1
|
Fragoulakis V, Koufaki MI, Joefield-Roka C, Sunder-Plassmann G, Mitropoulou C. Cost-utility analysis of pharmacogenomics-guided tacrolimus treatment in Austrian kidney transplant recipients participating in the U-PGx PREPARE study. THE PHARMACOGENOMICS JOURNAL 2024; 24:10. [PMID: 38499549 DOI: 10.1038/s41397-024-00330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Chronic kidney disease (CKD) is a global health issue. Kidney failure patients may undergo a kidney transplantation (KTX) and prescribed an immunosuppressant medication i.e., tacrolimus. Tacrolimus' efficacy and toxicity varies among patients. This study investigates the cost-utility of pharmacogenomics (PGx) guided tacrolimus treatment compared to the conventional approach in Austrian patients undergone KTX, participating in the PREPARE UPGx study. Treatment's effectiveness was determined by mean survival, and utility values were based on a Visual Analog Scale score. Incremental Cost-Effectiveness Ratio was also calculated. PGx-guided treatment arm was found to be cost-effective, resulting in reduced cost (3902 euros less), 6% less hospitalization days and lower risk of adverse drug events compared to the control arm. The PGx-guided arm showed a mean 0.900 QALYs (95% CI: 0.862-0.936) versus 0.851 QALYs (95% CI: 0.814-0.885) in the other arm. In conclusion, PGx-guided tacrolimus treatment represents a cost-saving option in the Austrian healthcare setting.
Collapse
Affiliation(s)
| | - Margarita-Ioanna Koufaki
- Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, School of Health Sciences, Patras, Greece
| | - Candace Joefield-Roka
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Christina Mitropoulou
- The Golden Helix Foundation, London, UK.
- Department of Genetics and Genomics, United Arab Emirates University, College of Medicine and Health Sciences, Al-Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Seligson ND, Zhang X, Zemanek MC, Johnson JA, VanGundy Z, Wang D, Phelps MA, Roddy J, Hofmeister CC, Li J, Poi MJ. CYP3A5 influences oral tacrolimus pharmacokinetics and timing of acute kidney injury following allogeneic hematopoietic stem cell transplantation. Front Pharmacol 2024; 14:1334440. [PMID: 38259277 PMCID: PMC10800424 DOI: 10.3389/fphar.2023.1334440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Polymorphisms in genes responsible for the metabolism and transport of tacrolimus have been demonstrated to influence clinical outcomes for patients following allogeneic hematologic stem cell transplant (allo-HSCT). However, the clinical impact of germline polymorphisms specifically for oral formulations of tacrolimus is not fully described. Methods: To investigate the clinical impact of genetic polymorphisms in CYP3A4, CYP3A5, and ABCB1 on oral tacrolimus pharmacokinetics and clinical outcomes, we prospectively enrolled 103 adult patients receiving oral tacrolimus for the prevention of graft-versus-host disease (GVHD) following allo-HSCT. Patients were followed in the inpatient and outpatient phase of care for the first 100 days of tacrolimus therapy. Patients were genotyped for CYP3A5 *3 (rs776746), CYP3A4 *1B (rs2740574), ABCB1 exon 12 (rs1128503), ABCB1 exon 21 (rs2032582), ABCB1 exon 26 (rs1045642). Results: Expression of CYP3A5 *1 was highly correlated with tacrolimus pharmacokinetics in the inpatient phase of care (p < 0.001) and throughout the entirety of the study period (p < 0.001). Additionally, Expression of CYP3A5 *1 was associated with decreased risk of developing AKI as an inpatient (p = 0.06). Variants in ABCB1 were not associated with tacrolimus pharmacokinetics in this study. We were unable to discern an independent effect of CYP3A4 *1B or *22 in this population. Conclusion: Expression of CYP3A5 *1 is highly influential on the pharmacokinetics and clinical outcomes for patients receiving oral tacrolimus as GVHD prophylaxis following allo-HSCT.
