is still largely uncharacterized. This study aimed to identify potential antigens in mesothelioma for anti-mesothelioma mRNA vaccine development, and further determine the immune subtypes of mesothelioma for selection of suitable candidates from an extremely heterogeneous population. Gene expression data and corresponding clinicopathological information were obtained from the TCGA and gene expression omnibus, respectively. Then, the genetic alterations were compared and visualized using cBioPortal, and differentially expressed genes and their prognostic signatures were identified by GEPIA. The relationship between tumor-infiltrating immune cells and the expression of tumor antigens was systematically evaluated by TIMER online. Finally, the immune subtypes and immune landscape of mesothelioma were separately analyzed using consensus cluster and graph learning-based dimensional reduction. A total of five potential tumor antigens correlated with prognosis and infiltration of antigen-presenting cells, including AUNIP, FANCI, LASP1, PSMD8, and XPO5 were identified. Based on the expression of immune-related genes, patients with mesothelioma were divided into two immune subtypes (IS1 and IS2). Each subtype exhibited differential molecular, cellular and clinical properties. Patients with the IS1 subtype were characterized by an immune “cold” phenotype, displaying superior survival outcomes, whereas those with the IS2 subtype were characterized by an immune “hot” and immunosuppressive phenotype. Furthermore, immune checkpoints and immunogenic cell death modulators were differentially expressed between the IS1 and IS2 immune subtype tumors. The immunogenomic landscape of mesothelioma revealed a complex tumor immune microenvironment between individual patients. AUNIP, FANCI, LASP1, PSMD8, and XPO5 are putative antigens for the development of anti-mesothelioma mRNA vaccine and patients with the IS1 subtype may be considered for vaccination.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Shuqin Li
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Wei
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yu Xiong
- Key Laboratory of Infectious Immune and Antibody Engineering in Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Qin Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Zuquan Hu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Zuquan Hu, ; Zhu Zeng, ; Fuzhou Tang, ; Yan Ouyang,
| | - Zhu Zeng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Zuquan Hu, ; Zhu Zeng, ; Fuzhou Tang, ; Yan Ouyang,
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Zuquan Hu, ; Zhu Zeng, ; Fuzhou Tang, ; Yan Ouyang,
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Zuquan Hu, ; Zhu Zeng, ; Fuzhou Tang, ; Yan Ouyang,
| |
Collapse
|
3
|
Ji L, Wang Z, Ji Y, Wang H, Guo M, Zhang L, Wang P, Xiao H. Proteomics and phosphoproteomics analysis of tissues for the reoccurrence prediction of colorectal cancer. Expert Rev Proteomics 2022; 19:263-277. [PMID: 36308708 DOI: 10.1080/14789450.2022.2142566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Many stage II/III colorectal cancer (CRC) patients may relapse after routine treatments. Aberrant phosphorylation can regulate pathophysiological processes of tumors, and finding characteristic protein phosphorylation is an efficient approach for the prediction of CRC relapse. RESEARCH DESIGN AND METHODS We compared the tissue proteome and phosphoproteome of stage II/III CRC patients between the relapsed group (n = 5) and the non-relapsed group (n = 5). Phosphopeptides were enriched with Ti4+-IMAC material. We utilized label-free quantification-based proteomics to screen differentially expressed proteins and phosphopeptides between the two groups. Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA) were used for bioinformatics analysis. RESULTS The immune response of the relapsed group (Z-score -2.229) was relatively poorer than that of the non-relapsed group (Z-score 1.982), while viability of tumor was more activated (Z-score 2.895) in the relapsed group, which might cause increased relapse risk. The phosphorylation degrees of three phosphosites (phosphosite 1362 of TP53BP1, phosphosite 809 of VCL and phosphosite 438 of STK10) might be reliable prognostic biomarkers. CONCLUSIONS Some promising proteins and phosphopeptides were discovered to predict the relapse risk in postoperative follow-ups.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co Ltd 210042, Nanjing, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Miao Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Lu Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co Ltd 210042, Nanjing, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 200240, Shanghai, China
| |
Collapse
|
4
|
Qu H, Wen Y, Hu J, Xiao D, Li S, Zhang L, Liao Y, Chen R, Zhao Y, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Wen X, Cao S, Huang X. Study of the inhibitory effect of STAT1 on PDCoV infection. Vet Microbiol 2022; 266:109333. [PMID: 35033844 DOI: 10.1016/j.vetmic.2022.109333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/24/2021] [Accepted: 01/02/2022] [Indexed: 11/27/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an enteropathogen found in many pig producing countries. It can cause acute diarrhea, vomiting, dehydration, and death in newborn piglets, seriously affecting the development of pig breeding industries. To date, our knowledge of the pathogenesis of PDCoV and its interactions with host cell factors remains incomplete. Using Co-IP coupled with LC/MS-MS, we identified 67 proteins that potentially interact with PDCoV in LLC-PK1 cells; five of the identified proteins were chosen for further evaluation (IMMT, STAT1, XPO5, PIK3AP1, and TMPRSS11E). Five LLC-PK1 cell lines, each with one of the genes of interest knocked down, were constructed using CRISPR/cas9. In these knockdown cells lines, only STAT1KD resulted in a significantly greater virus yield. Knockdown of the remaining four genes resulted, to varying degrees, in a lower virus yield that wild-type LLC-PK1 cells. The absence of STAT1 did not significantly affect the attachment of PDCoV to cells, but did result in increased viral internalization. Additionally, PDCoV infection stimulated expression of interferon stimulated genes (ISGs) downstream of STAT1 (IFIT1, IFIT2, RADS2, ISG15, MX1, and OAS1) while knockdown of STAT1 resulted in a greater than 80 % decrease in the expression of all six ISGs. Our findings show that STAT1 interacts with PDCoV, and plays a negative regulatory role in PDCoV infection.