Collapse
Affiliation(s)
- Nathan D. Seligson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Xunjie Zhang
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Mark C. Zemanek
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Jasmine A. Johnson
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Zachary VanGundy
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Mitch A. Phelps
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Julianna Roddy
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Craig C. Hofmeister
- Department of Hematology and Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Junan Li
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
- Division of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Ming J. Poi
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, OH, United States
- Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Zhou Y, Huang X, Liu L, Zeng F, Han Y, Zhang J, Zhou H, Zhang Y. Effect of Wuzhi preparations on tacrolimus in CYP3A5 expressers during the early period after transplantation: A real-life experience from heart transplant recipients. Transpl Immunol 2023; 76:101748. [PMID: 36423734 DOI: 10.1016/j.trim.2022.101748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Genetic polymorphisms and drug interactions are associated with tacrolimus exposure. This study aimed to evaluate the effect of Wuzhi (WZ) preparations on tacrolimus (TAC) concentration and dose requirements in heart transplant recipients with the CYP3A5*1 allele during the early period after transplantation. METHODS A total of 167 adult heart transplant recipients with the CYP3A5*1 allele were included and divided into the WZ group (n = 115) and the WZ-free group (n = 52). Blood trough concentrations of TAC were detected and the dose-adjusted concentration (C0/D) and dose requirement for achieving the TAC therapeutic range were compared between the two groups. The change in C0/D and dose of TAC were evaluated before and after co-administration with WZ preparations. RESULTS No significant differences in TAC C0/D and dose requirement were observed between the WZ and WZ-free groups. However, the TAC C0/D in the WZ group was significantly increased an average of 2.10-fold after co-administration of WZ. Moreover, the degree of elevation was related to the dose of the active ingredient (Schisantherin A). Furthermore, ALT, AST, and TB levels were significantly reduced after administration of WZ preparations. CONCLUSION Co-administration of the WZ/TAC preparation, in heart transplant recipients carrying the CYP3A5*1 allele, considerably increased TAC concentration (C0/D) while decreased high levels of leading indicators in the liver function. More importantly, the effect of the WZ/TAC preparation on C0/D was a dose-dependent event. However, our finding needs to be further confirmed in a larger sample size.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xiao Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Li Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China.
| |
Collapse
|
4
|
Shi B, Liu Y, Liu D, Yuan L, Guo W, Wen P, Su Z, Wang J, Xu S, Xia J, An W, Wang R, Wen P, Xing T, Zhang J, Gu H, Wang Z, Zhong L, Fan J, Li H, Zhang W, Peng Z. Genotype-guided model significantly improves accuracy of tacrolimus initial dosing after liver transplantation. EClinicalMedicine 2023; 55:101752. [PMID: 36444212 PMCID: PMC9700266 DOI: 10.1016/j.eclinm.2022.101752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The initial dose of tacrolimus after liver transplantation (LT) is critical for rapidly achieving the steady state of the drug concentration, minimizing the potential adverse reactions and warranting long-term patient prognosis. We aimed to develop and validate a genotype-guided model for determining personalized initial dose of tacrolimus. METHODS By combining pharmacokinetic modeling, pharmacogenomic analysis and multiple statistical methods, we developed a genotype-guided model to predict individualized tacrolimus initial dose after LT in the discovery (n = 150) and validation cohorts (n = 97) respectively. This model was further validated in a prospective, randomized and single-blind clinical trial from August, 2021 to February, 2022 (n = 40, ChiCTR2100050288). FINDINGS Our model included donor's and recipient's genotypes, recipient's weight and total bilirubin, which achieved an area under the curve of receiver operating characteristic curve (AUC of ROC) of 0.88 and 0.79 in the discovery and validation cohorts, respectively. We found that patients who were given tacrolimus within the recommended concentration range (RCR) (4-10 ng/mL), the new-onset metabolic syndromes are lower, especially for new-onset diabetes (p = 0.043). In the clinical trial, compared to those in experience-based (EB) group, patients in the model-based (MB) group were more likely to achieving the RCR (75% vs 40%, p = 0.025) with a more variable individualized dose (0.023-0.096 mg/kg/day vs 0.045-0.057 mg/kg/day). Moreover, significantly fewer medication adjustments were required for the MB group than the EB group (2.75 ± 2.01 vs 6.05 ± 3.35, p = 0.001). INTERPRETATION Our genotype-based model significantly improved the initial dosing accuracy of tacrolimus and reduced the number of medication adjustments, which are critical for improving the prognosis of LT patients. FUNDING National Natural Science Foundation of China, Shanghai three-year action plan, National Science and Technology Major Project of China.
Collapse
Affiliation(s)
- Baojie Shi
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Dehua Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Liyun Yuan
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wenzhi Guo
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Peihao Wen
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhaojie Su
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Jie Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Shiquan Xu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Junjie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Wenbin An
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Rui Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Peizhen Wen
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Tonghai Xing
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Jinyan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Haitao Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Zhaowen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Junwei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, 200080, Shanghai, China
- Corresponding author.
| | - Hao Li
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Corresponding author.
| | - Weituo Zhang
- Hongqiao International Institute of Medicine, Shanghai Tong Ren Hospital and Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 200050, Shanghai, China
- Corresponding author.
| | - Zhihai Peng
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of Organ Transplantation, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
- Corresponding author.
| |
Collapse
|
5
|
Sakon C, Alicea LA, Patacca H, Brown CD, Skaar TC, Tillman EM. Opportunity for pharmacogenomic testing in patients with cystic fibrosis. Pediatr Pulmonol 2022; 57:903-907. [PMID: 34967155 DOI: 10.1002/ppul.25809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients with cystic fibrosis (CF) are exposed to many drugs in their lifetime and many of these drugs have Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines that are available to guide dosing. Contemporary CF treatments are targeted to specific mutations in the CF transmembrane conductance regulator (CFTR) gene, and thus, require patients to have genetic testing before initiation of modulator therapy. However, aside from CFTR genetic testing, pharmacogenomic testing is not standard of care for CF patients. AIM The aim of this study is to determine the number of non-CFTR modulator medications with CPIC guidelines that are prescribed to patients with CF. MATERIALS & METHODS We identified all patients with a diagnosis of CF and queried our hospital electronic medical records (EMR) for all orders, including inpatient and prescriptions, for all drugs or drug classes that have CPIC actionable guidelines for drug-gene pairs that can be used to guide therapy. RESULTS We identified 576 patients with a diagnosis of CF that were treated at our institution during this 16-year period between June 2005 and May 2021. Of these patients, 504 patients (87.5%) received at least one drug that could have been dosed according to CPIC guidelines if pharmacogenomic results would have been available. CONCLUSIONS Patients with CF have high utilization of drugs with CPIC guidelines, therefore preemptive pharmacogenomic testing should be considered in CF patients at the time of CFTR genetic testing.
Collapse
Affiliation(s)
- Colleen Sakon
- Pharmacy Department, Indiana University Health, Indianapolis, Indiana, USA
| | - Leah A Alicea
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Heather Patacca
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cynthia D Brown
- Division of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Todd C Skaar
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emma M Tillman
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Dong Y, Xu Q, Li R, Tao Y, Zhang Q, Li J, Ma Z, Shen C, Zhong M, Wang Z, Qiu X. CYP3A7, CYP3A4, and CYP3A5 genetic polymorphisms in recipients rather than donors influence tacrolimus concentrations in the early stages after liver transplantation. Gene 2022; 809:146007. [PMID: 34688813 DOI: 10.1016/j.gene.2021.146007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023]
Abstract
AIM The purpose of this study was to investigate the effect of CYP3A7, CYP3A4, and CYP3A5 genetic polymorphisms in liver transplant recipients and donors on tacrolimus concentrations in the early stages after liver transplantation. METHODS One hundred and thirty-eight liver transplant recipients and matched donors were genotyped for CYP3A7 (rs10211 and rs2257401), CYP3A4 (rs4646437 and rs2242480), and CYP3A5*3 (rs776746) polymorphisms. The relationships between dose-adjusted trough concentrations (C0/D) of tacrolimus and corresponding genotypes were investigated. RESULTS Recipient CYP3A polymorphisms were associated with tacrolimus concentrations. The CYP3A7 rs10211 AA carriers (186.2 vs 90.5, p < 0.001), CYP3A4 rs4646437 CC carriers (184.0 vs 88.8, p < 0.001), CYP3A4*1G rs2242480 CC carriers (189.8 vs 99.7, p < 0.001), and CYP3A5*3 rs776746 GG carriers (197.3 vs 86.0, p < 0.001) had an almost twofold increase in the tacrolimus C0/D compared to that of the non-carriers. We further investigated the effect of the combination of recipient (intestinal) and donor (hepatic) genotypes on tacrolimus concentrations. Regardless of the genotype of the matched donor, CYP3A7 rs10211, CYP3A4*1G (rs2242480), and CYP3A5*3 (rs776746) polymorphisms of recipients could affect tacrolimus concentrations. For the CYP3A4 rs4646437 polymorphisms, when the donor carried CYP3A4 rs4646437 CC, the recipient CYP3A4 rs4646437 polymorphism was associated with the C0/D of tacrolimus, and when the donor carried CYP3A4 rs4646437 CT/TT genotype, the recipient CYP3A4 rs4646437 polymorphism also affected on tacrolimus C0/D, although the effect was not significant. CONCLUSION The large inter-individual variation in tacrolimus concentrations in the early stages after liver transplantation is influenced by genetic polymorphisms of CYP3A7, CYP3A4, and CYP3A5. Recipient (intestinal) CYP3A7, CYP3A4, and CYP3A5 polymorphisms seem to contribute more to such variation than donors. Therefore, the detection of CYP3A polymorphisms in recipients could help to predict the tacrolimus starting dose in the early stages after liver transplantation.