Collapse
Affiliation(s)
- Huan Qu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jingfei Hu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yijie Liao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yujia Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xintian Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China; National Animal Experiments Teaching Demonstration Center, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
5
|
Vecoli C, Borghini A, Turchi S, Mercuri A, Andreassi MG. Genetic polymorphisms of miRNA machinery genes in bicuspid aortic valve and associated aortopathy. Per Med 2020; 18:21-29. [PMID: 33124523 DOI: 10.2217/pme-2020-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aim: SNPs in miRNA machinery genes may affect miRNA function by impacting their biogenesis. Here, we investigated the association between three SNPs in miRNA machinery genes (DICER rs1057035, DROSHA rs10719 and XPO5 rs11077) and bicuspid aortic valve (BAV). Materials & methods: Three polymorphisms were analyzed in 177 BAV patients and 414 healthy subjects by using a TaqMan®SNP assay. Results: The frequencies of XPO5 rs11077 genotype were significantly different between BAV patients and controls (p = 0.022). On multivariate logistic regression analysis, the XPO5 rs11077 C allele resulted a significant predictor of BAV (odds ratioadjusted = 0.65; CI: 0.42-0.98; p = 0.047). Conclusion: The XPO5 rs11077 SNP was associated with a decreased BAV risk supporting the causative role of miRNAs in aortic valve development.
Collapse
|
6
|
Lee Y, Ahn EH, Ryu CS, Kim JO, An HJ, Cho SH, Kim JH, Kim YR, Lee WS, Kim NK. Association between microRNA machinery gene polymorphisms and recurrent implantation failure. Exp Ther Med 2020; 19:3113-3123. [PMID: 32226488 PMCID: PMC7092926 DOI: 10.3892/etm.2020.8556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the potential association of five miRNA machinery gene polymorphisms (DICER1 rs3742330A>G, DROSHA rs10719T>C, RAN rs14035C>T, XPO5 rs11077A>C and DGCR8 rs417309G>A) with recurrent implantation failure (RIF), a clinical condition in which good-quality embryos repeatedly fail to implant following two or more in vitro fertilization cycles, and its associated risk factors in Korean women. Therefore, the present study performed genotype analysis and assessed the frequency of these miRNA gene polymorphisms in patients diagnosed with RIF (n=119) and randomly selected controls (n=210) with at least one live birth and no history of pregnancy loss. The DROSHA rs10719T>C and RAN rs14035C>T polymorphisms were identified to be significantly associated with decreased prevalence of RIF. Additionally, the DROSHA rs10719 TC and the RAN rs14035 CT genotypes were present at significantly lower frequencies in the RIF group than in the control group (adjusted odds ratio=0.550; 95% CI, 0.339-0.893; P=0.016; and adjusted odds ratio=0.590; 95% CI, 0.363-0.958; P=0.033, respectively). Furthermore, the combined RAN rs14035 CT+TT genotype was observed to be associated with decreased RIF prevalence (adjusted odds ratio=0.616; 95% CI, 0.386-0.982; P=0.042). Genotype combination analysis for the various miRNA polymorphisms revealed that the DROSHA TC genotype exhibited a highly significant negative association with RIF prevalence when combined with the RAN CT genotype (adjusted odds ratio=0.314; 95% CI, 0.147-0.673; P=0.003; false discovery rate-adjusted P=0.023). The present study revealed an association between the DROSHA rs10719 and RAN rs14035 3'UTR polymorphisms and decreased risk of RIF in Korean women, which suggests that these gene polymorphisms could represent potential markers for predicting RIF risk.
Collapse
Affiliation(s)
- Yubin Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea.,CHA Fertility Center, Seoul Station, Seoul 04637, Republic of Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Chang Soo Ryu
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Sung Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi 13497, Republic of Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
7
|
Involving the microRNA Targetome in Esophageal-Cancer Development and Behavior. Cancers (Basel) 2018; 10:cancers10100381. [PMID: 30322005 PMCID: PMC6210990 DOI: 10.3390/cancers10100381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is the eighth most common and sixth leading cause of cancer-related mortality in the world. Despite breakthroughs in EC diagnosis and treatment, patients with complete pathologic response after being submitted to chemoradiotherapy are still submitted to surgery, despite its high morbidity. Single-nucleotide polymorphisms (SNPs) in miRNA, miRNA-binding sites, and in its biogenesis pathway genes can alter miRNA expression patterns, thereby influencing cancer risk and prognosis. In this review, we systematized the information available regarding the impact of these miR-SNPs in EC development and prognosis. We found 34 miR-SNPs that were associated with EC risk. Despite the promising applicability of these miR-SNPs as disease biomarkers, they still lack validation in non-Asian populations. Moreover, there should be more pathway-based approaches to evaluate the cumulative effect of multiple unfavorable genotypes and, consequently, identify miR-SNPs signatures capable of predicting EC therapy response and prognosis.
Collapse
|