Collapse
Affiliation(s)
- Yue Dong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Qinxia Xu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Ruidong Li
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Yifeng Tao
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Quanbao Zhang
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Jianhua Li
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Zhenyu Ma
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Conghuan Shen
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Zhengxin Wang
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institute of Organ Transplant, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Xiaoyan Qiu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
7
|
Pasternak AL, Marshall VD, Gersch CL, Rae JM, Englesbe M, Park JM. Evaluating the Impact of CYP3A5 Genotype on Post-Transplant Healthcare Resource Utilization in Pediatric Renal and Heart Transplant Recipients Receiving Tacrolimus. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:319-326. [PMID: 33746516 PMCID: PMC7967030 DOI: 10.2147/pgpm.s285444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023]
Abstract
Purpose CYP3A5 genotype is a significant contributor to inter-individual tacrolimus exposure and may impact the time required to achieve therapeutic concentrations and number of tacrolimus dose adjustments in transplant patients. Increased modifications to tacrolimus therapy may indicate a higher burden on healthcare resources. The purpose of this study was to evaluate whether CYP3A5 genotype was predictive of healthcare resource utilization in pediatric renal and heart transplant recipients. Patients and Methods Patients <18 years of age with a renal or heart transplant between 6/1/2014–12/31/2018 and tacrolimus-based immunosuppression were included. Secondary use samples were obtained for CYP3A5 genotyping. Clinical data was retrospectively collected from the electronic medical record. Healthcare resource utilization measures included the number of dose changes, number of tacrolimus concentrations, length of stay, number of clinical encounters, and total charges within the first year post-transplant. Rejection and donor-specific antibody (DSA) formation within the first year were also collected. The impact of CYP3A5 genotype was evaluated via univariate analysis for the first year and multivariable analysis at 30, 90, 180, 270, and 365 days post-transplant. Results Eighty-five subjects were included, 48 renal transplant recipients and 37 heart transplant recipients. CYP3A5 genotype was not associated with any outcomes in renal transplant, however, a CYP3A5 expresser phenotype was a predictor of more dose changes, more tacrolimus concentrations, longer length of stay, and higher total charges in heart transplant recipients. CYP3A5 genotype was not associated with rejection or DSA formation. Age and induction therapy were associated with higher total charges. Conclusion CYP3A5 genotype may predict healthcare resource utilization in the first year post-transplant, although this may be mitigated by differences in tacrolimus management. Future studies should evaluate the impact of genotype-guided dosing strategies for tacrolimus on healthcare utilization resources.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, 48109, USA
| | - Vincent D Marshall
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, 48109, USA
| | - Christina L Gersch
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | - James M Rae
- Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | - Michael Englesbe
- Department of Surgery, Michigan Medicine, Ann Arbor, MI, 48109, USA
| | - Jeong M Park
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
De Sutter PJ, Gasthuys E, Van Braeckel E, Schelstraete P, Van Biervliet S, Van Bocxlaer J, Vermeulen A. Pharmacokinetics in Patients with Cystic Fibrosis: A Systematic Review of Data Published Between 1999 and 2019. Clin Pharmacokinet 2020; 59:1551-1573. [DOI: 10.1007/s40262-020-00932-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|